液压节能汽车制动能量回收及动态调节控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压节能技术是节能环保汽车技术的重要组成部分之一,在提高车辆的燃油性、减少污染物排放等方面已经得到越来越广泛的应用。液压节能汽车充分利用液压元件功率密度大、可靠性高等优点构建了以液压蓄能器、液压泵/马达为核心的能量回收单元,能够回收车辆制动过程中的惯性能量,并在车辆起动及加速过程释放能量以满足系统间歇性、大功率的要求。液压节能汽车的制动系统由能量回收制动单元和机械制动单元组成。制动能量回收控制策略可对上述两个单元进行多种效率优化的工作模式组合,在满足车辆制动系统制动效能以及平顺性的前提下,保证整车尽可能多的回收制动能量,提高车辆的燃油经济性。
     本论文的研究工作是以吉林省科技厅基金项目“液压二次调节技术在汽车节能中的应用研究”以及校企合作项目“基于液压节能技术的混凝土式搅拌运输车研制”为背景,主要针对液压节能汽车的制动能量回收策略以及制动系统动态调节策略进行研究。制动能量回收策略包括前后轮转矩分配策略、复合制动转矩分配策略以及制动强度的动态调整,旨在依据车辆制动工况的实际需求进行系统各制动单元的转矩分配,提高整车的能量回收率。制动系统动态调节策略旨在利用能量回收单元动态响应快、控制精度高的特点,有效的补偿整车制动转矩的缺失,抑制工况切换点附近制动转矩变化的震荡,提高整车的制动效率及车辆行驶的平顺性。液压节能汽车动力学模型的建立是进行系统元件选择问题以及控制策略研究的良好方法,本文建立了液压节能汽车的整车仿真模型并针对元件的优化匹配、控制策略的修正以及控制器的设计等问题进行了仿真分析。
     为了验证控制策略以及仿真分析的正确性、有效性,本文还建立了液压节能汽车的模拟试验台,并针对制动控制策略以及不同工况下整车的能量率进行了试验研究。试验结果表明液压节能汽车技术依据适当的控制策略可以高效的回收系统的制动能量,在中、重型车辆的节能环保技术应用方面具有重要的理论意义和实际应用价值。
The increasing deficiency of petroleum resources has been drawing more and more attention of human beings to the urgent requirement of the low energy consumption and low emission green motors. The rapid development of vehicle technology brings a great opportunity to energy saving and the reduction of pollutant emission, which includes electric vehicle technology, fuel cell electric vehicle technology, hybrid electric vehicle technology, hydraulic energy saving vehicle technology, etc.
     Hydraulic energy-saving vehicle adopts the hydraulic accumulator as the energy storage element, making full use of its advantage in high power density and rapid dynamic response by recovering the braking and inertial energy to meet the intermittence and high power requirement in the starting and accelerating process of vehicle. Being the energy conversion element of hydraulic energy-saving vehicle, the hydraulic pump/motor can works in the four torque-angle quadrants (as a motor to drive the load and as a pump to decelerate the load) by adjusting the swash plate angle, which has advantages in easy realization of positive inversion, high maneuverability and high reliability. With the energy recovery unit composed of the above elements, the hydraulic energy-saving vehicle recovers the braking and inertial energy and releases the energy in starting and accelerating process according to certain energy recovery strategy to ensure the ride comfort and safety. This design reduces the vehicle installed power in a large scale and has a dramatic effect on improvement of the fuel economy and reduction of emission and noise pollutant. Hydraulic energy-saving vehicle technology has gain a wider and wider application in heavy trucks, transporters, and urban buses, especially in the urban traffic and mountain transportation cases.
