微纳铝、硼可燃剂的改性及其在含能材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含能材料的能量水平是武器系统性能的关键技术之一。将微米、纳米(微纳)的铝或硼等加入到含能材料中可以提高含能材料的能量水平和燃速。但是,微纳铝、硼在含能材料加工中不易分散均匀;其次,微纳铝、硼在制备、储存、使用的过程中容易钝化,活性降低。本文创新性的采用高压静电纺丝和静电喷雾的方法,制备了复合含能材料的亚微米纤维和微米球形颗粒,从而提高它们在含能材料中的分散性,增加了燃速。针对微纳颗粒在自然贮存过程中容易钝化的问题,采用热分析TG-DSC(Thermogravimetry-Differential Scanning Calorimetry)方法研究了微纳硼的氧化反应机理。采用溶剂提纯法和湿法球磨法对老化的微纳硼进行活化,提高了硼延期药的燃速。
     首次采用静电纺丝法制备了直径为几百纳米、长度大于500μm的NC(硝化棉)/Al-CuO和NC/Al-Cu(NO3)2含能纤维。对含能纤维的SEM、TEM、EDS等实验表明:纳米Al、Al-CuO、Al-Cu(NO3)2颗粒可以均匀地分散在纤维的内部。采用高速摄影法测试了含能纤维的燃烧性能,研究发现:NC、NC/Al、NC/Al-CuO的燃烧较完全,而NC/Al-Cu(NO3)2的燃烧不完全;NC的燃速为12.4cm/s,NC/Al的燃速小于NC的燃速,且随着铝含量的增加,燃速下降;Al-CuO含量为50%的NC/Al-CuO纤维织物的燃速为106cm/s,比纯NC纤维的燃速提高了8.5倍。
     首次采用高压静电喷雾法制备了直径为几微米到几十微米的Al-CuO/NC复合颗粒。研究发现:当NC含量为10%时,Al-CuO/NC复合颗粒的形貌最规整,粒径分布较窄;纳米Al、CuO和NC在复合颗粒中均匀分散;当NC含量为1%-10%时,Al-CuO/NC复合颗粒中的孔隙逐渐减少,复合颗粒变得密实;当NC含量为13%,复合颗粒之间出现纤维。采用燃烧压力微元测试了团聚颗粒的燃烧性能。研究发现,NC含量为3%的样品具有最大的燃烧压力增长速率和最大的光强度,当NC含量大于3%,随着NC含量增加,样品的燃烧反应减弱。
     采用热分析TG-DSC方法研究了微纳硼的氧化反应机理。结果表明:(1)硼的氧化反应分为快反应和慢反应两个阶段。(2)采用Ozawa法计算了微纳硼快反应的动力学参量,采用非线性拟合技术研究了快反应的最佳反应机理,微纳硼的快反应为一阶反应。(3)经过自然贮存3个月的纳米硼的有效含量下降了6.6%,氧化反应初始温度和峰温都提高了30℃以上;自然贮存10年的微米硼的有效含量下降了66.7%,氧化反应初始温度和峰温都提高了20℃C以上。
     采用溶剂提纯法和湿法球磨法对老化的微纳硼进行了活化处理,并采用TG-DSC研究了活化效果。研究发现,溶剂提纯法对老化纳米硼没有明显的活化作用,但是可以将老化微米硼的有效含量提高一倍左右。湿法球磨采用无水乙醇和NaOH作混合液,可以明显提高老化纳米硼的反应活性,氧化反应初始温度和峰温降低了约20℃。
     研究了微米硼/四氧化三铅(Pb3O4)和微纳硼/铬酸钡(BaCrO4)延期药的燃速和反应机理,采用光-电靶法测试了延期药的燃速。研究发现:(1)B/Pb3O4延期药的燃速与硼含量成线性关系,活化硼延期药的燃速是老化硼延期药燃速的2.2倍左右;(2)在B/BaCrO4延期药中纳米硼延期药的燃速大于微米硼延期药的燃速,活化硼延期药燃速大于老化硼延期药的燃速。
A key point to enhance the performance of weapon systems is to increase the energy density of the energetic materials used in the weapons. The addition of micron-sized and nano-sized boron and aluminum to energetic materials can really achieve a higher energy release and bigger burn rate in certain experiment conditions. However, when the loading of nano particles becomes higher during the preparation of castable energetic materials, the viscosity of the solution will become very large, cause the deterioration of the procedure. Besides, nanoaluminum and nanoboron are very easily to be oxidized during the production, storage and usage, the oxide layer formed on the surface of the particle caused reduce of the chemical reactivity and the effective contents. An investigation of making nanoparitcles into sub-micron fibers and micron spherical particles by electrospinning and electrospray is introduced here, trying to solve the problem of the aggregation of nano particles.The nano particles are aimed to be made to larger sized agglomerations without reducing its reactivity. The oxidation kinetics of boron was investigated by TG-DSC. The aging process of boron during natural storage was also studied by TG-DSC. For the aging boron, solvent washing and mechanically milling were taken for its purification. TG-DSC was used to study the effect of the treatment. Combustion properties of the boron delay composition were also studied with the treated boron.
     Electrospinning technique was used to make NC(nitrocellulose)/Al-CuO and NC/Al-Cu(NO3)2fibers with the diameter of several hurdred nanometers and a length of more than500μm. Al, CuO and Cu(NO3)2were homogenously dispersed in the fibers. High speed camera was used for the measurement of the burn rates of NC, NC/Al, NC/Al-CuO and NC/Al-Cu(NO3)2fibrous textiles in the open air. Results show that the combustion of NC, NC/Al and NC/Al-CuO fibrous textiles were completely finished. However, a lot of solid residues were generated during the combustion of NC/Al-Cu(NO3)2. The burn rate of NC was12.4cm/s, the burn rates of NC/Al were even smaller than NC. With the increase of Al in the NC/Al, the burn rate decreased. NC/Al-CuO containing50%Al-CuO had the biggest burn rate (106cm/s), which was8.5times of pure NC fibers.
