超斜铰接板桥受力特性及荷载横向分布的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中、小桥涵,中、短隧道,以及一般构造物的位置应服从路线走向[41]。近年来,新建中小跨径的斜交桥梁很多,而超斜铰接板桥(斜交角大于45°)也相应增加,其横向分布规律的简化计算及受力特点,亟待做深入研究,以便使设计更趋合理。
     本文研究超斜铰接板桥的荷载横向分布规律,以期找出有别于正交板的受力特点。
     文中从以往铰接斜板桥的已研究成果入手,提出了利用经验公式求超斜铰接板荷载横向分布影响线的方法。
     首先利用MIDAS/Civil有限元软件对8板、45°斜交角的某桥进行了分析。用剪力柔性梁格法,多次调整虚拟横梁截面形式、材料参数以及拟定铰接、支撑等边界条件,建立了可靠的有限元数值模型。
     为验证数值模型的合理性,制作了有机玻璃试验模型。为使试验模型尽量贴近原型,采用不完全铰的形式代替铰接缝,利用橡胶块粘结一端、另一端不粘结做为固定、滑动支座;采用量纲分析法计算,得出了相似判据。加载试验数据与数值模拟结果耦合很好,表明数值模型可靠。这种数值建模方法,可对多角度斜交桥做进一步数值分析。
     为了验证不同的宽跨比、抗扭刚度、抗弯刚度等是否影响耦合效果,又建立了正交铰接板桥的数值模型。通过改变宽跨比、板的抗扭刚度、抗弯刚度,施加半波正弦荷载进行横向分布规律的分析,并与成熟理论计算结果比对,相对误差很小,再次验证了数值建模可靠。
     文中采用剪力-柔性梁格法,对不同板块、不同斜交角的共56个铰接板桥进行了数值模拟,揭示了超斜铰接板桥中内力随斜交角变化的规律。给出的荷载横向分布影响线随斜交角变化的经验公式,经过理论解求算,证明经验公式计算的数值可靠。
     超斜铰接板桥的最大弯矩随斜交角增大而减小,可利用正桥的最大弯矩,通过经验公式求算。
     文中还给出了超斜铰接板桥主梁弯矩异于正桥的特点,可为此类桥的设计提供参考。
The positions of Medium and small bridges, culverts, tunnels or general structures should obey the road line shapes. In recent years, many medium or small skew bridges had been built, and large-angle hinged skew slab bridges increase monotonically at the same time. In order to making bridge designing be more reasonable, transverse load distribution and mechanical characteristics of large-angle hinged skew slab bridges should be studied in deeply.
     Transverse load distribution of large-angle hinged skew slab bridges will be studied in this paper. And mechanical characteristics which are unlike to the ones of right bridge are expected to be discovered.
     According to the previous research results of hinged skew slab bridges, the method of calculating influence line of transverse load distribution by using empirical formula is put forward in this paper.
     Firstly, one bridge with 8 slabs,45°skew angle is studied with using FEA software-MIDAS/Civil. In order to establish a reliable numerical model, shear-flexible grillage method is adopted, section types and material parameters of virtual crossbeam are adjusted, and boundary conditions such as hinge joint, support condition are determined.
     Organic glass model is made for verifying the reasonableness of numerical model. In order to make the test model be as close as possible to the prototype model, using the form of incomplete hinged joints to replace real hinge joints, rubber blocks be bonded on one end as fixed bearings, the other side not bonded as sliding bearings. Then, similarity criterion is calculated with using dimensional analysis method. And the results of organic glass model has good coupling to numerical model, so numerical model can be considered as correct. This numerical modeling method can be used to analysis other hinged skew slab bridges with different angles.
     In order to verify if width-span ratio, torsional rigidity, flexural rigidity will impact the coupling effect, right bridge's numerical model is established to be analysised. By changing slab's width-span ratio, torsional rigidity and flexural rigidity, half-wave sinusoidal load loading on slabs, influence line of transverse load distribution is calculated. The results are compared with the theoretical calculation results. And the results of the two methods have small relative error, so numerical model can be considered as correct.
     There are 56 numerical models of hinged skew slab bridges with different slabs, different skew angles are established by shear-flexible grillage method, which reveal the relationships of internal force and skew angles. Empirical formulas of influence line of transverse load distribution with the skew angle coincide with theoretical calculation, so the empirical formulas are reliable.
     The maximum bending moments of large-angle hinged skew slab bridges decrease as the increasing of skew angle. It can be calculated with using empirical formulas on the base of having calculating right bridges'maximum bending moments.
     The characteristics of large-angle hinged skew slab bridges'bending moments which different with the right bridges are shown in this paper. It can give reference for designing other large-angle hinged skew slab bridges.
引文
1.中华人民共和国国家标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJD62-2004)[M],北京:人民交通出版社,2004,141.
    2.姚玲森.桥梁工程(公路与城市道路工程专业用)[M],北京:人民交通出版社,2005,52.
    3.范立础.桥梁工程(第二版)[M],北京:人民交通出版社,1996,358.