     This paper originates from the JiLin S&T Bureau Fund project-‘The application research on the secondary regulation technology in hydraulic energy saving vehicle’and the school-enterprise cooperation project-‘The development of concrete mixing truck based on the hydraulic energy saving technology’. The main content of this paper includes transformation of the dynamic and transmission system of the 8m3 concrete mixing truck, design of the energy saving unit and torque distribution unit of the hydraulic energy saving vehicle, and the planning of the vehicle controller to coordinate the above units to provide the torque for the vehicle. Hydraulic energy saving vehicle technology combines the electro-hydraulic control technology, computer technology and automatic control technology to make full use of the high power density of hydraulic elements to recover the braking energy on the base of ensuring the braking efficiency and comfort. This paper also includes: the dynamic regulation of each unit and the design of the braking torque control unit which provides hardware to the implementation of the recovery strategy of braking energy; the modeling and simulation analysis of the vehicle braking strategy which proves that the application of the braking energy recovery strategy can improve the recovery rate of the energy saving unit and the fuel economy of the vehicle effectively; the development of a test bench for parallel hydraulic energy saving vehicle; the experiment research on the multi-mode driving cycle of the parallel hydraulic energy saving vehicle, which proves the correctness of the theory and the feasibility of the control strategy and provides foundation for the improvement of the vehicle control strategy and the optimization of the element parameters.
     The major research work of hydraulic hybrid vehicle in this paper includes the following aspects:
     1. Study the parameter matching of the parallel hydraulic energy-saving vehicle power transmission system, which includes the selection of hydraulic pump/motor, accumulator, transmission and coupler, the influence of assembly parameters on the dynamic performance, fuel economy, brake energy recovery efficiency, brake safety and comfort, the parameter optimization of the elements based on the optimal control strategy and the simulation analysis of the vehicle with matched dynamic parameters.
     2. Perform modeling and simulation analysis of the parallel hydraulic energy-saving vehicle. Based on the theory modeling and simulation modeling method, a dynamic vehicle simulation model is established to real-time simulate the driving process in Matlab/Simulink environment, which includes the model of vehicle, the model of mechanical brake module, the model of energy recovery and control unit and the model of driving system. The control module of each main part of the hydraulic energy-saving energy vehicle and the vehicle energy management control system is designed to provide a necessary simulation platform for the development of the energy recovery and management strategy.
     3. Study the brake energy recovery control strategy of parallel hydraulic energy-saving vehicle. A comprehensive module including brake energy recovery, vehicle energy management strategy and multi-mode cycle condition vehicle control strategy is developed using the above vehicle simulation platform. This module is also embedded to the platform. The evaluation index of the of the influence of the control strategy and element matching on the vehicle dynamic performance is determined and applied to the vehicle control strategy and matching.
     4. Study the coordinated control strategy of the brake energy recovery unit and mechanical brake unit. A simulation model of the dynamic coordinated control strategy is built and the control algorithm of the dynamic coordination is development. Optimization of the robustness, interference inhibition and tracking performance of the control unit and the construction of the control algorithm of the torque control strategy and dynamic control are also discussed.
     5. A simulation test bench is developed to study the multi mode cycle condition of parallel hydraulic energy-saving vehicle. The experiment result shows the correctness of the theory analysis and the feasibility of the control strategy, which provides evidence for the improvement of the vehicle control strategy and optimal matching for the element parameters.
     The following original works are included in this paper:
     1. The coupling equipment optimal control strategy of hydraulic energy-saving vehicle is proposed. With the application of energy-saving technology to the 8m3 concrete mixer of CNHTC Special Motor Company, this paper provides the design of the total vehicle construction and optimal matching of elements, taking full consideration of the actual engineering constraint condition and driving condition. The optimal control strategy implements the torque and speed control of the hydraulic pump/motor through the tracking control of the target speed ratio. With the application of this strategy, the hydraulic pump/motor works in high efficiency area all the way, implementing the improvement of fuel economy by increasing the element efficiency as well as the satisfaction of the driving and braking performance.
