HEV锂离子电池组管理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的迅猛发展,能源和环境问题更加突出。世界各国对此密切关注,并采取积极的应对措施。混合动力汽车(Hybrid-Electric Vehicle, HEV)是为减少燃油汽车的能源消耗和所引起的污染这两个问题而产生的。混合动力汽车动力电池的荷电状态(State of Charge, SOC)是电池管理系统的重要数据,HEV动力电池组的SOC要求实时、在线、准确估算,它是HEV整车能量控制策略的前提,是不使电池组因过充、过放而提前损坏的保证。HEV动力电池组工作有自身的特点:温度间距大,温度间距能达到60摄氏度;充放电频繁且变化大。但现有的很多HEV电池组SOC估算算法中要么没有考虑温度因素,要么把温度当成常量来处理;另外,电池的SOC和电池的端电压之间是非线性关系,但现有的很多算法直接把这种关系当成线性来处理,导致HEV动力电池组SOC估算误差大。此外,储能装置存在的问题已经成为HEV发展的瓶颈。HEV用储能装置多采用串联电池组,电池在串联使用时,其性能和使用寿命比不上单体电池。研究表明,这主要是由电池组中单体间的不均衡性造成的。相比电池的制作材料、数学模型、充电方法等方面的研究,蓄电池的均衡性研究是一个新的研究方向,给国内外的研究者提出了大量的挑战性课题。这种不均衡性是客观存在的,只能尽量减小而不可能彻底消除;这种不均衡性在蓄电池的使用过程因过充过放等因素的影响会加剧,因此不均衡性的控制是一个动态过程。
     针对上述情况,围绕HEV锂离子电池组管理的几个关键技术,本文主要做了以下几个方面的工作:
     第一、在介绍汽车的发展趋势和混合动力汽车应解决的关键技术及锂离子电池的工作机理的基础上,对影响SOC估算的因素及效果做了全面的分析,并对当前常用电池模型进行了研究,提出了以传统EMF(Electromotive force)模型为基础的改进型EMF模型以改善其温度特性,并对改进模型的参数给出了辩识方法。
     第二、对现有SOC估算算法做了分析,研究了基于扩展卡尔曼滤波(EKF)的SOC估算策略,该策略的目的是要将线性卡尔曼滤波算法应用于非线性系统。论文给出了基于扩展卡尔曼滤波的SOC估算算法的实现,提出了基于EKF-AH法的SOC混合估算方法,并进行了实验验证。实验结果表明,基于EKF-AH的SOC估算算法能满足HEV的SOC估算精度要求,温度适应能力明显比改进前强。
     第三、对电池组不均衡性扩大的原因做了分析,对现有的几种主要均衡方法作了比较研究,提出了多绕组变压器磁性均衡模型,并对传统的DC-DC隔离转换均衡法做了改进。针对电动汽车串联电池组数目大和充放电电流大的应用场合,在多绕组变压器磁性均衡法和改进的DC-DC均衡法的基础上提出了一种二级均衡法,给出了系统的具体实现,包括各硬件模块的设计原理、电路原理图及主要模块的详细实现过程。最后对提出的二级均衡法给出了实验验证,实验结果说明用改进后DC-DC组成的分级均衡系统进行均衡充电是有效的,并具有其优越性。
     第四、针对目前在电池组管理方面对电池组能量管理重视不够,或者缺乏能量管理策略,从而导致电池的健康状况下降,影响电池的能量利用和使用寿命等问题,提出了蓄电池多分组能量管理策略和基于备份电源的能量管理策略,分析了备份电源的能量管理策略的适用性,该策略主要包括电池分组的原则、能量回馈控制和充放电的控制方法等。对实验数据的分析表明,采用本能量管理策略的系统比无能量管理的未分组系统有更高的能量利用率和更好的工作状态。
     第五、给出了HEV锂离子电池组管理系统的总体功能和硬软件设计方案,该管理系统以微处理器作为各种功能控制的核心,具有锂离子电池组SOC估算、充放电管理及均衡、能量管理等功能,可使电池组的使用更加合理,有效延长其使用寿命。
     本文的工作对从事混合动力汽车的研制,尤其是对从事HEV锂离子电池组管理研究的人员有参考价值。
Along with rapid development of automobile industry, the energy problem and the environment problem are more prominent. All countries pay attention closely to them, and take positively the measure for those problems. The electric automobiles have been researched for reducing the pollution emissioned by fuel oil automobile and the consumption of energy. SOC of batteries used in HEV is the important data of battery management system.SOC requires to be estimated real-time, on-line, accurately. This is the premise of energy control strategy of HEV too, the guarantee which prevents batteries damage from overcharging or over-discharging. Battery Group of HEV has its own characteristics when it works:large interval of the temperature, the interval of temperature can reach 60 degrees Celsius; charge and discharge frequently and the large variation of current. However, many estimation algorithms of SOC which people often used in HEV don't take temperature factor into account or accept it as a constant. The relationship between SOC and the terminal voltage of batteries is non-linear, but many algorithms deal with them directly as a linear relationship, and result in large estimation error of SOC. In addition, the problem of energy storing device becomes the bottleneck in the development of HEV. Energy storing device equipped on HEV generally uses series battery stack. When batteries are connected in series, its performance and life span are not a circumstance to single cell. Studies have shown that it's primarily caused by imbalance between cells in series battery stack. Compared to the research of battery materials, mathematical models, charging methods, the balance between batteries is a new research field and has a bright future in application. The imbalance between cells can't be eliminated completely because of the outwardness of it. It will be intensified during the course of being used, so the control of it becomes a dynamic process.
