超声强化中草药成分提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中草药在我国资源丰富,运用中草药防病、治病历史悠久。随着中药现代化的需要和超声技术的广泛应用,超声强化中草药成分提取研究对于推进中医药现代化和发展有着重要的意义。
     本文从Fick第一定律出发,基于超声对植物细胞的破壁效果,建立了超声强化中草药成分提取的传质动力学方程,得到了中草药成分提取液浓度与超声提取时间、超声功率的关系,并通过银杏叶中黄酮成分及甘草中甘草酸成分的提取实验进行了验证。
     银杏叶分布于我国大部,银杏叶中黄酮成分具有极强的清除自由基和抗氧化性能。本文以水为提取介质,利用超声细胞粉碎机插入式提取和超声清洗槽提取两种提取方式对银杏叶中黄酮成分进行了提取实验。以芦丁为标准品,建立了浓度范围在12.16-97.28mg/L的分光光度法标准曲线。用硝酸铝和亚硝酸钠络合法对银杏叶提取液中黄酮成分进行分析与浓度测量,并与浸提结果进行了对比。实验结果表明,超声能够实现强化银杏叶黄酮成分的提取;超声功率一定时,在一定提取时间范围内,提取时间越长,提取液浓度越大;在相同的提取时间内,超声功率越大,提取液浓度越大;相同提取条件下,插入式提取方式提取效果优于超声清洗槽提取效果。
     甘草被称为“百药之王”,应用非常广泛。甘草酸是甘草中的重要成分,具有抗病毒、抗血栓等功能。本文以水为提取介质,使用超声细胞粉碎机、超声清洗槽及粉碎机加清洗槽的复合提取方式对甘草切片、甘草纤维、甘草粉进行了超声强化提取实验。以甘草酸为标准品,利用甘草酸在30%-60%乙醇溶液中浓度与吸光率的线性关系建立了浓度范围为20-100mg/L的标准曲线,用分光光度法对不同条件下得到的提取液浓度进行测量。实验结果表明:超声细胞粉碎机的提取效果均明显优于超声清洗槽的提取效果;复合提取方式的提取效果优于单一提取方式效果;对不同基质甘草药材颗粒超声处理前后的外形进行观察,在超声破壁效果作用下,药材颗粒外形发生了很大变化,超声破壁效果明显;超声对不同基质药材颗粒的提取效果顺序是:甘草粉优于甘草纤维,甘草纤维优于甘草片。
     超声提取装置的声场分析是设备设计和制造的理论基础。本文基于SYSNOISE和ANSYS软件的振动-声场分析计算功能,以H66MC型超声清洗槽实际尺寸为参数进行建模,模拟计算了清洗槽在39.7KHz频率工作时的声场,绘制了平行于底板的平面声压分布云图和垂直于底板的断面声压分布云图,得到了清洗槽内声场的分布规律。利用美国物理声学公司的Ultra-PAC超声C扫描成像系统对H66MC型超声清洗槽声场进行了测量,得到了实际的声压分布云图。用PPB US TK型超声波能量计分别测量了100W、200W、250W功率时该清洗槽平行于底板且距底板1cm、4cm、7cm、10cm、13cm、16cm平面的声场声强分布;测量了12个换能器在声场辐射方向的声强分布,对测量数据用Matlab绘制了声强分布图。结果表明:基于SYSNOISE和ANSYS的模拟计算结果与实际测量的结果相符合,通过测量得到了清洗槽内声场分布的规律。
     利用SYSNOISE和ANSYS软件分别计算了长宽比为1:1、2:1、3:2的超声清洗槽的声场;换能器呈单排、双排、三排分布时的超声清洗槽声场;清洗槽在声源单独工作、清洗槽单独工作、复合提取方式时的声场。探讨了清洗槽声场分布与清洗槽长宽比、换能器的分布方式及提取方式之间的关系。计算了圆柱形反应器分别在一个换能器置于底板中心激励时的声场和七个换能器呈轴对称分布时的声场;探讨了圆柱形反应器声场分布与换能器排布方式之间的规律。计算得到的声场分布规律为超声提取装置的设计提供了模拟计算支持。
     本文的主要创新点:
     (1)以Fick第一定律为基础,基于超声破壁效果,建立了超声提取中草药成分传质动力学方程。
     (2)以水为提取介质,对银杏叶中黄酮成分和甘草中甘草酸成分进行了超声提取,验证了建立的传质动力学方程,得到了银杏黄酮、甘草酸超声提取规律。
     (3)建立了基于SYSNOISE和ANSYS的超声提取装置内部声场计算方法。
     (4)基于SYSNOISE和ANSYS计算了超声槽式提取装置和圆柱形反应器的声场,得到了声场分布规律。
Chinese herbs in China is rich in resources, the use of Chinese herb for disease treatment and prevention has a long history. With the needs of modernization of Chinese medicine and the extensive application of ultrasonic technology, researches on ultrasonic extraction of Chinese herbs have great influence on promoting the modernization and development of Chinese medicine.