     2. An energy recovery strategy is proposed which includes the distribution strategy between the front and rear wheel, among various brake torque, and the dynamic adjustment of the brake force. Edge condition of the brake control strategy is proposed with a consideration of the vehicle performance and the urban condition. Simulation analysis of the vehicle model under various conditions is performed to prove the effectiveness of the brake control strategy. The simulation result shows that this brake energy recovery strategy can improve the recovery efficiency of the energy recovery unit and the consequent fuel economy of the whole vehicle.
     3. A new brake torque control unit of the hydraulic energy-saving vehicle is developed, which adds brake piston, brake accumulator, vehicle controller, pedal angle sensor and controllable throttle to the original brake system. The brake torque and the driver’s intention can be acquired through the pedal travel, pedal velocity and pedal acceleration. The control unit makes maximum use of the recovered energy within the limit of the brake torque according to the vehicle control strategy and ratio of the recovery torque and the mechanical brake torque. The design of the brake torque control unit provides hardware for the implementation of the brake energy recovery control strategy.
     4. The dynamic control strategy of hydraulic energy-saving vehicle brake system is proposed. The dynamic and control model of the energy recovery brake unit and the mechanical brake unit is established in this paper to solve the torque compensation in the hybrid brake process. Making full use of the rapid response and high control precision of the energy recovery unit, the dynamic control strategy reduces the highly oscillatory tendency around the switch point by compensating the torque deficiency due to the slow response of the mechanical brake system so as to improve the brake efficiency and comfort of the vehicle. Development of the dynamic controller is also conducted, which provides hardware foundation for the implement of the control strategy.
引文
[1]胡名一,胡伟.国内外电动汽车[J].汽车工业研究,2003(12):35-39.
    [2]王庆云.交通的可持续发展观[J].综合运输,2003,(9).
    [3]中国设备网.我国重点发展的汽车发动机节能技术分析[EB/OL].(2009-7-8). http://www.creader.com/news/20011219/200112190019.html
    [4]沈胜强,李素芬,徐钢.可持续发展战略与节能技术节能[J].1998, (12):4-7
    [5]严光明,秦安民.增强节能意识,推进节油技术进步[J].云南交通科技,1994, 10(1):48~49
    [6]范海雁.城市公交车辆的发展方向分析[J].能源研究与信息,2007,23(3):154-157
    [7]Institute for the Analysis of Global Security. EPA Displays the First Advanced Hydraulic Hybrid Vehicle [2006-06-24]. http://www.iags.org/n 033104 t3.htm
    [8]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社.2002
    [9]A. Szumanowski.混合电动车辆基础.北京理工大学出版社. 2001:3060
    [10]管志宏.公交汽车节能环保驱动技术的研究[D],西南交通大学,2003
    [11]古丽萍.发展完善中的燃料电池汽车[J].北京汽车,2003(5):7-9
    [12]陈家昌,王菊,伦景光.国际燃料电池汽车技术研发动态和发展趋势[J].汽车工程,2008(5):381-383
    [13]V. Wouk. Hybrids: Then and Now. Spectrum, IEEE, 1995, 32(7):16-21
    [14]Dietrich P.,Ender M..Hybrid Powertrain Update [J].Electric and Hybrid Vehicle Technology 1996
    [15]Moore T.Ultra-light HEV Principle and Design[J].EV21,Monaco.2005
    [16]曾小华,王庆年,王伟华.混合动力汽车混合度设计方法研究[J].农业机械学报,2006(12):8-10
    [17]US Environmental Protection Agency. Hydraulic Hybrid Technology - a Proven Approach [2006-06-24]. http://www.epa.gov/ otaq/technology /420f04024.pdf
    [18]张金柱.混合动力汽车结构、原理与维修[M].北京:化学工业出版社,2008
    [19]L. O. Hewko and T. R. Weber. Hydraulic Energy Storage Based Hybrid Propulsion System for a Terrestrial Vehicle. Proceedings of the Intersociety Energy Conversion Engineering Conference, Reno, NV, USA. 1990:99-105
    [20]姚怀新.工程车辆液压动力学与控制原理[M].北京:人民交通出版社,2006.