     In view of the above situation, regarding several key technologies of HEV lithium ion battery management system, the main work of this dissertation includes:
     First, this dissertation introduces the development trend of the vehicle, key technologies of HEV and the working principle of lithium ion battery, analyses completely the affecting factors of SOC, studies on battery model in common use, sets up improved EMF battery model based on traditional EMF battery model, which takes into account the impact of temperature to the SOC and puts forward the way of parameter recognizing of improved EMF battery model.
     Second, this dissertation analyses the estimate algorithm of SOC existing, studies on the estimate algorithm of SOC based on EKF in order to fit the non-linear system, puts forward a kind of hybrid estimate algorithm of SOC based on EKF-AH, and verifies its effect with experiments. The results of experiment have indicated that estimate algorithm of SOC based on EKF-AH may meet the accuracy requirement of HEV, the temperature adaptability of improved battery model is obviously better than the model which has not been modified.
     Third, the dissertation also discusses the reasons for the extension of equalization and several existing balanced approach, puts forward the multiple winding magnetic model, and has improved the balancing method of the traditional DC-DC isolation. Against the application occasions of large number cells and high charge and discharge current on electric vehicles, according to the multiple winding magnetic balancing method and the improved DC-DC balancing method, the thesis proposes one kind of second-level balancing method, describes the detail design process, including the hardware module design principle, the circuit schematic diagram and the main modules of the detailed process of implementation. Finally, gives the experimental verification for the second-level balancing method which has proposed, the experimental result shows the equalizing charge which replace graduation balanced system by the improved DC-DC system is effective and the system has its superiority.
     Forth, at present, the battery management system takes insufficiently the battery energy management into account, or lacks the energy management strategy, thus causes drop of battery's state of health, affects the using and the service life of battery's energy. In view of this problem, the dissertation proposes the strategy based on multiple grouping of batteries power energy management and the strategy based on backup power energy management, analysises the applicability of the strategy based on backup power energy management, it mainly includes the principle of the battery groups, the control method of power feedback and the method of the charging and discharging control, and so on. The date of experiment indicates that those BMS which adopts energy management are better than those systems which have not adopted the energy management.
     Fifth, this dissertation proposes a functional frame of HEV lithium ion battery group management system and designs hardware and software of the system. The system uses the MCU as the core controller of every functional model. The system possesses functions of estimating battery groups' SOC, controlling and balancing charging and discharging of battery group, energy management. It will lead us use the battery group more properly and enhance the lifetime effectively.
