地下室钢筋混凝土外墙板非荷载作用裂缝控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在研究地下室外墙板裂缝控制,其模型实质是对受基础约束墙板裂缝控制的研究。首先研究了基础对墙板的约束程度,通过大量数值计算,回归拟合得到了不同长高比、不同长度的钢筋混凝土墙板在发生非荷载变形时受基础的约束程度。回归公式表明,墙板上不同点所受基础的约束程度不仅与墙板的长高比有关,而且还与墙板的长度、高度两个单项因素有关。本文的计算结果与ANSYS计算结果对比表明,拟合公式能较好地反映墙板上各点受基础约束程度,使约束程度的计算公式具有连续性和通用性。有了这一拟合公式后,计算墙板控制截面、控制点上的各非荷载变形引起的非荷载应力将变得较为简单。
     利用非荷载应力简化计算方法,对各种非荷载应力进行了计算分析。分析研究表明气候变化引起的温度应力、混凝土的收缩应力和水化温升引起的温度应力是引起墙板开裂的主要因素。最后编制了综合非荷载应力计算程序和裂缝控制设计流程,供裂缝控制设计和抗裂分析使用。
     对构造配筋、设置应力释放带和使用微膨胀混凝土等控制裂缝的有效措施进行了讨论。分析墙板受基础约束程度的变化规律,可知构造配筋的作用效果可以直接按照仅两端受固支约束的构件进行讨论,讨论结果表明通过构造配筋可以提高外墙墙板的抗开裂能力和有效控制墙板开裂之后的裂缝宽度发展,并提出了混凝土应力应变与配筋率之间的关系、合理的配筋率、裂缝宽度与配筋率之间的关系、裂缝宽度与裂缝数量之间的定量关系等,可以作为设计控制的理论依据。
     对设置应力释放带的地下室外墙板进行了非荷载应力对比计算。通过分析可知,设置释放带宜短些,否则失去作用。在此基础上推导了微膨胀混凝土的极限伸缩缝长度计算实用公式。
     本文取湖南省的最不利气候条件,讨论了在使用微膨胀混凝土时如何通过温度控制进行裂缝控制。定量计算的结果可以用于指导实际工程设计。
This paper aims to control the cracking and the crack development of reinforcement concrete basement outer-wall. Firstly the base constraint coefficient of the concrete wall was studied when non-load deformation occurred. A simple formula was achieved by computing lots of reinforcement concrete walls with different length/height ratio and different length, and then regressing these resulting data. With this formula, to compute the volume change and the corresponding stress is rather simplified because the calculation results accord well with the FEM program.
    After the non-load deformation of concrete wall and the corresponding stresses fully studied, the main factors inducing to crack are found out. The non-load deformation of wall constrained by base mainly includes the thermal deformation and the shrinkage deformation of concrete. Studies show that the cracking stress mainly induced by the seasonal change of temperature, the shrinkage of concrete and the residual stress caused by hydrate temperature.
    The volume change of concrete wall and the corresponding stresses are closely related to the nonlinear properties of concrete. A program considering the nonlinear properties of concrete was developed. With the program the design of crack control conform to procedures planned in flow chart.
    Reinforcing concrete wall, grooving a stress-release slot in basement wall and adopting tiny expansive concrete are good measures to control the cracking. Analyzing the base constraint coefficient along the length shows that the efficient of reinforcement can be discussed by analyzing the fully constrained reinforced members. So based on this conclusion this paper followed discussed the relationship of concrete strain and stress to the steel ratio, the relationship of crack width to steel ratio, quantitative relationship of crack width to crack number and the rational steel ratio, all of which can be regarded as theoretic basement for design.
    This article emphasize particularly on the stress development by contrasting before grooving a stress-release slot in the basement wall with after doing so. The results prove setting stress-release slot is a effective design if the length of reinforcement concrete basement slab-wall is limited in reason. The simplifying formulas and design suggestion are proposed.
    Basing the most disadvantageous weather data of the Hunan province, the
    