    [21]A. Lynn, E. Smid, M. Eshraghi, Caldwell N. Modeling Hydraulic Regenerative Hybrid Vehicles Using AMESim and Matlab/Simulink. Proceedings of SPIE - The International Society for Optical Engineering. 2005:24-40
    [22]Eaton powering business worldwide. Series hybrid hydraulic [2009-10-16]. http://eaton.com/EatonCom/ProductsServices/Hybrid/SystemsOverview/Series Hydraulic/index.htm
    [23]赵春涛.车辆串联混合系统中二次调节静液驱动技术的研究[D].哈尔滨工业大学博士论文. 2001:18-30
    [24]E. D. Mark. The Evaluation and Analysis of a Power Split Hydraulic Hybrid Drivetrain. Thesis onMaster of University of Missouri-Columbia . 2003:30-50
    [25]Szumanowski A. Generalised method of comparative energetic analysis of HEV Drive [J].EVS 12 Osaka 1996
    [26] Hajduga A. Energy mamagement in hybrid vehicle drive[J] . Proceeding of advanced propulsion systems GPC detroit 1998
    [27]US Environmental Protection Agency. Hydraulic hybrid technology. [2004-03-24] http://www.epa.gov/otaq/technology/recentdevelopments.htm
    [28]John J. Kargul.Hydraulic hybrid cost-effective clean urban vehicles. [2006-03-22] www.epa.gov/otaq/technology
    [29]US Environmental Protection Agency. World’s first full hydraulic hybrid SUV presented at 2004 SAE World Congress . [2004-05-08] http://yosemite.epa.gov/opa/admpress.nsf/d0cf6618525a9efb85257359003fb
    [30]H. Robert and J. K. John. Hydraulic Hybrid Promises Big Savings for UPS. http://www.hydraulicspneumatics.com/200/Issue/Article/False/38545/Issue.
    [31]Energy security. EPA displays the frist advanced hydraulic hybrid vehicle. [2004-03-31] http://www.iags.org/n033104t3.htm
    [32]Bimmerfest. BMW hydraulic hybrid. [2005-01-13] http://www.bimmerfest.com/forums/showthread.php?t=320251
    [33]W. H. Close. Report on Noise Testing: Permo-drive Regenerative Drive Shaft, 2002. http://www.permo-drive.com
    [34]S. Hiroki, I. Shigeru, K. Eitaro. Study on Hybrid Vehicle Using Constant Pressure Hydraulic System with Flywheel for Energy Storage. SAE Paper No. 2004-01-3064
    [35]刘宇辉,蒲红,张艳萍,姜继海.二次调节静液传动技术的发展及应用[J].佳木斯大学学报,2001(1)34-36
    [36]Z. Pawelski, R. E. Parisi .为市内公共汽车配备力士乐驱动装置[J]. Rexroth Information Quarterly.1997,(2)25-27
    [37]B. Trevor and A. Scott. Hybrid Refuse Truck Study. Software Virtual Product Development Conference[C]. 2004. Huntington Beach, California.