     The main work of this dissertation has probably successful experiences of those who engage research of EV or HEV and especially those who engage research of HEV lithium ion battery group management to consult.
引文
[1]李建平.关于汽车排放控制及其建议[J].汽车研究与应用,1999,5:18-23.
    [2]田玉冬,朱新坚,曹广益.电动汽车的动力电池技术[J].移动电源与车辆,2003,3:36-37.
    [3]曾斌.世界电动汽车发展动态[J].中国机电工业,2002,9:15-17.
    [4]电动汽车发展现状及前景分析[EB/OL].http://www.chiyuanev.com/xin wen-1.html,2009-12-28/2009-12-30.
    [5]曹秉刚,张传伟,白志峰等.电动汽车技术进展和发展趋势[J].西安交通大学学报,2004,1(38):1-2.
    [6]林佩君.串联电池组新型均衡系统的研究[D].北京交通大学,2007:1-2.
    [7]姜涛.混合动力汽车要解决的关键技术[J].新视野,2006,6:8-10.
    [8]徐汉章,罗慧超.混合动力技术进展及相关建议[J].汽车节能,2007(1):15-17.
    [9]雷惊雷.电动车、电动车用电源及其发展战略[J].电源技术,2001,25(2):40-45.
    [10]何洪文,祝嘉光,李剑.混合动力电动汽车技术发展与现状[J].车辆与动力技术,2004,2: 68-72.
    [11]廖晓军,何莉萍,钟志华.电池管理系统国内外现状及其未来发展趋势[J].汽车工程,2006,28(10):961-964.
    [12]Do Yang Jung, Baek Haeng Lee, SunWook Kim. Development of Battery Management System for Nickel2 metal Hydride Batteries in Electric Vehicle Applications[C]. Journal of Power Sources,10,9,2002.
    [13]姜久春.电池管理系统的概况和发展趋势[J].新材料产业,2007,8:40-43.
    [14]陈全世,林成涛.电动汽车用电池性能模型研究综述[J].汽车技术,2005(3):1-5.
    [15]Massimo Ceraolo. New Dynamical Models of Lead-Acid Batteries[J]. IEEE Transaction on Power Systems,2000,15(4):1184-1190.
    [16]Jantharamin, N., Zhang, L., Sch. Of Electron., et al. A new dynamic model for lead-acid batteries[C]; Power Electronics, Machines and Drives,2008. PEMD 2008.4th IET Conference on2-4 April 2008:86-90.
    [17]John Chatzakis, Kostas Kalaitzakis, Nicholas C. Voulgaris, et al. Designing a New Generalized Battery Management System [C]. IEEE Transactions on Industrial Electronics,2003,50(5):990-999.
    [18]Sabine Piller,Marion Perrin,Andreas Josson. Methods for State-of-Charge determination and their applications[J].Journal of Power Source,96(2000):113.
    [19]Moo, C. S.,Ng, K. S.,Chen, Y. P., et al. State-of-Charge Estimation with Open-Circuit-Voltage for Lead-Acid Batteries[J].Power Conversion Conference, Nagoya,2-5 April 2007:758-762.
    [20]R. E. Kalman. a New Approach to Linear Filtering and Prediction Problems[J]. Journal of Basic Engineering,82 (Series D):35-45.
    [21]G. Plett. Extended Kalman filtering for battery management systems of LiPB based HEV battery packs[J]. Journal of Power Sources,2004,134 (2):277-292.
    [22]罗玉涛,张保觉,赵克刚.基于神经网络的动力电池组SOC辨识方法[J].电池技术,2007,12:38-41.
    [23]王军平,陈全世,曹秉刚,康龙云.电动车用镍氢电池模块的充放电模型研究[J].西安交通大学学报,2006,40(1):50-52.
    [24]田锐,秦大同,胡明辉.电池均衡控制策略研究[J].重庆大学学报(自然科学版),2005,7(28):1-4.
    [25]Yuang Shung LEE, WANG-Ming. Cell Equalization Scheme with Energy Transferring Capacitance for Series Connected Battery Strings[J]. IEEE Tencon, 2002,34(6):2042-2045.
