光纤传感技术监测沥青混合料应变响应有效性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现阶段我国沥青路面的早期损坏现象十分严重,损坏类型错综复杂,严重地影响了行车的安全性和舒适性,极大地降低了路面的使用品质,缩短了路面的使用寿命,因此解决沥青路面早期损坏在我国现阶段的道路建设和管理养护中是十分必要的。研究表明,进行沥青路面的“健康监测”,准确地获取路面结构受力状态信息,进而探究早期损坏机理,采取合理有效的预防措施是解决沥青路面早期损坏的根本办法。光纤传感技术的出现为准确地获取路面结构受力状态信息提供了可能。光纤光栅传感器以其良好的耐久性和稳定性已成为工程应用的热点,借助它在其它工程领域的成功经验将光纤智能传感技术移植到道路工程中,实现沥青路面的“健康监测”。但现有的光纤光栅传感器模量较大(一般在50~70GPa),与沥青混合料模量(一般在1.0~1.2GPa)不匹配,导致两者协同变形性较差,传感器采集的信息与路面该点的真实信息存在差异,不能直接用于评价该点的受力状态,因此研究光纤传感技术监测沥青混合料应变响应有效性是解决光纤光栅传感器在路面中应用的前提和基础,是十分必要的。
     针对实际沥青路面的不同受力状态,本文设计了单一受力模式试验和复杂受力模式试验,对传感器实时输出的数据与理论真实值进行对比分析,得出两者间的相互关系,并进行传感器短期和长期响应监测,同时采用有限元技术进行仿真分析,以评价光纤光栅传感器监测沥青混合料应变响应的有效性,并进行影响因素分析,为传感器实测数据的修正及传感器进一步的改进与开发提供依据。本文的主要研究工作包括以下几点:
     首先,针对有限元仿真的需要,为真实反映沥青混合料的粘弹特性,分别设计了单轴动态蠕变试验和动态模量试验进行沥青混合料粘弹参数的测定,并通过拟合计算得到大型有限元软件ABAQUS中提供的粘弹模型参数。
     其次,针对沥青路面中受拉和受压的单一受力状态分别设计了植入传感器的四点弯曲梁试验和动态单轴压缩试验。受拉传感器埋设于四点弯曲梁纯拉区,基于实测梁底竖向挠度得到理论计算应变,受压传感器埋设于单轴压缩圆柱试件中心,外接LVDT传感器测定真实应变。对比分析传感器实测应变与理论计算应变和真实应变间的相互关系,进而得出传感器监测沥青混合料应变响应的有效性并建立传感器实测应变的理论修正公式,变化试验温度得到温度对两者关系的影响。
     第三,应用建立在相似理论基础上的模化方法和有限元仿真进行路面复杂受力模型设计。确定了模型与路面原型间各参数的对应关系,建立典型路面结构的三维有限元模型,确定轮载影响范围,进行单、双轮均布荷载等效,面层结构与路面全结构等效,最终确定了路面复杂受力模型。
     第四,针对确定的复杂受力模型设计了三层复合板轮载试验,将传感器埋设于复合板上面层底部和中面层中部,进行不同温度下的短期循环加载和标准车辙试验,得出不同温度下传感器监测沥青混合料短期及长期应变响应的有效性。
     最后,建立上述各室内试验的有限元模型,分析传感器的存在以及传感器模量和型式对传感器附近区域及模型各力学参数的影响,确定合理的传感器模量及型式,以指导传感器的进一步开发。实现了移动荷载的数值模拟,进行复合板模型在一次轮碾瞬态作用及短期轮载循环作用下的动态应变响应时程分析,得出了有限元模拟的准确性,埋设传感器可以准确地反映路面结构内部的主要受力状态,并探讨了车辙形成的主要影响因素。
     本文在光纤传感技术监测沥青混合料应变响应有效性、传感器实测应变修正和沥青混合料室内试验的有限元模拟分析方面所做的一系列工作,将为光纤光栅传感器的进一步改进与开发、光纤传感技术在道路工程中的应用、工程研究方法和工具的更新以及非线性有限元在沥青路面结构设计与分析中的应用奠定坚实的基础。
Nowadays, the early damage of asphalt pavement is very serious, these damages severely affect the safety and comfort of driving vehicles, consumedly lower the using character and shorten the service life of pavement, so solving the early damage is important in the construction and management of asphalt pavement. The investigations show that, carrying on "the health monitoring" of asphalt pavement, accurately obtainting the mechanical information of pavement structure, inquirying the mechanism and taking the reasonable and effective preventive measures are the keys to solve the problem. The appearance of the Fiber Optic Sensing Technology made it possible to accurately obtain the information of pavement structure. The Fiber Bragg Grating sensor (FBG) has become the hot point of the engineering application with its long longevity and good stability. By virtue of the success experiences in other project domain, we transplanted the Fiber Optic Sensing Technology to road engineering, real-time gathered and monitored the mechanical information of pavement structure by embeding the FBG inside pavement to realize "the health monitoring" of asphalt pavement. However, the existing FBG’s modulus is big (generally abaut 50~70GPa), badly matched with asphalt mixture (generally abaut 1.0~1.2GPa), this caused the worse coordination between them, then the information collected by the FBG has a bigger difference with pavement real response, cannot directly be used to appraise the mechanical condition. So study on the effectiveness of monitoring asphalt mixture’s strain response based on the Fiber Optic Sensing Technology is the precondition and foundation to solve the applications of the FBG in asphalt pavement.