    [38]R.Kordark.Neuartige Antriebskonzeption mit Sekundrgeregelten Hydrostatischen Maschinen[M].O+P,lhydraulik und Pneumatik,1981,25(5):387-392
    [39]H.Murrenhoff.Einsatzbeispiel Motor Geregelter Antriebe mit der. M glichkeit der Energierück gewinnung[M].O+P, lhydraulik undPneumatik,1984,28(7):427-434
    [40]F.Metzer.Kennwerte der Dynamik Sekundarehzahlgeregelter Arialkol beneinheiten einsepraten Drucknetz[M].O+P,lhydraulik und Peumatik,1986,30(3):184-201
    [41]H.-J.Haas.Drehzahl-und Lageregelung von Verstellmotoren an einen zentralen Drucknetz.O+P, Olhydraulik und Pneumatik,1986,30(12): 909-914
    [42]W.Backe.Elektrohydraulische Regelung von Verdrangereinheit.O+P, Olhydraulik und Pneumatik,1987,31(10):770-782
    [43]H.Murrenhoff and M.C.Shin.Analyse Elektro-hydraulischer Drehzahlregelungen VerstellmotorenKonstant Drucknetz.O+P, Olhydraulik und Pneumatik ,1982,26 (5):333-340
    [44]易纲.液压混合动力车辆控制系统研究[D].南京理工大学,2007
    [45]A.Pourmovahed. Sizing Energy Storage Units forHydraulic Hybrid Vehicle Applications[J]. ASME Advanced Automotive Technologies, Vol. 52, 1993.
    [46] Bloxham, Steven, Smith, Paul, Dawson, Jonathan, Mazur. Joseph. Alternative to the Chemical Storage Battery in Hybrid Powertrain Design[C].August 2001.
    [47] Robyn A. Jackey, Paul Smith, Steven Bloxham. Physical System Model of a Hydraulic Energy Storage Device for Hybrid Powertrain Applications[C]. SAE Paper No. 2005-01-0810.
    [48]Young Jae Kim, Zoran Filipi. Simulation Study of a Series Hydraulic Hybrid Propulsion System for a Light Truck[C]. SAE Paper No. 2007-01-4151.
    [49]Wu, B., Lin, C.-C., Filipi, Z., Peng H., Assanis, D.,Optimal Power Management for a Hydraulic Hybrid Delivery Truck[C]. Journal of Vehicle System Dynamics, Vol. 42, Nos. 1-2, 2004, pp. 23-40.
    [50] Caratozzolo, P.Serra, M. Riera. Energy management strategies for hybrid electric vehicle[C]. IEEE International Electric Machines and Drives Conference (Cat. No.03EX679), Madison,WI, USA, Vol. 1, 1-4 June, 2003, pp. 241-248.
    [51] Paul Matheson, Jacek Stecki. Development and Simulation of a Hydraulic-Hybrid Powertrain for use in Commercial Heavy Vehicles[C]. SAE Paper No. 2003-01-3370.
    [52] D. Scott, J. Yamaguchi. Regenerative Braking for Buses Gives Big Fuel Saving[J]. Automotive Engineering pp. 95-99,, vol. 92, No. 10, Oct.1984.
    [53] P. Willumeit, B. Bennter. HY-DRO-BUS– A City Bus with Braking Energy Recovery[C]. Proc. XIX. Int.FISITA Congress, Vol. 2, Paper No. 82065, 1982, Melbourne, Australia.
    [54]姜继海.二次调节静液传动系统及其控制技术的研究[D].哈尔滨工业大学博士论文. 1998:1-30
    [55]战兴群.静液驱动二次调节技术控制特性的研究[D].哈尔滨工业大学博士论文.1999:49-61
    [56]姜继海,刘宇辉.二次调节静液传动技术在矿井提升机中的应用[J].机床与液压. 1999, (4):42-43
    [57]肖华.上海交大神舟液压混合动力系统—城市公交的新选择[D].城市车辆,2007(5):23-25
    [58]杜玖玉,苑士华,胡纪滨,荊崇波.新型车用功率分流液压混合动力传动研究[J].液压与气动,2008(8):34-37
    [59]张庆永,常思勤.液压混合动力车辆液压系统建模及仿真[J].南京理工大学学报,2008(6):12-15
    [60]北京创世奇公司.汽车无级变速混合驱动装置.[2009-04-23] http://www.miraclesoft.com.cn/docs/csq_product/20071025/115D5EAF02B.shtml
    [61]J. M. Miller and M. Everett. An Assessment of Ultra-capacitors as the Power Cache in Toyota THS-II, GM-Allision AHS-2 and Ford FHS Hybrid Propulsion Systems[C]. The 20th IEEE Applied Power Electronics Conference and Exposition. 2005, (1):481-490