     Micron-sized Al-CuO composites were firstly electrosprayed. The Al-CuO/NC with10%NC had the best morphology. There were vacancies between nanoparticles in the big particles. With the increase of NC, the as sprayed particles became close-grained. The nano Al and CuO particles were homogenously dispersed in the bigger particles. When the content of NC was 13%, fibers were seen between big particles. Burning pressure cell tests were taken to investigate the combustion properties of the aggregated spherical particles. Results show that AI-CuO/NC with3%NC had the biggest burn rate and optical strength. When the content of NC was bigger than3%, the combustion of Al-CuO/NC became weaker.
     Thermoanalytical techniques TG-DSC were introduced to investigate the oxidation kinetics of nano boron and micron boron. Results show that:(1) The oxidation of boron consisted of two steps, called fast reaction and slow reaction.(2) Ozawa equation was used to calculate the kinetics parameters of the fast reaction, and non-linear coefficient was used to get the optimum oxidation mechanism. Results show that the oxidation of boron was F1.(3) Nano boron lost6.6%of its active content during3months of natural storage, the onset temperature and the peak temperature of the reaction was30℃higher than before; while micron boron lost66.7%of its active content during10years of natural storage, the onset temperature and the peak temperature of the reaction was20℃higher than before.
     Solvent washing and mechanically milling were taken to purify the aging nano and micron boron, TG-DSC was used to study the effects of the treatment. Results show that there was no obvious improvement by the solvent washing for nano boron. But the active content of micron boron could increase by100%with solvent washing. Mechanically milling was taken with absolute ethanol as solvent to protect boron from being oxidized. Sodium hydroxide (NaOH) was added to the mill. Results show that mechanically milling could obviously increase the reaction ability of boron; however, it couldn't increase the active content of boron.
     The combustion properties and reaction mechanism of micron boron/lead oxide (Pb3O4) and nano/micron boron/barium chromate (BaCrO4) delay composition was investigated. Optical-electrical targets device was used to test the burn rates of the delay composites. Results show:(1) burn rate of B/Pb3O4delay composites was linearly increased with the content of boron in the composite.The burn rate of treated boron delay composition was2.2times of the aging boron delay composition.(2)Burn rates of nano B/BaCrO4delay composition were bigger than that of micron boron delay composition, and burn rates of delay composition with treated boron were bigger than with aging boron.
引文
[1]王泽山.含能材料概论.哈尔滨:哈尔滨工业大学出版社,2006:1-20.
    [2]Veera Boddu and Paul Redner. Energetic Materials:Thermophysical properties, Predications,and Experimental Measurements,Taylor & Francis Group, LLC,2011:12.
    [3]S.K. Chou, W.M. Yang, K.J. Chua, J. Li, K.L. Zhang. Development of micro power generators-A review.Applied Energy.2011(88):1-1.
    [4]Ulrich Teipel主编,欧育湘主译.含能材料.北京:国防工业出版社,2009.
    [5]Nielsen AT, Nissan RA, Vanderah DJ, Coon CL, Gilardi RD, George CF, Flippen-Anderson J. J. Org. Chem.1990(55):1459-1466.
    [6]Zhang M-X,Eaton PE,Gilardi Rd.Angew.Chem.2000(112):422-426;
    [7]Archibald TG,Gilardi RD, Baum K,George CF.J.Org. Chem.1990(55):2920.
    [8]Langet A, Wingborg N, Ostmark H. Challenges in combustion and propellants 100 years after Nobel. In:Kuo K(ed).Proc.Int.Symp. on Special Topics in Chemical Propulsion, Stockholm.1996:616-626.
    [9]Labbecke S, Krause H, Pfeil A. Propell. Explos.Pyrotech.1997(22):184-188.
    [10]O. A. Lukyanov, O. V. Anikin, V. P. Gorelik, V. A. Tartakovsky. Dinitramide and its salts.Russian Chemical Bulletin.1994,43(9):1457-1461.
    [11]Edward L. Dreizin. Metal-based Reactive Nanomaterials. Progress in Energy and Combustion Science.2009(35):141-167.
    [12]J. Kohler, R. Meyer.Explosives.Fourth ed. VCH. New York.1993.
    [13]王桂兰,赵秀媛.硼粉在推进剂中应用研究.固体火箭技术.1998,21(2):46-50.
    [14]R. W. Armstrong, B. Baschung, D. W. Booth, and M. Samirant.Enhanced Propellant Combustion with Nanoparticles.NANO LETTERS.2003,3(2):253-255.
    [15]Kenneth K. Kuo, Grant A. Risha, Brian J. Evans, and Eric Boyer. Potential Usage of Energetic Nano-sized Powders for Combustion and Rocket Propulsion. Mat. Res. Soc. Symp. Proc.2004(800):AA1.1.1-AA1.1.12.
    [16]郝晶晶.纳米金属粉用于固体推进剂的研究进展.舰船科学技术.2010,32(12):28-29,50.
    [17]S. G. Fedorov, Sh. L. Guseinov, and P. A. Storozhenko.Nanodispersed Metal Powders in High-Energy Condensed Systems.Nanotechnologies in Russia.2010,5(9-10):565-582;
    [18]齐晓飞,张晓宏,严启龙,宋振伟,刘鹏,李吉祯.纳米金属及其复合物在固体推进剂中的应用研究进展.化学推进剂与高分子材料.2012,10(1):60-66.
    [19]胥会祥,李兴文,赵凤起,庞维强,贾申利,莫红军.纳米金属粉在火炸药中应用进展.含能材料.2011,19(2):232-239.
    [20]H.Gleiter. Nanocrastalline structures-an approach to new materials. Metallkd Z. 1984(75):263-267.
    [21]A. Revesz, J. Lendvai. Thermal properties of ball-milled nanocrystalline Fe, Co, Cr powders.Nanostructured Materials.1998,10 (1):13-24.
    [22]V. Haas and R. Birringer.The morphology and size of nanostructured Cu, Pd and W generated by sputtering.Nanostructured Materials.1992,6(1):491-504.