     This paper designed the laboratory test of the single and complex bearing mode, conducted the comparative study between the actual strains measured dy the FBG and the calculated true strains, carried on the short and long term strain response monitoring, then applied the finite element simulation to appraise the effectiveness of monitoring asphalt mixture’s strain response based on the FBG, then conducted the quantitative depiction, provided the basis for modifying the data collected by the FBG. The content of paper mainly contain following aspects:
     Firstly, we respectively designed the dynamic uniaxial creep test and the dynamic modulus test to determine the viscoelastic parameters of asphalt mixture for truly reflecting the viscoelastic properties of asphalt mixture, then fitting calculated the model parameters corresponding to the viscoelastic model provided by FEM.
     Secondly, based on the tensile and compression situation inside the pavement, the four-point-bend beam test and the dynamic uniaxial compression test were designed respectively. FBGs subjected to tension were embeded in the pure tension region of the beam, we abtained the caculated strains based on the vertical deflection at the beam bottom. FBGs subjected to compression were embeded in the center of the cylindrical specimen, and the true strains were determined by external LVDT sensors. We conducted the comparative study between the actual strains measured by FBG and the calculated true strains, concluded the effectiveness and established the modified formula of the measured strains.
     Thirdly, the complex bearing model of the pavement was designed by applying the modelling method based on the similarity theory and finite element simulation. The relationship between the prototype and model was determined and the finite element model was established to determine the influence scope of the wheel loads, then we conducted the equivalent between the single and double wheel loads and the quivalent between the bituminous surface structure and the whole pavement structure to abtain the most reasonable complex bearing model.
     Fourthly, the three-lays composite loading test was designed based on the complex bearing model, FBGs were embeded inside the bottom of the upper layer and the center of the middle layer, the short cycle load and standard rutting test under the variable temperature were applied respectively, we draw the conclusion that the short and long terms stain response monitoring under the variable temperature by FBG were effective.
     Finally, the finite element model was established of the laboratory tests mentioned above by ABAQUS to analyze the influence on the mechanical indexes close to the location of the FBG and the whole model due to the existing of the FBG, the FBG modulus and styles, we determined the most reasonable FBG modulus and styles. Especially, we realized the simulation of the moving load, conducted the time history analysis of the dynamic strain response, then we draw the conclusion that the FEM simulation is accurate and the FBGs are able to reflect the mainly mechanical condition of the pavement. Furthermore, we investigated the mechanism of the rutting.