    [26]Thomas Stuart, Fang Fang, Wang Xiaopeng, et al. A Modular Battery Management System for HEVs[C]. SAE Paper 2002-01-1918.
    [27]李红林,张承宁,孙逢春等.锂离子电池组均衡充电和保护系统研究[J].北京理工大学学报,2004,24(3):210-213.
    [28]王玲.混合动力大巴用高比功率镍氢电池的管理系统设计[D].北方工业大 学,2004:2-3.
    [29]吴奎东.串连蓄电池组的均充技术研究[J].今日电子,2006,8:84-86.
    [30]Kim Kwang-Heon.Time-sharing Charge Equalization for Series Connected Battery Strings.Proceedings ICPE'95.Seoul,1995:331-336.
    [31]C.C.Chan, K.C.Chu. Intelligent Battery Management System[J].Harbour Castle Westin Toronto,Ontario,Canada.1988:10-15.
    [32]Bu-Il Jeon, Geun-Wook Lim, Hyun-Chan Cho,et al. Intelligent Charge and Discharge Control for Secondary Battery Cells[C].IMECS 2009.
    [33]陈体衔.VRLA蓄电池变电流间歇充电方法[J].电池,1998,28(6):274-277.
    [34]连子峰,郑杭波,齐国光.基于CAN总线的分布式电池管理系统[J].电源技术应用,2003,1(2):4144.
    [35]Wang Xiaopeng. A Modular Battery Management System [D]. The University of Toledo,2001.
    [36]DoYang Jung, BaekHaengLee, SunWookKim. Development o Battery Management System for Nickel-metal Hydride Batteries in Electric Vehicle Applications[C]. Journal of Power Sources,2002,109.
    [37]John Chatzakis, Kostas Kalaitzakis, Nicholas C Voulgaris, et al. Designing a New Generalized Battery Management System [C]. IEEE Transactions on Industrial Electronics,2003,50(5).
    [38]WsewolodHnatczuk, DieterK Nowak, PeterU Solies. A Smart, Integrated Battery Analysis and Control System with W ireless Communication[C]. SAE Paper2003-01-1379.
    [39]Lima F., Ramalho J.N., Tavares D.. A novel universal battery charger for NiCd, NiMH, Li-ion and Li-polymer. ESSCIRC,2003,209-212
    [40]Becker H., Schuh H., Brunarie J.. High Power Lithium-ion battery:First Field Trial Results of an advanced Backup System for Advanced Cellular Networks. INTELEC, Twenty-Seventh International,2005,257-262
    [41]陈维,沈辉.太阳能光伏应用中的蓄电池研究.电池,2006,36(1):66-68
    [42]Massimo Ceraolo. New Dynamical Models of Lead-Acid Batteries. IEEE Transaction on Power Systems.2000,15(4):1184-1190
    [43]Jantharamin N., Zhang L., et al. A new dynamic model for lead-acid batteries. PEMD 2008,4th IET Conference on2-4 2008,86-90
    [44]Sabine Piller, Marion Perrin, Andreas Josson. Methods for State-of-Charge determination and their applications. Journal of Power Source,96(2000):113
    [45]Moo C.S., Ng K.S., Chen Y.P., et al. State-of-Charge Estimation with Open-Circuit-Voltage for Lead-Acid Batteries. Power Conversion Conference, Nagoya,2-5 April 2007:758-762
    [46]M.-H. Li T. Funaki T. Hikihara. a Study of Output Terminal Voltage Modeling for Redox Flow Battery Based on Charge and Discharge Experiments. IEEE,2007
    [47]Min Chen, Gabriel A., Rinc'on-Mora. Accurate Electrical Battery Model Capable of Predicting Runtime and I-V Performance. IEEE Transaction on Energy Conversion, 2006,21(6):504-511
    [48]Min Chen, Rincon-Mora, G.A.. Accurate electrical battery model capable of predicting runtime and I-V performance. IEEE Transactions on IEEE Energy Conversion,2006,21(2):504-511
    [49]L. Benini, G. Castelli, A. Macci, et al. Discrete-time battery models for system-level low-power design. IEEE Trans, VLSI System,2001,9(5):630-640