    [23]Y.S. Kwon, Y.H. Jung, N.A. Yavorovsky, et al. Ultra-fine powder by wire explosion method. Scripta mater.2001 (44):2247-2251.
    [24]R. Sarathi, T.K. Sindhu, S.R. Chakravarthy. Generation of nano aluminium powder through wire explosion process and its characterization.Materials Characterization.2007 (58): 148-155.
    [25]Alexander A. Gromov, Yulia I. Strokova, Ulrich Teipel.Stabilization of Metal Nanoparticles-A Chemical Approach.Chem. Eng. Technol.2009,32(7):1049-1060.
    [26]Jobin K.Antony, NileshJ.Vasa, S.R.Chakravarthy, R.Sarathi.Understanding the mechanism of nano-aluminum particle formation by wire explosion processusing optical emission technique. Journal of Quantitative Spectroscopy & Radiative Transfer.2010 (111):2509-2516.
    [27]R. Sarathi, T.K. Sindhu, S.R. Chakravarthy. Generation of nano aluminium powder through wire explosion process and its characterization.Materials Characterization.2007 (58):148-155.
    [28]Charalampos Mandilas, Emmanouil Daskalos, George Karagiannakisa, Athanasios G. Konstandopoulos. Synthesis of aluminium nanoparticles by arc plasma spray under atmospheric pressure. Materials Science and Engineering B.2013 (178):22-30.
    [29]J.C. Weigle, C.C. Luhrs, C.K. Chen, et al. Generation of Aluminum Nanoparticles Using an Atmospheric Pressure Plasma Torch. J. Phys. Chem. B.2004,108(48):18601-18607.
    [30]Richard J. Helmich and Kenneth S. Suslick.Chemical Aerosol Flow Synthesis of Hollow Metallic Aluminum Particles. Chem. Mater.2010(22):4835-4837.
    [31]Bang, J. H.; Suh, W. H.; Suslick, K. S.Quantum Dots from Chemical Aerosol Flow Synthesis:Preparation, Characterization, and Cellular Imaging Chem. Mater.2008(20): 4033-4038.
    [32]Si PZ, Zhang M, You CY, Geng DY, Du JH, Zhao XG, Ma XL, Zhang ZD. Amorphous boron nanoparticles and BN encapsulating boron nano-peanuts prepared by arc-decomposing diborane and nitriding. J Mater Sci.2003(38):689-692.
    [33]Brian Van Devener, Jesus Paulo L. Perez, Joseph Jankovich, Scott L. Anderson. Oxide-Free, Catalyst-Coated, Fuel-Soluble, Air-Stable Boron Nanopowder as Combined Combustion Catalyst and High Energy Density Fuel.Energy Fuels.2009(23):6111-6120;
    [34]P. Z. SI, M. Zhang, C. Y. You, D. Y. Geng, J. H. Du, X. G. Zhao, X. L. Ma,Z. D. Zhang.Amorphous boron nanoparticles and BN encapsulating boron nano-peanuts prepared by arc-decomposing diborane and nitriding.Journal of Materials Science.2003 (38):689-692.
    [35]Mohammad Ali Zaree, Saeed Babaee, Mina Khatibi. Synthesis of non-crystalline boron nanoparticles by thermal reduction method. Proceedings of the 4th International Conference on Nanostructures(ICNS4). Kish Island:I.R. Iran.2012:12-14.
    [36]Weon Gyu Shin, Steven Calder, Ozan Ugurlu, Steven L. Girshick. Production and characterization of boron nanoparticles synthesized with a thermal plasma system. J Nanopart Res.2011 (13):7187-7191.
    [37]Wang X, Hafiz J, Mukherjee R, Renault T, Heberlein J, Girshick SL, McMurry PH. System for in situ characterization of nanoparticles synthesized in a thermal plasma process. Plasma Chem Plasma P.2005 (25):439-453.
    [38]Huang Zhijun;Wu Qingyou;Li Xiang;Shang Shuyong;Dai Xiaoyan,Yin Yongxiang. Synthesis and Characterization of Nano-sized Boron Powder Prepared by Plasma Torch.Plasma Science and Technology.2010(12):577-582.
    [39]Brian Van Devener, Jesus Paulo L. Perez, and Scott L. Anderson.Air-stable, unoxidized, hydrocarbon-dispersible boron nanoparticles.J. Mater. Res.2009,24(11):3462-3464.
    [40]D.M. Zhu,E. Kisi. Synthesis and Characterization of Boron/Boron Oxide Nanorods.Journal of the Australian Ceramic Society.2009(45):49-53.
    [41]Narges Zohari, Mohammad Hossein Keshavarz and Seyed Abolfazl Seyedsadjadi.The Advantages and Shortcomings of Using Nano-sized Energetic Materials.Central European Journal of Energetic Materials.2013,10(1):135-147.
    [42]A.Perron, S.Garruchet, O.Politano,G.Aral, V.Vignal.Oxidation of Nanocrystalline Aluminum by Variable Charge Molecular Dynamics.Journal of Physics and Chemistry of Solids.2010 (71):119-124.
    [43]J. C. Siinchez-Lopez, A. Caballero and A. Fernkndez. Characterisation of Passivated Aluminium Nanopowders:An XPS and TEM/EELS Study. Journal of the European Ceramic Society.1998(18):1195-1200.
    [44]ReneA Franchy.Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces.R. Franchy/Surface Science Reports.2000(38):195-294.
    [45]A. Hasnaoui, O. Politano, J.M. Salazar, G. Aral, R.K. Kalia, A. Nakano, P. Vashishta.Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals.Surface Science.2005 (579):47-57.
    [46]Norbert Eisenreich, Harald Fietzek, Maria del Mar Juez-Lorenzo, Vladislav Kolarik, Andreas Koleczko, Volker Weiser.On the Mechanism of Low Temperature Oxidation for Aluminum Particles down to the Nano-Scale. Propellants, Explosives, Pyrotechnics. 2004,29(3):137-145.