     In this paper, some research about the effectiveness of monitoring asphalt mixture’s strain response based on the fiber optic sensing tecnology, the modified formula of the measured strains by FBG and the accurately finite element simulation and analysis, will lay a solid foundation for the further research and development of FBG, promote the development of FBG technology in road engineering, accelerate the scientific research methods and tools updating in engineering fields, and supply sufficient data and technical supports for rutting theoretical investigation and analysis of asphalt pavement.
引文
1中国公路学会调研组.我国高速公路沥青路面早期破坏的现状及对策.中国公路建设市场. 2003,(3):33~39
    2谭忆秋.沥青与沥青混合料.哈尔滨:哈尔滨工业大学出版社. 2007,04:3
    3沈金安.高速公路沥青路面早期损坏分析与防治对策.北京:人民交通出版社. 2004,12:310~406
    4孙立军,张宏超.沥青路面初期损坏特点和机理分析.同济大学学报. 2002,(4):416~421
    5交通部公路司.公路工程质量通病防治指南.北京:人民交通出版社. 2002,01:12~15
    6夏文军.超载车作用下的沥青路面疲劳损伤机理与合理结构研究.重庆交通学院硕士论文. 2005:21~28
    7 Qingli Dai, Martin H. Sadd & Zhanpin You. A Micromechanical Finite Element Model for Linear and Damage-Coupled Viscoelastic Behaviour of Asphalt Mixture. International Journal for Numerical and Analytical Methods In Geomechanics. 2006, (30):1135~1158
    8周智,欧进萍. FBG智能传感器及其在土木工程中的应用研究.功能材料. 2004增刊, (35):152~156
    9陈少幸,张肖宁.沥青混凝土路面光栅应变传感器的试验研究.传感技术学报. 2006,19(2):396~397
    10 Jian-Neng Wang, Jaw-Luen Tang & Hsiang-Ping Chang. Fiber Bragg Grating Sensors for Use in Pavement Structural Strain-Temperature Monitoring. Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. 2006,6174:1~2
    11 Karen Wood, Timothy Brown, Robert Rogowski & Brian Jensen. Fiber Optic Sensors for Health Monitoring of Morphing Airframes: Bragg Grating Strain and Temperature Sensor. Smart Material and Structures. 2000,(9):163~169
    12熊海贝,李志强.结构安全监测的研究现状.结构工程师. 2006,22(5):86~90
    13叶国铮,李秩民,刘浩熙.柔性路面应力应变的研究.湖南大学学报. 1979, (3):120~136
    14张起森.弹性层状体系理论的实验验证及应用.土木工程学报. 1985,(4):63~76
    15查旭东,张起森.沥青路面结构室内直槽试验验证的研究.土木工程学报. 2000,(5):92~96
    16李怀璋,余群.车辆-路面计算机仿真系统中的沥青路面应力应变分析.农业机械学报. 2001,(4):1~4
    17王松根,房建果,王林等.大碎石沥青混合料柔性基层在路面补强中的应用研究.中国公路学报. 2004,(3):10~15
    18张军,邹银生,张起森.刚性路面结构动力反应的试验研究.土木工程学报. 2005,(38):117~122
    19查旭东,张起森.沥青路面结构室内直槽试验验证的研究.土木工程学报. 2000,(5):92~96
    20刘炎.几种工程化光纤光栅传感器的研制及其工程应用研究.哈尔滨工业大学工学硕士学位论文. 2006:2~3
    21张小政.工程化光纤光栅系列传感器的研究与开发.哈尔滨工业大学工学硕士学位论文. 2006:6~8
    22欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用.中国科学基金. 2005,(1):8~12
    23王赫喆.工程化光纤光栅传感器及其在路面结构中的测试研究.哈尔滨工业大学工学硕士学位论文. 2006:4~6
    24李金生.基于FBG技术的沥青路面应变传感器开发与性能研究.哈尔滨工业大学工学硕士学位论文. 2007:3~4