    4.刘小强.斜板桥的优化及应用[J],中外公路,2007,27(2):97.
    5.黄平明.混凝土斜梁桥[M],北京:人民交通出版社,1999,2.
    6.贺栓海,谢仁物.公路桥梁荷载横向分布计算方法[M],北京:人民交通出版社,1999,104-107.
    7.同济大学路桥教研组.公路桥梁荷载横向分布计算[M],北京:人民交通出版社,1977.
    8.项贻强.斜交铰接板桥的实用计算分析及其试验研究[C]//中国土木工程学会桥梁与结构工程学会14届年会论文集.上海:同济大学出版社,2000.
    9.项贻强.斜交铰接板桥荷载的横向分布[J],华东公路,1991,3:35-38.
    10.席振坤.横向铰接斜梁(板)桥实用计算法(第二版)[M],北京:人民交通出版社,1991.
    11.黄平明,李德月,朱明华.铰接斜板的荷载横向分布计算[J],华东公路,1998,4:30-34.
    12. Kahleel, Mohammad A. and Itani, Rafik Y.. Live-load moments for continuous skew bridges[J], Journal of Structural Engineering,1990,116 (9):2361-2373.
    13. Marx.H.J., Kachaturion N., and Gamble W.L.. Development of design criteria for simple supported skew-and-girder bridges[J]. Structural Research Series,1986,522.
    14. Huang Haoxiong, Shenton Harry W., Chajes Michael J.. Load distribution for a highly skewed bridge:Testing and analysis[J], Journal of Bridge Engineering,2004,9 (6): 558-562.
    15. Qaqish, M.S.. Effect of skew angle on distribution of bending moments in bridge slabs[J], Journal of Applied Sciences,2006,6 (2):366-372.
    16. Menassa, C., Mabsout, M., Tarhini, K., et al. Influence of skew angle on reinforced concrete slab bridges[J], Journal of Bridge Engineering,2007,12 (2):205-214.
    17.中华人民共和国国家标准.公路桥涵设计通用规范(JTJ D60-2004) [M],北京:人民交通出版社,2004,8.
    18. F.P.Glushikhin, G.N.Kuznetsov etc. Modeling in Geomechanies[M], ELSEVEAR Science Publishers, B.V.1990.
    19.颜东煌,田仲初,陈常松等.岳阳洞庭湖大桥三塔斜拉桥全桥静动力模型设计[J],长沙交通学学报,1999,15(1):50-54.
    20.陈常松,颜东煌,陈政清.岳阳洞庭湖大桥模型动力特性分析[J],中外公路,2002,22(6):66-69.
    21.李德寅,王邦楣,林亚超.结构模型实验[M],北京:科学出版社,1996.
    22.颜化冰,吉爱红,沈辉等.用于昆虫足力测试的三维微力传感器[J],传感器与微系统,2006,25(4):82-84.
    23.祝世平.全螺旋灌注桩承载特性的研究[D],长沙:中南大学,2007.
    24.金保森,卢智先.材料力学实验[M],北京:机械工业出版社,2003.
    25.杨志华.梁格法在混凝土连续箱梁桥计算中的应用[J],中国水运(理论版),2006(5):69-70.
    26. MIDAS IT (BEIJING) Co., Ltd. MIDAS/Civil 01.Getting Started & Tutorials,143-170.
    27. MIDAS IT (BEIJING) Co., Ltd. MIDAS/Civil 02.Analysis for Civil Structures,38-117.
    28.桂满树.有限元分析方法,北京迈达斯技术有限公司培训资料.
    29.SAP90.线性静动力分析程序使用说明,长沙铁道学院,1990.
    30.李德建,刘正兴.形成局部空间梁单元局部坐标系的一种新方法[J],长沙铁道学院学报,1995,13(3):9-12.
    31.王勖成.有限元法基本原理及数值方法[M],北京:清华大学出版社,1994.
    32.戴公连,李德建.桥梁结构空间分析设计方法与应用[M],北京:人民交通出版社,2001.
    33. Hambly E C. Bridge Deck Behaviour[M], London:E&FN Spon,1976.
    34.尤文刚.剪力-柔性梁格分析方法在桥梁工程中的应用[J],北方交通,2008:121-123.
    35.罗勇.上部结构的梁格简化分析研究[J],山西建筑,2007,33(19):62-64.
    36.杨虎根,陈琼.梁格法在斜交式空心板桥结构分析中的实现[J],公路交通技术,2008(4):50-53.
    37.马勇毅,张威振.剪力—柔性梁格法在Midas中的具体应用[J],中外公路,2007,27(5):173-175.
    38.黄平明,夏淦,邵容光.弹性支承连续梁法在斜梁桥荷载横向分布计算中的应用[J],华东公路,1995,3.
    39.邢志成.单梁式简支斜梁桥的计算方法[J],华东公路,1983,6.
    40.邢志成.斜梁桥的荷载横向分布[J],中南公路工程,1988,1.
    41.盛骤,谢式千,潘承毅.概率论与数理统计[M],北京:高等教育出版社,2004,154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700