    [47]J. C. Sanchez-Lopez, A. R. Gonzalez-Elipe, and A. Fernandeza. Passivation of nanocrystalline Al prepared by the gas phase condensation method:An x-ray photoelectron spectroscopy study. J. Mater. Res.1998,23(3):703-710.
    [48]A. Dokhan, E. W. Price, J. M. Seitzman, et al., Proc. Combust. Inst.2002,29(11): 2939-2945.
    [49]L. T. De Luca, L. Galfetti, F. Severini, et al., Burning of nano-aluminized composite rocket propellants. Combust.Explos and Shock Waves.2005,41(12):680-692.
    [50]L. Galfetti, L. T. De Luca, F. Severini, et al. Nanoparticles for solid rocket propulsion. J. Phys.Condens. Matter.2006,13(18):S1991-S2005.
    [51]d.L. Galfetti, L.T. De Luca, F. Severini, et al., Pre and post-burning analysis of nano-aluminized solid rocket propellants. Aerosp.Sci. Tech.2007(11):26-32.
    [52]S. Dossi, A. Reina, F. Maggi, L. T. De Luca. Innovative Metal Fuels for SolidRocket Propulsion. International Journal of Energetic Materials and Chemical Propulsion.2012,11(4): 299-322.
    [53]曾亮,焦清介,任慧,周庆.纳米铝粉粒径对活性量及氧化层厚度的影响.火炸药学报.2011,34(4):26-29.
    [54]K. Sullivan, G. Young, M.R. Zachariah. Enhanced reactivity of nano-B/Al/CuO MICs.Combustion and Flame.2009,156(14-16):302-309.
    [55]J.A. Puszynski. Reactivity of Nanosize Aluminum with Metal Oxides and Water Vapor. Mat. Res. Soc. Symp. Proc.2004(800):223-232.
    [56]吴力立.南京城市森林的空气湿度特征.南京林业大学学报(自然科学版).2008(04):51-54.
    [57]Erdemir A., Bindal C., Zuiker C., Zavrun E. Surf. Coat.Technol.1996 (507):86-87.
    [58]Amiya Kumar NANDI, Mrinal GHOSH,Shireeshkumar Pralhad NEWALE, Anand Jagannath JADHAV,Hima PRASANTH and Raj Kishore PANDEY. Formation of Boric Acid by Surface Oxidation of Amorphous Boron Powder:Characterization and Quantitative Estimation. Central European Journal of Energetic Materials.2012,9(4):387-398.
    [59]Bjorn Hussmann, Michael Pfitzner. Extended combustion model for single boron particles-Part I:Theory.Combustion and Flame.2010 (157):803-821.
    [60]Bjorn Hussmann, Michael Pfitzner. Extended combustion model for single boron particles-Part II:Validation.Combustion and Flame.2010(157):822-833.
    [61]于剑昆.高纯硼粉的包覆及其在高能富燃料推进剂中的应用.化学推进剂与高分子材料.2009,7(5):1-4.
    [62]赵孝彬,张小平,侯林法.硼粒子包覆工艺及对硼的表面和燃烧特性的影响.固体火箭技术.1998,21(1):35-35.
    [63]Verwey, E. J. W.; Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids. Amsterdam:Elsevier.1948.
    [64]I.M. Mahbubul, R. Saidur, M.A. Amalina. Latest developments on the viscosity of nanofluids.International Journal of Heat and Mass Transfer.2012 (55):874-885.
    [65]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液的粘度、热扩散系数与Pr数.自然科学进展.2004,14(7):799-803.
    [66]E. M. Popenko, A. A. Gromov, Yu. Yu.Shamina, A. P. Il'in, A. V. Sergienko, and N. I. Popok.Effect of the Addition of Ultrafine Aluminum Powders on the Rheological Properties and Burning Rate of Energetic Condensed Systems.Combustion, Explosionand Shock Waves.2007,43(1):46-50.
    [67]T.J. Foley, C.E. Johnson, and K.T. Higa.Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating. Chem. Mater.2005(17):4086-4091.
    [68]Brian J. Henz, Takumi Hawa, and Michael Zachariah.Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles. Journal of Applied Physics 2009(105):121430-1-121430-10.
    [69]Timothy J. Foley, Curtis E. Johnson, and Kelvin T. Higa.Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating. Chem. Mater.2005(17):4086-4091.
    [70]A. Ermoline, M. Schoenitz, E. Dreizin, et al. Production of carbon coated aluminum nanopowders in pulsed microarc discharge. Nanotechnology.2002,13(5):638-643.
    [71]K. Park, A. Rai, M.R. Zachariah. Characterizing the coating and size-resolved oxidative stability of carbon-coated aluminum nanoparticles by single-particle mass-spectrometry. Journal of Nanoparticle Research.2006,8(3-4):455-464.
    [72]Stephen W. Chung, Elena A. Guliants, Christopher E. Bunker, Douglas W. Hammerstroem, Yong Deng, Mark A. Burgers,Paul A. Jelliss, and Steven W. Buckner. Capping and Passivation of Aluminum Nanoparticles Using Alkyl-Substituted Epoxides. Langmuir.2009,25(16):8883-8887.
    [73]Douglas W. Hammerstroem, Mark A. Burgers, Stephen W. Chung, Elena A. Guliants, Christopher E. Bunker, Katherine M. Wentz, Sophia E. Hayes, Steven W. Buckner, and Paul A. Jelliss. Aluminum Nanoparticles Capped by Polymerization of Alkyl-Substituted Epoxides: Ratio-Dependent Stability and Particle Size. Inorg. Chem.2011(50):5054-5059.
    [74]R.J. Jouet, J.R. Carney, R.H. Granholm, H.W. Sandusky, A.D. Warren. Preparation and reactivity analysis of novel perfluoroalkyl coated aluminium nanocomposites. Mater. Sci. Technol.2006(22):422-429.
    [75]J. M. Horn, J. M. Lightstone, J. R. Carney, and R. J. Jouet.Preparation and Characterization of Functionalized Aluminum Nanoparticles.AIP Conf. Proc.2012(607): 1426.