    25 K.O. Hill, Y. Fuji, D.C. Jonson & B.S. Kawasaki. Photosensitivity in Optical Fiber Wave Guides: Application Toreflection Filter Fabrication. App. Phys. lett. 1978,32:647~649
    26 G. Meltz, W. W. Morey & N. J. Doran. Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method. pt. Lett. 1989,4:23~25
    27 K.O.Hill, B-Malo & F.Bilodeau. Bragg Grating Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Through Aphase Mask. Applphys Lett. 1993,62(10):1035~1037
    28 P.J. Lemaire, R.M. Atkius.V.Miarhi & W.A. Reed. High Pressure H2 Loading as a Technique for Achieving Ultrahigh UV Photosensitivity and Thermal Sensitivity in GeO2 doped Optical Fibres. Electron Lett. 1993,29(13):1191~1193
    29赵山泉.光纤光栅传感技术在大结构监测中的应用进展.传感器技术. 2004,23(6):5~7
    30 Mendez, T. F. Mcrse & F. Mendez. Application of Embedded Optical Fiber Sensors in Reinforced Concrete Buildings and Structures. SPIE. 1989,1170:60~69
    31 J. D. Prohaska, E. Snitze, B. Chen & M. H. Maher. Fiber Optic Bragg Grating Strain Sensor in Large Scale Concrete Structures. SPIE. 1993,1798:286~294
    32 P. Friebele, et al. Fiber Bragg Grating Strain Sensors: Present and FutureApplications in Smart Structures. Optics and Photonics News. 1998,9:33~37.
    33 V. Slowik, et al. Fibre Bragg Grating Sensors in Concrete Technology[J]. LACER. 1998,(3):109~119
    34周智.系列光纤传感制品研制与开发及其工程应用.哈尔滨工业大学博士后研究工作报告. 2006:2~3
    35 Kin-tak Lau, Chi-chiu Chan, Li-min Zhou, Wei Jin. Strain Monitoring in Composite-Strengthened Concrete Structures Using Optical Fiber Sensors. Composites: Part B. 2001,32: 33~45
    36 Kin-tak Lau, Libo Yuan, Li-min Zhou, Jingshen Wu, Chung-ho Woo. Strain Monitoring in FRP Laminates and Concrete Beams Using FBG Sensors. Composite Structures. 2001,(51):9~20
    37蔡德所.大坝裂缝光纤监测技术研究及坝基稳定性分析.原哈尔滨建筑大学博士后研究报告. 1998,10:5~7
    38欧进萍,肖仪清,黄虎杰,段忠东等.海洋平台结构实时安全监测系统.海洋工程. 2001,19(2):1~6
    39李宏伟,肖仪清,黄虎杰,段忠东等.基于Internet网络的海洋平台结构远程实时安全监测.中国海洋油气(工程). 2001,19(2):3~4
    40周智,欧进萍.土木工程智能健康监测与诊断系统.传感器技术. 2001,20 (11):1~4
    41周智,欧进萍. FBG智能传感器及其在土木工程中的应用研究.功能材料. 2004增刊(35):152~156
    42曹照平,王社良,马胜利.光纤传感器在土木工程中的应用.南京建筑工程学院学报. 2000,(4):48~49
    43陈少幸,张肖宁.沥青混凝土路面光栅应变传感器的试验研究.传感技术学报. 2006,19(2):397~399
    44 Qingli HU, Zhi Zhou, Hui Li & Jinping Ou. Health Monitor on Asphalt Pavement of Highway Based on FBG Technique. Proc. of SPIE. 2007,6595(35):1~6
    45 CHEN Feng-chen, TAN Yi-qiu, LIU Hao, et al1. Analysis of Strain in Asphalt Pavement Using FRP-OFBG Sensors. ASCE: Proceedings of the 7th International Conference of Chinese Transportation Professionals (ICCTP). 2007:877~885
    46陈凤晨,谭忆秋,柳浩,董泽蛟,王宝新.基于光纤光栅技术的沥青路面结构应变场分析.公路交通科技. 2008,25(10):9~13