    
    
    last part of paper discusses how to control cracking by controlling the temperature of tiny extended concrete. Calculation results can be used to guide the practical engineering design.
引文
[1] 王铁梦.工程结构裂缝控制.中国建筑工业出版社,1997,5-6
    [2] G.F.Kheder, R.S.,Rawi, and J.K.Dhahi. Study of the behavior of volume change in restrained concrete walls, Materials and Structures,Vol.27,No.3,1994, 262-271
    [3] Rawi,R.S.,and AI Qossab,E.F. Control of Cracking Due to Volume Change in Base-Restrained Concrete Members. ACI Structural Journal,V.87,No.4,jul.-Aug.,1990. 356-360
    [4] G.F.Kheder, R.S.,Rawi,andJ.K.Dhahi. Study of the Behavior of Volume Change Cracking in Base-Restraint Concrete Walls. ACI Materia Journal, Vol91, No,2, Mar.-Apr., 1994 102-337
    [5] G.F.Kheder. A New Look at Control of Volume Change Cracking of Base Restrained Concrete Walls. ACI Structural Journal,V.94,No.3,May-June, 1997 681-724
    [6] 江见鲸.钢筋混凝土结构非线性有限元分析.陕西科学技术出版社,1994,78-85
    [7] 游宝绅.建筑物裂缝控制新技术.中国建材料工业出版社,1994,120-125
    [8] M. Anson BA, etal. Eearly-age strain and temperature measurement in concrete tank walls. Magazine of Concrete Research, Vol. 40, No. 145, Dec, 1998, 452-461
    [9] Ferando A. Branco, Pedro A. Mendes, and E. Mirambell. Heat of Hydration Effect in concrete Structures. ACI Materials Journal, Vol. 89, No. 2, March-April 1992,741-746
    [10] 朱伯芳.大体积混凝土温度应力与温度控制.中国电力出版设,1999.3 64-66
    [11] Mohamed Lachemi and Pierre-Caude Aitcin.Influence of Ambient and Fresh Concrete Temperatures on the Maximunm Temperature and Thermal Gradient in a High-Performance Concrete Structure.ACI Material Journal,Vol.89,No.2 March-April 1992. 801-814
    [12] 黄国兴,惠荣炎.混凝土的收缩.中国铁道出版社,1990.3 23-39
    [13] 杨世铭,陶文铨.传热学(第三版),高等教育出版社,1998.12 103-111
    [14] Ashad A. Khan, William D. cook, etal. Thermal Properties and Transient Thermal Analysis of Structural Members During Hydration. ACI Materials Journal,Vol. 95, No. 3, May-June 1998,1132-1140
    [15] [美]M.N.奥齐西克著,俞昌铭主译.热传导.高等教育出版社,1984.7
    [16] 袁勇、刘杰.墙板混凝土温度及其应力分布的理论解析.天津大学出版社,
    
    1998,78-84
    [17] 袁勇、刘杰.混凝土结构基本理论及工程应用.天津大学出版社,1998,31—36
    [18] 方道元.微分方程理论及其数值解(上).浙江大学应用数学系,1997.11 63-66
    [19] 沈蒲生.混凝土结构.湖南科学技术出版社,1993.9 29-30
    [20] [日]岩崎训明.李景墨译.混凝土的特性.中国建筑工业出版社,1980.12 92-95
    [21] [苏]A.E.谢衣金著,胡春兰译.水泥混凝土的结构与性能.中国建筑工业出版社,1984.5
    [22] 邵乃辰.关于钢筋混凝土内的应力分析.中国水利水电,1985,(5)32-37
    [23] 谭建国.使用ANSYS6.0进行有限元分析.北京大学出版社,2002.6 92-360
    [24] 王勖成,邵敏.有限单元法基本原理和数值方法.清华大学出版社,1997.3,16-222
    [25] 朱伯芳.有限单元法原理与应用.中国水利水电出版社,1998.10
    [26] 桂进良,王军.Fortran PowerStation4.0使用与编程.北京航空航天大学出版社,1999.8,56-101
    [27] R. lan Gilbert. Shrinkage Cracking in Fully Restrained Concrete Members. ACI Structural Journal, Vol. 89, No. 2, March-April 1992.259-261
    [28] 赵国藩,李树瑶.钢筋混凝土结构的裂缝控制,海洋出版社,1991.67-71
    [29] Eun-lk Yang, Shiro Morita, and Seong-Tae Yi. Effect of Axial Restraint on Mechanical Behavior of High-Strength Concrete Beams. ACI Structural Journal, Vol. 97, No. 5, Sept.-Oct. 2000,2321-2327
    [30] 曹东伟,胡长顺.考虑基础约束时的连续配筋混凝土路面温度应力分析.第九届全国结构工程学术会议论文集.第1卷.2000,316-323
    [31] 黄卫,钱振东.高等水泥混凝土路面设计理论与方法.科学出版社,2000.1,98-107
    [32] 吴胜兴.混凝土结构温度应力计算必须考虑的因素.水利水电科技进展,Vol.16,No.3,1996.24-27
    [33] 康清梁.水工钢筋混凝土平面结构温度应力及配筋.水利水电技术.1993年第9期,93-104
    [34] 岳耀真.考虑温度对混凝土性能影响的温度应力分析.水利水电技术,1993 年第1期,84-87
    [35] 韩重庆.大面积混凝土梁板结构温度应力温度的探讨.建筑技术,Vol.31,No.12,2001,33-37
    [36] C.-X. Huang. The there dimensional modeling of the thermal cracks in concrete structure. Materials and Structures, Vol. 32, Nov. 1999,673-678
    