    [62]J. V. Mierlo, G. Maggetto, P. Lataire. Which Energy Source for Road Transport in the Future? A Comparison of Battery, Hybrid and Fuel Cell Vehicles[J]. Energy Conversion and Management.2006, 47(17):2748-2760
    [63]P. Buchwald, H. Christensen, H. Larsen and P. S. Pedersen. Improvement of City Bus Fuel Economy Using a Hydraulic Hybrid Propulsion System-a Theoretical and Experimental Study[C]. SAE Paper No. 790305
    [64]E. D. Mark. The Evaluation and Analysis of a Power Split Hydraulic Hybrid Drivetrain[J]. Thesis on Master of University of Missouri-Columbia. 2003:30~50
    [65]张维刚,谭彧,朱小林.液压技术在混合动力汽车节能方面的应用[J].机床与液压. 2006, (6):144~146
    [66]Hybrid Comparisons. http://www.permo-drive.com/compare/index.htm
    [67]US Environmental Protection Agency. World’s First Full Hydraulic Hybrid SUV Presented at 2004 SAE Wold Congress [2006-06-24]. http://www. epa. gov/otaq/technology/420f04019.pdf.
    [68]William W. Marr, Jianliang He. MARVEL: a PC-based interactive software package for life cycle evaluations of hybrid/electric vehicles[C]. SAE951872, 1995
    [69] Mark George Kosowski,Prekash H. Desai. A parallel hybrid traction system for General Motors Corporation's "Precept" PNGV vehicle[C].SAE2000-01-1534, 2000
    [70] Chan-Chiao Lin et al. Integrated Feed-forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies. SAE 2001-01-1334
    [71] Niels J.Schouten et al. Fuzzy Logic Control for Parallel Hybrid Vehicles[C].IEEE Transactions on Control Systems Technology, Vol.10, No.3, May 2002
    [72] S. Delprat et al. Optical Control of a Parallel Powertrain: From Global Optimization to Real Time Control Strategy[J]. Technical Paper of EVS 18, Berlin 2001
    [73]于秀敏,曹珊,李君,高莹,杨世春,钟祥麟,孙平.混合动力汽车控制策略的研究现状及其发展趋势[J].机械工程学报,2006(11):35-38
    [74] Delprat Sebastien et al. Control Strategy Optimization for a Hybrid Parallel Powertrain [J]. Proceedings of the American Control Conference, Arlington, VA June 25-27,2001
    [75]朱元,田光宇,陈全世,吴昊.混合动力汽车能量管理策略的四步骤设计方法[J].机械工程学报,2004(8):39-42
    [76]朱正礼.并联式混合动力轿车动力系统性能匹配与优化研究[D].上海:上海交通大学,2004
    [77] S.R.Cikanek et al,Control System and Dynamic Model Validation for a Parallel Hybrid Electric Vehicle[C].Proceedings of the American Control Conference,San Diego,California,June 1999
    [78]童毅.并联式混合动力系统动态协调控制问题的研究[博士学位论文].北京:清华大学2004
    [79]曾小华.混合动力客车节能机理与参数设计方法研究[D].长春:吉林大学, 2006
    [80] Butler K L, Ehsani M, Kamath Preyas. A Matlab-based modeling and simulation package for electric and hybrid electric vehicle design[C]. IEEE Transactions on Vehicular Technology, 1999, 48 (6): 1770-1778
    [81]魏跃远,林程,林逸,何洪文,申荣卫.混合动力汽车系统效率的影响因素[J].吉林大学学报(工学版). 2006, 36(1):20~24
    [82]刘金刚,周云山,高帅,邹乃威.智能预测控制在无级变速器速比跟踪中的应用[J].中国机械工程,2008(14):1664-1665
    [83]朱正礼,殷承良,张建武.基于遗传算法的纯电动轿车动力总成参数优化[J].上海交通大学学报,2004(11)56-61
    [84]Srinivas N.,Deb K.,multiobjective function optimization using nondominated sorting genetic algorithm[J].Evolutionary Computation,1995(3):221-248
    [85]Holland J.Adaptation in Natural and Artificial System[M].Ann Arbor,MI:University of Michigan Press,1975:21-24
    [86]Michalewicz Z.Genetic Algorithms and optimal control problem[C].IEEE Conf.on Decision and Control,1990:1664-1666
    [87]Vose M. D.Modeling Simple Genetic Algorithms[J].Foundations of Genetic Algoritms,1993:63-73
    [88] Michalewicz Z,et.al.A Modified Genetic Algorithm for Optimal Control Problems[J].Computers Math.Application,1992,23(12):83-94.