    [50]Kroeze R.C., Krein P.T.. Electrical battery model for use in dynamic electric vehicle simulations. PESC, IEEE,2008,1336-1342
    [51]Gerschler J.B., Kirchhoff, F.N., Witzenhausen H., et al. Spatially resolved model for lithium-ion batteries for identifying and analyzing influences of inhomogeneous stress inside the cells. VPPC '09 IEEE,2009,295-303
    [52]Martin Coleman, Chi Kwan Lee, Chunbo Zhu, William Gerard Hurley. State-of-Charge Determination From EMF Voltage Estimation:Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Ion Batteries. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2007,54(5):2550-2557
    [53]Cheng-Hui Cai, Dong Du, Zhi-Yu Liu, Hua Zhang. Modeling and identification of Ni-MH battery using dynamic neural network. Proceeding of the First International Conference on Machine Learning and Cybernatics, Beijing,2002, P1594
    [54]Bhide S., Taehyun Shim. Development of improved Li-ion battery model incorporating thermal and rate factor effects. IEEE, VPPC,2009,544-550
    [55]Chen S.X., Tseng K.J., Choi S.S.. Modeling of Lithium-Ion Battery for Energy Storage System Simulation. APPEEC 2009,2009,1-4
    [56]Vijayasekaran Boovaragavan, S. Harinipriya, Venkat R. Subramanian. Towards real-time (milliseconds) parameter estimation of lithium-ion batteries using reformulated physics-based models. Journal of Power Sources,2008,183(1): 361-365
    [57]Lin Cheng, Chen Ke, Sun Fengchun. Research on thermo-physical properties identification and thermal analysis of EV Li-ion battery. IEEE, VPPC,2009,1643-1648
    [58]Alotto P., Guarnieri M., Moro F.. Modeling and control of fuel cell-battery hybrid power systems for portable electronics. UPEC 2008,43rd International,2008,1-
    [59]L. Benini, G. Castelli, A. Macci, et al. Discrete-time battery models for system-level low-power design[J]. IEEE Trans, VLSI System,2001,9(5),630-640
    [60]Kroeze, R.C.; Krein, P.T.. Electrical battery model for use in dynamic electric vehicle simulations[C]. PESC, IEEE,2008,1336-1342
    [61]Cheng-Hui Cai, Dong Du, Zhi-Yu Liu, Hua Zhang. Modeling and identification of Ni-MH battery using dynamic neural network[C]. proceeding of the First International Conference on Machine Learning and Cybernatics, Beijing,2002,1594
    [62]Bhide, S.; Taehyun Shim. Development of improved Li-ion battery model incorporating thermal and rate factor effects[C]. IEEE, VPPC,2009,544-550
    [63]Lin Cheng, Chen Ke, Sun Fengchun. Research on thermo-physical properties identification and thermal analysis of EV Li-ion battery[C]. IEEE, VPPC,2009, 1643-1648
    [64]Alotto, P.; Guarnieri, M.; Moro, F.. Modeling and control of fuel cell-battery hybrid power systems for portable electronics[C]. UPEC 2008,43rd International,2008, 1-5
    [65]孙逢春.镍氢电池充放电特性研究[J].汽车技术.2001,6,90-93.
    [66]刘广林Peukert方程的研究[J].电源技术.1990(1),13-18.
    [67]王仲民,姚青荣.镍氢电池自放电行为研究[J].桂林电子工业学院学报.2006,26(3),203-206.
    [68]冉建国,陈胜军.通过电池均衡提高铅酸蓄电池组寿命[J].电源技术研究与设计.2006,30(7),576-579.
    [69]朱元.电动汽车动力电池SOC预测技术研究[J].研究与设计[J].2000,6,3-7.
    [70]林成涛.王军平.陈全世.电动汽车SOC估计方法原理与应用[J].电池2004,34(5),376-378.
    [71]黄文化.电动汽车SOC估算算法与电池管理系统的研究[J].汽车工程.2007,6,20-24.