    
    [37] Kevin Z. Truman, etal. Creep, Shrinkage, and Thermal Effects on Mass Concrete Structure. Journal of Engineering Mechanics, Vol. 117, No. 6, June 1997,1274-1288
    [38] Hu Shuguang, Li Yue. Research on the hydration, hardening mechanism, and microstructure of high performance expansive concrete. Cement and Concrete. Research, 1999(29),1013-1017
    [39] W. Jason Weiss etal. Shrinkage Cracking of Restrained Concrete Slabs. Journal of Engineering Mechanics, Vol. 124, No. 7, July 1998,765-773
    [40] H, Akita, T. Fujiwara and Y. Ozakz A Practical procedure for the analysis due to drying. Magazine of Concrete Research, 1997.49. No179. June, 129-137
    [41] 游宝坤,刘江宁.微膨胀混凝土设计参数的研究.混凝土,1993,20-26
    [42] 游宝坤.膨胀剂对高性能混凝土的裂缝控制作用.中国建材科技,2001(1),7-12,26
    [43] 游宝坤,陈富银.补偿收缩混凝土的开发.建材工业信息.2001(1),10-12
    [44] 游宝坤,王栋民,混凝土膨胀剂应用的若干问题,施工技术,2000(29),41-43
    [45] A.E.K. Jones and L.A. Clark. The effect of restraint on ASR expansion of reinforced concrete. Magazine of Concrete Research, 1996, 48, No. 174, Mar. 1-13
    [46] 赵志仁、朱化广.水工混凝土自生变形对应力影响的分析研究.水利学报.1990(3),75-79
    [47] H.X.阿鲁久涅杨.蠕变理论中的若干问题探讨.科学出版社,1959,103-105
    [48] 赵志缙.高层建筑施工手册.上海:同济大学出版社,1991,379-430
    [49] 谢尊渊.建筑施工.北京:中国建筑工业出版社,1998,312-338
    [50] 四川建筑科学研究所.钢筋混凝土轴心受拉构件裂缝宽度的计算.1977,291-297
    [51] 林宗凡.钢筋混凝土受弯构件裂缝宽度允许值的直接控制.上海城市建设学院.1985.6,30-34
    [52] G. Creazza and S. Russo. A New Model for Predicting Crack With Different Percentages of Reinforcement and Concrete Strength Classes. Materials and Structures, Vol. 32, August-September 1999,520-524
    [53] 丁大均.钢筋混凝土构件抗裂度、裂缝和刚度.南京工学院出版社,1986.7,87-92
    [54] R. Ian Gilbert, Shrinkage Cracking in Fully Restrained Concrete Members. ACI Structural Journal. Vol. 89, No. 2, March-April 1992,1561-1568
    [55] 滕裕珠,钟麟强.上海科技馆预应力施工技术.施工技术,2001(7),64-68
    
    
    [56] ANSYS Elements Reference. 000853. Ninth Edition. SAS IP, Inc
    [57] 无粘结预应力混凝土结构技术规程(JGJ/T92-93).1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700