    [89] S. Alev and B. Zafer. Hybrid Genetic Algorithm and Simulated Annealing for Two-dimensional Non-guillotine Rectangular Packing Problems. Engineering Applications of Artificial Intelligence. 2006, (19):557~567
    [91]袁立鹏,许宏光,赵克定.基于改进遗传算法的坦克发动机道路模拟测试平台轨迹寻优.东南大学学报(自然科学版). 2006, 36(2):237~241.
    [92]孟红云.多目标进化算法及其应用研究[D].西安电子科技大学,2005
    [93] Y. J. Kim and Z. Filipi. Simulation Study of a Series Hydraulic Hybrid Propulsion System for a Light Truck[C]. SAE Paper No. 2007-01-4151
    [94] A. A. Mukhitdinov, S. K. Ruzimov, S. L. Eshkabilov. Optimal Control Strategies for CVT of the HEV during a Regenerative Process[C]. IEEE Conference on Electric and Hybrid Vehicles. Pune, India, 2006:1~12
    [95] Y. J. Huang, C. L. Yin and J. W. Mang. Development of the Energy Management Strategy for Parallel Hybrid Electric Urban Buses[J]. Chinese Journal of Mechanical Engineering. 2008, 21(4):44~50
    [96] F. Doug, W. Glenn, W. Chris. Analysis of a Hybrid Multi-mode Hydromechanical Transmission[C]. SAE Paper No. 2007-01-1455
    [97] R. P. Kepner. Hydraulic Power Assist– a Demonstration of Hydraulic Hybrid Vehicle Regenerative Braking in a Road Vehicle Application[C]. SAE Paper No. 2002-01-3128
    [98]秦大同,邓涛,杨阳,林志煌.基于前向建模的ISG型CVT混合动力系统再生制动仿真研究[].中国机械工程. 2008, 19(5):618~624
    [99] B. Wu, C. C. Lin, Z. Filipi, H. Peng, D. Assanis. Optimal Power Management for a Hydraulic Hybrid Delivery Truck[J]. Vehicle System Dynamics. 2004,(42):23~40
    [100]李晓英,于秀敏,李君,吴志新.串联混合动力汽车控制策略[J].吉林大学学报(工学版).2005, 35(2):122~126
    [101] C. C. Lin, P. Peng, W. Jessy. Power Management Strategy for a Parallel Hybrid Electric Truck[C]. IEEE Transactions on Control Systems Technology. 2003, (6):839~849
    [102] M. G. Morteza, P. Amir, G. Babak. Application of Genetic Algorithm for Optimization of Control Strategy in Parallel Hybrid Electric Vehicles[C]. Journal of the Franklin Institute. 2006, (343):420~435
    [103]叶敏,郭振宇,程博,曹秉刚.基于参数摄动的电动汽车再生制动鲁棒混合控制研究[J].西安交通大学学报. 2007, 41(1):64~68
    [104]谢辉,宋小武,周能辉.轻度混合动力系统控制模式分层决策及能量管理策略的研究[J].内燃机学报. 2005, 23(2):155~161
    [105]吴红杰,齐铂金,郑敏信,陈波,舒伟辉.混合动力电动车电池荷电状态描述方法[J].北京航空航天大学学报,2005年第2期,223-226
    [106]胡明辉,秦大同,舒红,蒲斌.混合动力汽车电池管理系统SOC的评价[J].重庆大学学报,2003年第4期,20-23