    [72]王玉国,何宗虞.镍氢电池内压及内阻的探讨[J].电池.1997,5(27],225-226.
    [73]胡明辉,秦大同,舒红等.混合动力汽车电池管理系统SOC的评价[J].重庆大学学报2003,26(4),20-23.
    [74]丘纲,陈勇.电动汽车用动力电池组SOC的神经网络估计[J].辽宁工程技术大学学报,2006,25(2),230-234.
    [75]Zhu CB, Coleman, M. Hurley. WG State of Charge Determination in a Lead-acid Battery:Combined EMF Estimationand Ah-balance Approach Source[A].IEEE 35th Annual Record of Power Electronics Specialists Conference, PESC'04[C].2004(3), 1908-1914.
    [76]朱春波,武国良,陈清泉.基于EMF等效模型电动车镍氢电池SOC估计[J].电力电子技术.2008,42(10)48-49.
    [77]H. W. Sorenson. Least-Squares estimation:from Gauss to Kalman[J]. IEEE spectrum,17,63-68.
    [78]李贵海.电池SOC估算策略研究[D].浙江大学,2006.
    [79]劳力.动力蓄电池管理系统SOC算法研究[D].北京交通大学,2005.
    [80]B. S. Bhangu, P. Bentley, D. A. Stone, C. M. Bingham. Nonlinear Observers for Predicting State-of-Charge and State-of-Health of Lead-Acid Batteries for Hybrid-Electric Vehicles[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.2005,54(3),783-794.
    [81]G. Plett. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2:Modeling and identification[J]. Journal of Power Sources.2004,134 (2),277-292.
    [82]ZONG Changfu, PAN Zhao, HU Dan. Information Fusion Algorithm for Vehicle State Estimation Based on Extended Kalman Filtering [J]. Chinese Journal of Mechanical Engineering.2009,45 (10),272-277.
    [83]DONG Zhe, YOU Zheng. A novel extended Kalman filter for a class of nonlinear systems[J]. Progress in Natural Science.2006,16(09),912-918.
    [84]Nasser H.Kutkut. Life Cycle Testing of Series Battery Strings with Individual Battery Equalizers [EB/OL]. http://www.powerdesigners.com/pdf/Power Cheq%20 Paper %20-%20Motive%20Power.pdf. [2008-06-01].
    [85]N.H.Kutkut, D.M.Divan, D.W.Novotny. Charge Equalization for series Connected Battery Strings[A]. IEEE IAS Annual Meeting.2006,1008-1015
    [86]Fritz R Kalhammer. Hybrid Electric Vehicle Designs and their battery requirements[A].Proceedings of the first annual AABC(Advanced Automotive Battery Conference),session 2[C]. Las Vagas,Nevada:2008-02.
    [87]ZHU Chunbo, WANG Tiecheng. A new state of charge determination method for battery management system. Journal of Harbin Institute of Technology,2008,2(8),
    [88]Phoenix International Inc.LithiumIon_SpecSheet. www.phnx-international.com
    [89]D.S.-Repila, J. E. W. Poxon. Hybrid electric vehicles:current concepts and future market trends[J]. Barcelona IEEE Student Branch,2006,13,5-30.
    [90]M. Inaba, Z. Ogumi. Up-to-date development of lithium-ion batteries in Japan[J]. IEEE Electr. Insul. Mag,2001,17,6-20.
    [91]S. Anzawa, K. Kobayashi. Voltage equalizer for battery elements[P]. U.S. Patent 2005/0140336 Al,2005.
    [92]Y.-S. Lee, M.-W. Cheng. Intelligent control battery equalization for series connected lithium-ion battery strings[J]. IEEE Trans. Ind. Electron.,2005,52,1297-1307.
    [93]K. Nishijima, H. Sakamoto, K. Harada. A PWM controlled simple and high performance battery balancing system[C]. Proc. IEEE PESC'00,2000,517-520.
    [94]P. T. Krein, S. West, C. Papenfuss. Equalization requirements for series VRLA battery[C]. in Proc. Battery Conference on Applications and Advances,2001, 125-130.