    [76]M. Cliff, F. Tepper, and V. Lisetsky. Ageing Characteristics of Alex Nanosize Aluminum.37th AIAA/ASME/SAE/ASEE JPC Conference & Exhibit.Salt Lake City, Utah. 2001(8-11):1-11.
    [77]Y.S. Kwon, A.A. Gromov, J.I. Strokova. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Applied Surface Science. 2007(253):5558-5564.
    [78]Alexander Gromov, Alexander Ilyin.Characterization of Aluminum Powders:Ⅱ. Aluminum Nanopowders Passivated by Non-Inert Coatings.Propellants, Explosives, Pyrotechnics.2006,31(5):401-409.
    [79]William K. Lewis, Andrew T. Rosenberger, Joseph R. Gord, Christopher A. Crouse, Barbara A. Harruff, K. A. Shiral Fernando, Marcus J. Smith, Donald K. Phelps, Jonathon E. Spowart, Elena A. Guliants, and Christopher E. Bunker.Multispectroscopic (FTIR, XPS, and TOFMS-TPD) Investigation of the Core-Shell Bonding in Sonochemically Prepared Aluminum Nanoparticles Capped with Oleic Acid. J. Phys. Chem. C.2010(114):6377-6380.
    [80]K. A. Shiral Fernando, Marcus J. Smith, Barbara A. Harruff, William K. Lewis,Elena A. Guliants, and Christopher E. Bunker.Sonochemically Assisted Thermal Decomposition of Alane N,N-Dimethylethylamine with Titanium (IV) Isopropoxide in the Presence of Oleic Acid to Yield Air-Stable and Size-Selective Aluminum Core-Shell Nanoparticles.J. Phys. Chem. C.113(2):500-503.
    [81]Mohammed J. Meziani, Christopher E. Bunker, Fushen Lu, Heting Li, Wei Wang, Elena A. Guliants, Robert A. Quinn, and Ya-Ping Sun. Formation and Properties of Stabilized Aluminum Nanoparticles.Applied Materials & Interfaces.2009,1(3):703-709.
    [82]Kaijin Huang, Chaodong Tan, and Changsheng Xie.Preparation and Exothermic Characterization of Hydroxyl-terminated Polybutadiene(HTPB)-coated Aluminum Nanopowders.Materials Science Forum.2011 (694):189-194.
    [83]Co-Maleic Anhydride)-Modified Boron Particles, Journal of Dispersion Science and Technology.2010 (31):327-331.
    [84]John C T, Jack D B. Coating of boron particles[P].US:4877649,1989.
    [85]杨毅,潘振华,李丽霞,李玉冰,曹新富.纳米NiB/Al复合粒子的制备及催化AP热分解研究.含能材料.2009,17(4):446-450.
    [86]Luh S P, Perng H C, Liu T K, et al. Influence of boron coating on the combustion of its fuel-enriched solid propellant.22nd Int Annu Conf ICT(Combust React Kinet).1991,66(14): 1-66.
    [87]Liu T K. Effect of fluorinated graphite on combustion of boron and boron-based fuel-rich propellants.Journal of Propulsion and Power.1996,12(1):26-33.
    [88]Hartwel 1 F C, Robe r t J G, Char les H B, etal.Production and coating of pure boron powders. AD-A220272,1990.
    [89]Valery R, Benveniste N, Alon G. Ignition of boron particles coated by a thin titanium film. Journal of Propulsion and Power.1995,11(6):1125-1131.
    [90]Valery R, Benveniste N, Alon G. Ignition of boron particles coated by a thin titanium film. AIAAPaper.1993(93):2201.
    [91]Felder W, Gill R J, Baker D, et al. Coated boron particles by a diffusion flow method. Chem Phys Processes Combust.1990(70):1-4.
    [92]张琼方,张教强,国际英.超细硼粉的3,3-双(叠氮甲基)环氧丁烷-四氢呋喃共聚醚包覆研究.含能材料.2005,13(3):185-188.
    [93]Nadia Balucani, Fangtong Zhang and Ralf I. Kaiser. Elementary Reactions of Boron Atoms with HydrocarbonssToward the Formation of Organo-Boron Compounds.Chem. Rev. 2010(110):5107-5127.
    [94]齐晓飞,张晓宏,严启龙,李军强,宋振伟.固体推进剂用纳米核壳型铝粉的制备及其应用研究进展.化工新型材料.2012,40(4):20-22.
    [95]Eric Nixon, Michelle L. Pantoya, Ganapathy Sivakumar, Ashwin Vijayasai, Tim Dallas.Effect of a superhydrophobic coating on the combustion of aluminium and iron oxide nanothermites. Surface & Coatings Technology.2011 (205):5103-5108.
    [96]庞维强,樊学忠,张教强,胡松启.无定形硼粉的团聚技术.火炸药学报.2008,31(2):46-48.
    [97]庞维强,樊学忠,胥会祥.团聚硼颗粒在HTPB富燃料推进剂中的流变特性.火炸药学报.2010,33(3):84-87.
    [98]庞维强,樊学忠.团聚硼颗粒表面粗糙度和粒径分布对富燃料推进剂药浆流变性能的影响.2011,19(1):46-49.
    [99]Xie, L.; Shao, Z. Q.; Wang, W. J.; Wang, F. J. Integr.Ferroelectr.2011(127):184-192.
    [100]胥会祥,赵凤起.高纯硼粉的特性及其在富燃料推进剂中的应用研究.固体火箭技术.2008(31):368-373.
    [101]毛成立,李葆萱,胡松启,王英红.热空气中硼粉点火模型研究综述.推进技术.2001,22(1):6-10.
    [102]高东磊.含硼福燃料推进剂一次燃烧性能研究[D].长沙:国防科学技术大学,2009.
    [103]C. Burger, B. S. Hsiao and B. Chu.Annu. Rev. Mater. Res.2006(36):333-368.
    [104]王进贤,董相亭.静电纺丝技术与无机纳米材料合成.北京:国防工业出版社,2012.