    [107]白志峰,张传伟,李舒欣等.电动汽车驱动与再生制动的H∞鲁棒控制[J].西安交通大学学报. 2005, 39(3):256~260
    [108] M. N. Anwar, Iqbal Husain, Sayeed Mir, Tomy Sebastian. Evaluation of Acoustic Noise and Mode Frequencies With Design Variations of Switched Reluctance Machines[C]. 2003 IEEE
    [109] Baoquan Kou, Liyi Li, Shukang Cheng, and Fanrong Meng. Operating Control of Efficiently Generating Induction Motor for Driving Hybrid Electric Vehicle[C]. IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 1, JANUARY 2005
    [110] Brian A. Welchko, James M. NAGASHIMA. A Comparative Evaluation of Motor Drive Topologies for Low-Voltage, High-Power EV/HEV Propulsion Systems[C]. IEEE 2003
    [111] Mehrdad. Ehsani, Yimin Gao, and Stbastien Gay. Characterization of Electric Motor Drives for Traction Applications[C]. IEEE 2003
    [112]李翔晟,常思勤.新型电控液驱车辆能量再生系统建模与实验[J].农业机械学报. 2006, 37(10):31~34
    [112] Mehrdad Ehsani, Khwaja M. Rahman,Maria D. Bellar,Alex J. Severinsky. Evaluation of Soft Switching for EV and HEV Motor Drives[C]. IEEE, 2001
    [113]王伟华,王庆年,金启前,陈鹏,赵宏伟.混合动力客车多能源动力总成控制器研制与试验[J].汽车工程。2004 26 (2):115-118
    [114]王建强,罗禹贡,程莺,李克强,连小珉.混合动力汽车多能源动力总成控制器硬件在环仿真系统[J].中国机械工程,2005年第16期,1478-1480
    [115]黄妙华,金国栋,邓亚东,王琛,王子杰,刘江华.混合动力电动汽车性能试验与仿真[J].汽车技术,2002年第四期,20-23
    [116]钱立军,虞明,赵韩.混合动力轿车性能的测试研究[J].汽车工程,2004,26 (3):257-259
    [117]何仁,王宪英,王若平.混合动力传动系统匹配评价指标的探讨[J].汽车技术,2005,1:22-24
    [118]刘金玲,宋健,于良耀等.并联混合动力客车控制策略比较[J].公路交通科技,2005,22(1):144-146
    [119]浦金欢.混合动力汽车能量优化管理与控制策略研究[D].上海:上海交通大学,2004
    [120] Rahman Z, Butler K L, Ehsani M. A comparison study between two parallel hybrid controlconcepts[C].SAE Paper 2000-01-0994, 2000
    [121] Johnson V H, Wipke K B, Rausen D J. HEV control strategy for real-time optimization of fuel economy and emissions[C]. SAE Paper 2000-01-1543, 2000
    [122]陈宏伟,宋健,王铁山,任露泉。盘式制动器摩擦特性的指数函数模型[J].农业机械学报,2002,33(5):35-36
    [123] [美]鲁道夫L编.汽车制动系统的分析与设计[M].张蔚林等译.北京:机械工业出版社, 1985.
    [124]浦金欢.混合动力汽车能量优化管理与控制策略研究[D].上海:上海交通大学,2004
    [125] Yasuhiro Oshiumi et al.Traction Force Control of Parallel Hybrid Electric Vehicle by Using Model Matching Controller.AVEC’98,1998,129~134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700