    47谭忆秋,陈凤晨,董泽蛟,柳浩.基于光纤光栅传感技术的沥青路面永久变形计算方法.大连海事大学学报. 2008,34(4):119~122
    48张肖宁.实验粘弹原理.哈尔滨:哈尔滨船舶工程学院出版社. 1990:9~30
    49 H.L. Von Quintus, J.A. Scherocman, C.S. Hughes, T.W. Kennedy. Asphalt Aggregate Mixture Analysis System. Transportation Research Board NCHRP Report 388. National Research Council. Washington, D.C. 2000:35~53,135~179
    50 Kamil Elias Kaliush. Simple Performance Test for Permanent Deformation of Asphalt Mixtures. Arizona State University. Arizona State,USA. 2001:21~39
    51 Ghassan R. Chehab, Emily O'Quinn, Y. Richard Kim. Specimen Geometry Study for Direct Tension Test Based on Mechanical Tests and Air Void Variation in SGC-Compacted Asphalt Concrete Specimens. Annual Meeting of the Transportation Research Board, 2000:125~132
    52曹丽萍.沥青路面永久变形叠加方法研究.同济大学博士学位论文. 2007:21~37
    53王旭东,沙爱民,许志鸿.沥青路面材料动力特性与动态参数.北京:人民交通出版社. 2002:27~43
    54 M.W. Witczak, K. Kaloush, T. Pellinen, M. El-Basyouny, H. von. Quintus. Simple Performance Test for Superpave Mix Design. NCHRP Report 465, Transportation Research Board, National Research Council, National Academy Press, Washington DC, 2002:465~471
    55王金昌,陈页开. ABAQUS在土木工程中的应用.浙江:浙江大学出版社. 2006,11:35~38
    56 Yun Liao, Viscoelastic FE Modelling of Asphalt Pavements and Its Application to U.S.30 Perpetual Pavement. Doctor Dissertation of the Russ College of Engineering and Technology. 2007:53~59
    57胡霞光,李德超,田莉.沥青混合料动态模量研究进展.中外公路. 2007,1(27):132~133
    58韦金城,王林,马士杰.多孔隙大碎石沥青混合料动态模量试验研究.石油沥青. 2008,22(1):16~17
    59 Schapery R. A. and Park S. W..“Methods of Interconversion between Linear Viscoelastic Materials Functions. Part II– an Approximate Analytical Method”, Int. J. Solis Struc. 1999,36(11):1677~1699
    60 M. Marasteanu, D. Anderson. Time-Temperature Dependency of Asphalt Binders And Improved Model, Asphalt Paving Technology. Journal of the Association of Asphalt Paving Technologists. 1996,65:408~448
    61 R.M.Christensen. Theory of Viscoelasticity. Second Edition, Acdemic Press, Inc. 1982:39~160
    62杨挺青.粘弹性理论及其应用.北京:科学出版社. 2004:69~105
    63 Pellinen, T. K., M. W. Witczak. Stress Dependent Master Curve Construction forDynamic (Complex) Modulus. Journal of the Association of Asphalt Paving Technologists. 2002,71:321~345
    64张肖宁.沥青与沥青混合料的粘弹力学原理及应用.北京:人民交通出版社. 2006:51~61
    65赵延庆,吴剑,文健.沥青混合料动态模童及其主曲线的确定与分析.公路. 2008,(8):16~17
    66 S.W.Park, Y.R.Kim. Fitting Prony-Series Viscoelastic Models with Power-Law Presmoothing. Jounal of Material in Civil Engineering. 2001,13(1):27~29