    [105]Jesse T. McCann, Dan Li and Younan Xia.Electrospinning of nanofibers withco re-sheath, hollow, or porous structures. J. Mater. Chem.2005(15):735-738.
    [106]Ji-Huan He, Yu-Qin Wan, Lan Xu. Nano-effects, quantum-like properties in electrospun Nanofibers.Chaos, Solitons and Fractals.2007 (33):26-37.
    [107]Nuanxia Wang, Chenghua Sun,Yong Zhao, Shuyun Zhou,Ping Chen and Lei Jiang.Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures viaa solution process. J. Mater. Chem.2008(18):3909-3911.
    [108]Byoung-Sun Lee, Seoung-Bum Son, Kyu-Min Park, Jong-Hyun Seo, Se-Hee Lee, In-Suk Choid, Kyu-Hwan Oh, Woong-Ryeol Yu. Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode. Journal of Power Sources. 2012(206):267-273.
    [109]王策,卢晓峰等.有机纳米功能材料:高压静电纺丝技术与纳米纤维.北京:科学出版社,2011.
    [110]宋晓岚,王海波,吴雪兰,曲鹏,邱冠周.纳米颗粒分散技术的研究与发展.化工进展.2005,24(1):47-52.
    [111]袁文俊,周勇敏.纳米颗粒团聚的原因及解决措施.材料导报.2008,22(7):59-61.
    [112]纪守峰,李桂春.超细粉体团聚机理研究进展.2006,15(8):54-56.
    [113]Z.X. Yan, J. Deng, Z.M. Luo.A comparison study of the agglomeration mechanism of nano-and micrometer aluminum particles.Materials Characterization.2010(61):198-205.
    [114]Sullivan, K.T., Piekiel, N.W., Wu,C., Chowdhury, S., Kelley, S.T., Hufnagel, T.C., Fezzaa, K., Zachariah, M.R. Reactive sintering:An important component in the combustion of nanocomposite thermites.Combust.Flame.2012(159):2-15.
    [115]欧育湘.炸药分析.北京:兵器工业出版社,1994.
    [116]S.M. Pourmortazavi, S.G. Hosseini, M. Rahimi-Nasrabadi, S.S. Hajimirsadeghi, H. Momenian.Effect of nitrate content on thermal decomposition of nitrocellulose,Journal of Hazardous Materials.2009 (162):1141-1144.
    [117]M.R. Sovizi a, S.S. Hajimirsadeghia, B. Naderizadehb.Effect of particle size on thermal decomposition of nitrocellulose. Journal of Hazardous Materials.2009(168):1134-1139.
    [118]Wenxian Wei, Bingbing Cui, Xiaohong Jiang,Lude Lu.The catalytic effect of NiO on thermal decomposition of nitrocellulose. J Therm Anal Calorim.2010 (102):863-866.
    [119]莫润阳,林书玉,王成会.超声空化的研究方法及进展.应用声学.2009,28(5):389-400.
    [120]Qi Wang, Hesheng Xia, Chuhong Zhang.Preparation of Polymer/Inorganic Nanoparticles Composites Through Ultrasonic Irradiation. Journal of Applied Polymer Science. 2001,80(9):1478-1488.
    [121]段红珍,蔺向阳,徐磊,郭效德,刘冠鹏,李凤生.纳米Co粉在NC基高分子体系中的分散性,固体火箭技术.2007,30(4):335-337.
    [122]刘香翠,朱慧,张炜,王春华.纳米铝粉在煤油中的均分散技术.推进技术.2005,26(2):184-187.
    [123]崔洪梅,刘宏,王继扬,李段,韩峰.纳米粉体的团聚与分散.机械工程材料.2004,28(8):38-41.
    [124]王补宣,李春辉,彭晓峰.纳米颗粒悬浮液稳定性分析.应用基础与工程科学学报.2003,11(2):167-173.
    [125]A. V. Krasheninnikov and K. Nordlund.Ion and electron irradiation-induced effects in nanostructured materials.2010,107(071301):1-70.
    [126]M. D. MUIR and D. N. RAMPLE.The effect of the electron beam on various mounting and coating media in scanning electron microscopy.1969,90(2):145-150.
    [127]Alexander E. Gash, Joe H. Satcher Jr., Randall L. Simpson, Brady J. Clapsaddle. Nanostructured Energetic Materials with Sol-gel Methods. Mat. Res. Soc. Symp. Proc. Materials Research Society.2004(800):AA2.2.1-AA2.2.12.
    [128]Ashley E Manis, James R Bowman, Gary L Bowlin and David G Simpson. Electrospun nitrocellulose and nylon:Design and fabrication of novel high performance platforms for protein blotting applications. Journal of Biological Engineering.2007,1(2):1-11.
    [129]Nandana Bhardwaj, Subhas C. Kundu. Electrospinning:A fascinating fiber fabrication technique, Biotechnology Advances.2010 (28):325-347.
    [130]Di Zhang, Amar B. Karki, Dan Rutman, David P. Young, Andrew Wang, David Cocke, Thomas H. Ho, Zhanhu Guo, Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles:Fabrication and property analysis. Polymer.2009(50):4189-4198.
    [131]潘功配.高等烟火学.哈尔滨:哈尔滨工程大学出版社,2005:21.
    [132]J.R. Luman, B. Wehrman, K.K. Kuo, R.A. Yetter,N.M. Masoud, T.G. Manning, L.E. Harris, H. A. Bruck. Development and characterization of high performance solid propellants containing nano-sized energetic ingredients.Proceedings of the Combustion Institute.2007(31): 2089-2096.
    [133]Kim, S. H., Zachariah, M. R. Enhancing the rate of energy release from nanoenergetic materials by electrostatically enhanced assembly. Adv. Mater.2004(16):1821.
    [134]Malchi,J. Y, Foley, T. J, Yetter, R. A. Electrostatically Self-Assembled Nanocomposite Reactive Microspheres. ACS Appl. Mater.Interfaces.2009(1):2420.