    [95]A. Baughman, M. Ferdowsi. Double-tiered capacitive shuttling method for balancing series-connected batteries[C]. in Proc. IEEE VPPC'05,2005,50-54.
    [96]J. Kimball, B. Kuhn. Battery equalization to extend useful operating life of rechargeable battery packs[J]. Battery power products &technology,2004.
    [97]J. P. Keller. Systems and methods for battery charging and equalization[P]. U.S. Patent 6 771 045 B1,2004.
    [98]V. Marten. Charge balancing system[P]. U.S. Patent 6 518 725 B2,2003.
    [99]D. L. Miller. Battery charge balancing system having parallel switched energy storage elements[P]. U.S. Patent 6 064 178,2000.
    [100]E. Agatsuma, O. Saito, H. Takemoto, K. Matsumoto. Storage battery voltage control apparatus[P]. U.S. Patent 5 932 932,1999.
    [101]Y. C. Hsieh, C. S. Moo, W. Y. Ou-Yang. A bi-directional charge equalization circuit for series-connected batteries[C]. in Proc. PEDS'05, Kuala Lumpur, Malaysia,2005, 1578-1583.
    [102]C.-H. Lee, P.-C. Lin. Equalizer for series of connected battery strings[P]. U.S. Patent 2005/0140335 Al,2005.
    [103]S. Canter, W. Choy, R. Martinelli. Autonomous battery cell balancing system with integrated voltage monitoring[P]. U.S. Patent 6 873134 B2,2005.
    [104]K. Tsuruga, A. Hasebe, K. Mori, S. Seki, T. Ito. Electric energy storage device with cell energy control, and method of controlling cell energy[P]. U.S. Patent 6 538 414 B1,2003.
    [105]S. Anzawa, H. Nishizawa, F. Matsui. Voltage equalizing apparatus and voltage equalizing method for battery devices[P].U.S. Patent 6 373 223 B1,2002.
    [106]S. Anzawa.Energy transfer unit, charge unit, and power supply unit[P]. U.S. Patent 6 205 036 B1,2001.
    [107]S. Patel, C. D. Shelton, L. S. Tyson.Cell equalizing circuit[P]. EP 1 388 921 A2, 2004.
    [108]C. S. Moo, Y. C. Hsieh, I. S. Tsai. Charge equalization for seriesconnected batteries[J]. IEEE Trans. Aerosp. Electron. Syst.,2003,39,704-710.
    [109]N. H. Kutkut, H. Wiegman, R. Marion. Modular battery charge equalizers and method of control[P]. U.S. Patent 6 150 795,2000.
    [110]E. Chitsazan, D. Westrom, J. Goodroe, J. G. Batson. Battery equalizer using total string current[P]. U.S. Patent 6 801 014 B1,2004.
    [111]T. A. Stuart, Z. Ye. Battery equalization circuit with ramp converter[P]. U.S. Patent 5 666041,1997.
    [112]R. S. Feldstein. Magnetically balanced multi-output battery charging system[P]. U.S. Patent 5 646 504,1997.
    [113]M. Tang, T. Stuart. Selective buck-boost equalizer for series battery packs[J].IEEE Trans. Aerosp. Electron. Syst.,2000,36,201-211.
    [114]Y. Xi, P. K. Jain. A forward converter topology with independently and precisely regulated multiple outputs[J]. IEEE Trans. Power Electron.,2003,18,648-658.
    [115]S. W. Moore, P. J. Schneider. A review of cell equalization methods for lithium ion and lithium polymer battery systems[C]. in Proc. SAE World Congress,2001, Doc. No 2001-01-0959.
    [116]B. S. Bhangu, P. Bentley, D. A. Stone, C. M. Bingham. Nonlinear observers for predicting state-of-charge and state-of-health lf lead-acid batteries for hybrid-electric vehicles. IEEE Trans. Veh. Technol.,2005,54,783-794.
    [117]J. Chiasson, B. Vairamohan. Estimating the state of charge of a battery[J]. IEEE Trans. Contr. Syst. Technol.,2005,465-470.