    67 Park S. W. and Schapery R. A.,“Methods of Interconversion between Linear Viscoelastic Materials Functions. Part I– a Numerical Method Based on Prony Series,”. Int. J. Solis Struc. 1999,36(11):1653~1675
    68 Williams M. L., Landel R. F. and Ferry J. D.,“The Temperature Dependency of Relaxation Mechanisms in Amorphous Polymers and other Glass Forming Liquid”, The Journal of The American Chemical Society. 1955,77(14):3701~3707
    69 AASHTO. AASHTO 2002 Pavement Design Guide. American Association of State Highway and Transportation Officials. Washington, D. C. 2004,3(3):46~50
    70田庚亮.沥青混合料与光纤光栅传感器协同变形性研究.哈尔滨工业大学2007届优秀毕业论文. 2007:20~21
    71张小政.工程化光纤光栅系列传感器的研究与开发.哈尔滨工业大学工学硕士学位论文. 2006:13~15
    72田石柱,赵雪峰,欧进萍等.结构健康监测用光纤Bragg光栅温度补偿研究.传感器技术. 2002,21(12):8~10
    73赵启林,杨洪,陈浩森.光纤光栅应变传感器的温度补偿.东南大学学报(自然科学版). 2007,37(2):310~314
    74姚远,易本顺,肖进胜,李朝辉.光纤布拉格光栅传感器的温度补偿研究.应用激光. 2007,27(3):192~198
    75寥延彪.光纤光学.北京:清华大学出版社. 2000:34~41
    76姜德生,梁磊,南秋明.光纤Bragg光栅传感特性的实验研究.传感器技术. 2003,23(7):7~9
    77蔚婷,乔学光,贾振安.改善波形并增敏的光纤光栅温度传感技术.光子学报. 2005,34(8):1209~1211
    78柴伟.光纤布拉格光栅温度传感技术研究.武汉理工大学工学硕士学位论文. 2004:44~46
    79高雪清,荣峥.光纤Bragg光栅封装后的温敏特性研究.光电技术应用. 2006,21(4):15~17
    80 Michael Wistuba. Comparative Strain Measurement in Bituminous Layers with the Use of ALT. Second International Conference on Accelerated Pavement Testing. 2004:3~5
    81李美江.道路材料振动压实特性研究.长安大学工学硕士学位论文. 2008:2~5
    82 Michael Wistuba. Comparative Strain Measurement in Bituminous Layers with the Use of ALT. Second International Conference on Accelerated Pavement Testing. 2004:5~6
    83董泽蛟,谭忆秋,胡斌,田庚亮.-荷载耦合作用下沥青混合料性能变化分析.中国科技论文在线. 2008,(10):751~755
    84叶勇.基于ABAQUS软件的沥青路面结构非线性分析.南华大学硕士学位论文. 2007:28~29
    85梁明刚.非线性有限元软件ABAQUS.航空制造技术. 2006,(8):109~110
    86 R. Zafar, W. Nassar, A. Elbella. Interaction between Pavement Instrumention and Hot-Mix-Asphalt in Flexible Pavements. Emirates Journal for Engineering Research. 2005,10 (1):49~55
    87石亦平,周玉蓉. ABAQUS有限元分析实例详解.北京:机械工业出版社. 2006,06:13~25
    88 Hua, J. Finite Element Modeling and Analysis of Accelerated Pavement Testing Devices and Rutting Phenomenon, Ph.D. Thesis, Purdue University, West Lafayette. 2000:15~17
    89赵雄伟,刘细军.沥青路面车辙病害成因与防治措施.地球与环境增刊. 2005,(3):1~2
    90沈金安.高速公路沥青路面早期损坏分析与防治对策.北京:人民交通出版社. 2004,12:310~406
    91中国公路学会调研组.我国高速公路沥青路面早期破坏的现状及对策.中国公路建设市场. 2003,(3):33~39
    92孙靖民,王新荣等.现代机械设计方法选讲.哈尔滨:哈尔滨工业大学出版社. 2002:58~86
    93程小亮.基于相似理论和有限元的车辙试验研究.哈尔滨工业大学2008届优秀毕业论文. 2008:24~32
    94李清富,杨泽涛,周利.路面结构有限元模型的选择.河南科学. 2007,25(3):2~3
    95廖公云,黄晓明. ABAQUS有限元软件在道路工程中的应用.南京:东南大学出版社. 2008,12:169~199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700