    [135]Severac F, Alphonse P, Esteve A, Bancaud A, Rossi C. High-Energy Al/CuO Nanocomposites Obtained by DNA-Directed Assembly.Adv. Funct.Mater.2012,22(16):323.
    [136]Jian GQ, LiuL, Zachariah M R. Facile Aerosol Route to Hollow CuO Spheres and its Superior Performance as an Oxidizer in Nanoenergetic Gas Generators. Adv. Funct. Mater. 2013,23(10):1341-1346.
    [137]Di Zhang, Amar B. Karki, Dan Rutman, David P. Young, Andrew Wang, David Cocke, Thomas H. Ho, Zhanhu Guo, Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles:Fabrication and property analysis. Polymer.2009 (50):4189-4198.
    [138]Yamashita Yoshihiro.Current state of nanofiber produced by electrospinning and prospects for mass production.Journal of Textile Engineering.2008,54(6):199-205.
    [139]Salil Mohan, Alexandre Ermoline, Edward L. Dreizin.Pyrophoricity of nano-sized aluminum particles.J Nanopart Res.2012(14):723.
    [140]J.M. Benson.Safety considerations when handling metal powders,The Journal of The Southern African Institute of Mining and Metallurgy.2012(7A):563-575.
    [141]J. Zeleny.Instability of Electrified Liquid Surfaces.Physical Review.1917,10(1):1-6.
    [142]G. Taylor.Disintegration of Water Drops in an Electric Field. Proceedings of the Royal Society A.1964(1382):383-397.
    [143]Leilei Zhang, Jiwei Huang, Ting Si and Ronald X Xu.Coaxial electrospray of microparticles and nanoparticles for biomedical applications.Expert Rev. M 596 ed. Devices.2012,9(6):595-611.
    [144]ZhaoXinyan, Lojewski Brandon, Yang Weiwei, Zhu Tongjun, MiBaoxiu, Gao Zhiqiang, Huang Wei, DengWeiwei.Electrospray as a Fabrication Tool in Organic Photovoltaics. Reviews in Nanoscience and Nanotechnology.2012,1 (3):172-186.
    [145]Helen Stahnke, Stefan Kittlaus, Gunther Kempe and Lutz Alder. Reduction of Matrix Effects in Liquid Chromatography-Electrospray Ionization-Mass Spectrometry by Dilution of the Sample Extracts:How Much Dilution is Needed? Analytical Chemistry.2012,84(3): 1474-1482.
    [146]R S Patel, M Roy, G K Dutta.Mass spectrometry-A review. Vet World.2012,5(3): 185-192.
    [147]Marie Morelato, Alison Beavis, Anthony Ogle, Philip Doble, Paul Kirkbride, Claude Roux.Screening of gunshot residues using desorption electrospray ionisation-mass spectrometry (DESI-MS).Forensic Science International.2012 (217):101-106.
    [148]Paul M. Flanigan, IV, John J. Brady, Elizabeth J. Judge, and Robert J. Levis.Determination of Inorganic Improvised Explosive Device Signatures Using Laser Electrospray Mass Spectrometry Detection with Offline Classification.Anal. Chem.2011(83): 7115-7122.
    [149]John J. Brady, Elizabeth J. Judge and Robert J. Levis.Identification of explosives and explosive formulations using laser electrospray mass spectrometry.Rapid Commun.Mass Spectrom.2010(24):1659-1664.
    [150]Johnny J. Perez,Paul M. Flanigan, IV, John J. Brady, and Robert J. Levis.Classification of Smokeless Powders Using Laser Electrospray Mass Spectrometry and Offline Multivariate Statistical Analysis.Anal.Chem.2013(85):296-302.
    [151]Lars Konermann, Elias Ahadi, Antony D. Rodriguez, and Siavash Vahidi.Unraveling the Mechanism of Electrospray Ionization.Analytical Chemistry.2013(85):2-9.
    [152]Anand Prakash, Alon V. McCormick, and Michael R. Zachariah. Synthesis and Reactivity of a Super-Reactive Metastable Intermolecular Composite Formation of Al/KMnO4.Advanced Materials.2005,17(7):900-903.
    [153]Guoqiang Jian, Snehaunshu Chowdhury, Kyle Sullivan, Michael R. Zachariah. Nanothermite reactions:Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition?Combustion and Flame.2013(160):432-437.
    [154]Baschung B, GruneD, LichtH. H, SamirantM. In Combustionof Energetic Materials; Kuo, K. K., DeLuca, L. T., Eds. NY:Begell House,2001:219.
    [155]Jonathan Mohler, Timothy W. Mohler. Thermite Torch Cutting Nozzle, US6805832B2.
    [156]Suvajyoti Guha, Mingdong Li, Michael J. Tarlov and Michael R. Zachariah. Electrospray-differential mobility analysis of bionanoparticles.Trends in Biotechnology.2012, 30(5):291-300;
    [157]Leonard F. Pease Ⅲ.Physical analysis of virus particles using electrospray differential mobility analysis.Trends in Biotechnology.2012,30(4):216-224.
    [158]胡荣祖,高胜利,赵凤起,史启祯,张同来,张建军.热分析动力学,第二版.北京:科学出版社.2008.
    [159]Vyazovkin S.Int.Reviews in Physical Chemistry.2000,19(1):45-60.
    [160]Dollimore D,Tong P, Alexander K S et al. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation. Thermochim. Acta.1996,282-283(1):13-27; 290(1):73-83.
    [161]F.J.Gotor, J.M.Griado.The abuse of the Harcourt and Esson relationship in interpreting the kinetics of rising temperature solid state reactions.Thermochimi Acta.2002(382):53-58.
    [162]Marek Maciejewski. Computational aspects of kinetic analysis Part B:The ICTAC Kinetics Project --the decomposition kinetics of calcinm carbonate revisited, or som tips on survival in the kinetic mine field. Thermochimi.Acta.2000 (355):145-154.
    [163]M.E.Brown, M.Maciejewski. Computational aspects of kinetic analysis Part A:The ICTAC kinetics project-data, methods and results. Thermochimi Acta.2000 (355):125-143.