    [118]Lim, D., Anbuky, A.. A distributed industrial battery management network. Industrial Electronics, IEEE Trans,2004,51(6):1181-1193
    [119]Rudi Kaiser. Optimized battery-management system to improve storage lifetime in renewable energy systems. Journal of Power Sources,2007,168:58-65
    [120]G. Barca, A. Moschetto, C. Sapuppo, et al. Optimal Energy Management of a Photovoltaic Stand-Alone Dual Battery System. IEEE,2008,619-624
    [121]Pattipati, B.; Pattipati, K.; Christopherson, J.P., et al. Automotive battery management systems. AUTOTESTCON,2008 IEEE,2008,581-586
    [122]Chatzakis, J.; Kalaitzakis, K.; Voulgaris, N.C., et al. Designing a new generalized battery management system. Industrial Electronics, IEEE Trans,2003,50(5): 990-999
    [123]Li Yuheng, Wei Xuezhe, Sun Zechang. Low Power Strategy Design for Battery Management System. ICMTMA'09,2009,2:636-639
    [124]Lim, D.; Anbuky, A.. A distributed industrial battery management network. Industrial Electronics[J], IEEE Trans,2004,51(6):1181-1193.
    [125]Rudi Kaiser. Optimized battery-management system to improve storage lifetime in renewable energy systems[J]. Journal of Power Sources,2007,168:58-65
    [126]G. Barca, A. Moschetto, C.Sapuppo, et al. Optimal Energy Management of a Photovoltaic Stand-Alone Dual Battery System [J]. Electrotechnical Conference, 2008,619-624.
    [127]Duryea, S., Isla, S., Lawrance, W. A battery management system for stand-alone photovoltaic energy systems[J]. Industry Applications Magazine.,2001,67-72.
    [128]Chia-Hsiang Lin, Chi-Lin Chen, Yu-Huei Lee, et al. Fast charging technique for Li-Ion battery charger[J]. ICECS,2008,618-621.
    [129]Li Siguang, Zhang Chengning, Xie Shaobo. Research on Fast Charge Method for Lead-acid Electric Vehicle Batteries[J]. Intelligent Systems and Applications,2009, 1-5.
    [130]Blake Dickinson, Jay Gill. Issues and Benefits with Fast Charging Industrial Batteries[J]. Battery Conference on Applications and Advances,2000,223-229.
    [131]P.-H. Cheng and C.-L. Chen. High efficiency and nondissipative fast charging strategy[J]. Electric Power Applications,2003,539-545.
    [132]Tristan Juergens, Robert F. Nelson, Michael A. Ruderman. A New High Rate, Fast Charge, Sealed, Lead Acid Battery[C].WESCON,1994,230-235.
    [133]Lopez, J.,Gonzalez, M.,Viera, J.C.,Blanco, C. Fast-charge in lithium-ion batteries for portable applications[J]. Telecommunications Energy Conference,2004,19-24.
    [134]L.A.Viterna, Ultra-Capacitor Energy Storage In a Large Hybrid Eleetrie Bus. EVS14, 1997
    [135]Pattipati, B.; Pattipati, K.; Christopherson, J.P., et al. Automotive battery management systems. AUTOTESTCON,2008 IEEE,2008,581-586.
    [136]F. R. Salmasi. Control strategies for hybrid electric vehicles:Evolution, classification, comparison, and future trends[J], IEEE Trans. Veh. Technol.,2007, 56(5),2393-2404.
    [137]Danilov, D.; Notten, P.H.L.. Adaptive Battery Management Systems for the new generation of Electrical Vehicles[C]. Vehicle Power and Propulsion Conference, 2009. IEEE 2009,317-320.
    [138]Divakar, B.P.; Cheng, K.W.E.; Wu, H.J., et al. Battery management system and control strategy for hybrid and electric vehicle[J]. PESA 2009,1-6
    [139]Chen Chen, Jin Jin, Lenian He. A new battery management system for li-ion battery packs[C]. APCCAS 2008,1312-1315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700