    [164]Alan K.Burnham. Computational aspects of kinetic analysis Part D:The ICTAC Kinetics Project-multi-thermal-history model-fitting methods and their relation to isoconversional methods. Thermochimi Acta.2000 (355):165-170.
    [165]H.E. Kissinger.Reaction kinetics in Differental Thermal Analysis.Anal.Chem. 1957(29):1702-1706.
    [166]M.J.Starink. A new method for the derivation of activation energies from experiments performed at constant heating rate. ThermochimiActa.1996(288):97-104.
    [167]德国耐驰仪器制造有限公司.热分析应用文集.
    [168]H.F. Rizzo, in:G.K. Gaule, J.T. Breslin, J.R. Pastore, R.A. Shuttleworth (Eds.), Boron: Synthesis, Structure and Properties.1st ed. New York:Plenum Press Inc,1960:175-181.
    [169]T.G. DiGiuseppe, P.J. Davidovits. Boron atom reactions. II. Rate constants with O2, SO2, CO2, and N2O. J. Chem. Phys.1981 (74):3287-3291.
    [170]陈超,王英红,潘匡志,陈晓龙.硼粉热特性研究.固体火箭技术.2009,32(6):663-666.
    [171]敖文,杨卫娟,汪洋,刘建忠,周俊虎,岑可法.不同气氛下硼粉燃烧特性及动力学研究.中国电机工程学报.2012,32(29):59-64.
    [172]Ashish Jain, Kitheri Joseph, S. Anthonysamy, G.S. Gupta.Kinetics of oxidation of boron powder.Thermochimica Acta.2011(514):67-73.
    [173]Mohammad Ali Zaree, Saeed Babaee, Mina Khatibi.Synthesis of non-crystalline boron nanoparticles by thermal reduction method.Proceedings of the 4th International Conference on Nanostructures(ICNS4), Kish Island, I.R. Iran,2012:12-14.
    [174]Gregory Young, Kyle Sullivan, Michael R. Zachariah, Kenneth Yu. Combustion characteristics of boron nanoparticles.Combustion and Flame.2009(156):322-333.
    [175]Ya. I. Vovchuk, A. N. Zolotko, L. A. Klyaehko, D. I. Polishchuk,and V. G. Shevchuk. Gasification of Boron Oxide. Fizika Goreniya i Vzryva.1974,10(4):615-618.
    [176]Nathan S. Jacobson.High-Temperature Vaporization of B2O3(1) under Reducing Conditions.J. Phys. Chem. B.2011(115):13253-13260.
    [177]D. Meinkohn. Metal-Particle Ignition and Oxide-Layer Instability. Combustion, Explosion, and Shock Waves.2006,42(2):158-169.
    [178]Xiaopeng Jiao, Hua Jin, Fuyang Liu, Zhanhui Ding, Bin Yang, Fengguo Lu, Xudong Zhao, Xiaoyang Liu, Synthesis of boron suboxide(B60) with ball milled boron oxide (B2O3) under lower pressure and temperature. Journal of Solid State Chemistry.2010(183): 1697-1703.
    [179]Zhou, W; Yetter, R; Dryer, F; Rabitz, H; Brown, R; Kolb, C. Multi-Phase Model for Ignition and Combustion ofBoron Particles.Combustion and Flame.19991,17(1-2):227-243.
    [180]Valliappan S,Swiatkiewicz J,et al. Reactivity of aluminum nanopowders with metal oxides.Powder Technology.2005,156(2-3):164-169.
    [181]Suna Balc,Naime Asl Sezgiand Esin Ere.Boron Oxide Production Kinetics Using Boric Acid as Raw Material.Industrial & Engineering Chemistry Researc.2012(51):11091-11096.
    [182]R. Bru"ning and S. Patterson.Thermal and structural properties of B2O3-H2O glasses.J. Mater. Res.2003,18(10):2494-2499.
    [183]R. Balasubramanian, T. S. Lakshmi Narasimhan, R. Viswanathan, and S. Nalini.Investigation of the Vaporization of Boric Acid by Transpiration Thermogravimetry and Knudsen Effusion Mass Spectrometry.J. Phys. Chem. B.2008(112):13873-13884.
    [184]胥会祥,赵凤起,李晓宇.无定形硼粉的溶剂法提纯.火炸药学报.2007,30(2):8-12.
    [185]杨君友,吴建生,曾振鹏.机械合金化过程中粉末的形变及能量转化.金属学报. 1998,34(10):1061-1067.
    [186]柳林,秦勇.球磨能量对Mo-Si混合粉末机械合金化的影响.金属学报.1996,32(4):423-428.
    [187]叶迎华.火工品技术.北京:北京理工大学出版社,2007:24.
    [188]Mikhail A. Ilyushin, Igor V. Tselinsky and Irina V. Shugalei.Environmentally Friendly Energetic Materials for Initiation Devices.Central European Journal of Energetic Materials. 2012,9(4):293-327.
    [189]Jay C. Poret, Anthony P. Shaw, Lori J. Groven, Gary Chen, Karl D. Oyler. Environmentally Benign Pyrotechnic Delays.38th International Pyrotechnics Seminar, Denver, Colorado,2012:494-500.
    [190]Ulas, A; Kuo, K; Gotzmer, C. Ignition and Combustion of Boron Particles in Fluorine-Containing Environments.Combustion and Flame.2001,127(1-2):1935-1957.
    [191]King, M. Ignition and combustion of boron particles and clouds.Journal of Spacecraft and Rockets.1982,19 (4):294-306.
    [192]FoelscheR, Burton R, Krier H.Boron Particle Ignition and Combustion at 30-150 atm, Combustion and Flame.1999,117(1-2):32-58.
    [193]RisoldD, NagataJ, SuzukiR. Thermodynamic description of the Pb-O system.Journal of Phase Equilibria.1997,19(3):213-233.
    [194]D.Risild etal. Thermodynamic description of Pb-O systems.Journal of phase equilibria.1998,19(3):212-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700