     Based on Fick's first law and ultrasound effect of breaking plant cells, extracting dynamic equations of mass transfer on ultrasonic extracting herbs has been established. The relationships between the concentration of herbs and extraction time and the concentration of herbs and ultrasonic power have been found. It has been verified by the extraction experiments of extracting Ginkgo flavonoids from Ginkgo leaves and extracting Glycyrrhizin from Licorice.
     Ginkgo tree is planted in many regions of our country. Ginkgo flavonoids has strong scavenge free radicals and antioxidant activity. In this paper, the experiment of extracting Ginkgo flavonoids from Ginkgo leaves has been completed in two ways. One is using cell disruptor and the other is using ultrasonic cleaning tank. Spectrophotometric standard curve of Ginkgo flavonoids concentration ranging in 12.16-97.28mg/L is set up with Rutin acting as the standard. Ginkgo flavonoids is analyzed and concentration is measured by Al (NO3)3 and NaN02 complexion method, and the results are compared with the soak extraction. The results show that ultrasound strenghs the process of extracting Ginkgo flavonoids from Ginkgo leaves. For the same extraction time, the concentration of Ginkgo flavonoids increases with the ultrasonic power. When the ultrasonic power is fixed, the concentration of Ginkgo flavonoids increases with the extraction time. Under the same extraction conditions, plug-in extraction ways are more efficient than ultrasonic cleaning extraction ways.
     Licorice is widely used in medicine. Glycyrrhizic acid, an important ingredient in licorice, has anti-virus, anti-thrombosis and other functions. In the Glycyrrhizic extraction experiments, with the use of water as the extraction medium, cell disruptor and ultrasonic cleaning tank is used as extraction equipment. Licorice slices, Licorice fiber and Licorice powder are used to extract Glycyrrhizic from them. Based on a linear relationship between absorbance and concentration of Glycyrrhizic acid in 30%-60% ethanol, spectrophotometric standard curve of concentration ranging in 20-100mg/L is set up. The concentration of the extraction liquid that is obtained under different conditions is measured. The results show that the way of using cell disruptor is more efficient than that of using ultrasonic cleaning and the way of complex extraction is more efficient than others. By comparing the particle shapes and the shapes extracted by ultrasound, we have found that shapes of particle change obviously. The effect of ultrasonic breaking cells is that licorice powder is better than fiber, fiber is better than slices.
     The analysis of sound field is the theoretical basis for designing and manufacturing ultrasonic extraction equipment. Based on the analysis and vibration calculation function of SYSNOISE and ANSYS software, the sound field of H66MC ultrasonic cleaning tanks working at 39.7KHz is calculated. The sound pressure distribution pictures and laws of the plane located at different distances from bottom are obtained. With the help of the Ultra-PAC ultrasonic C scanning system, the sound field of H66MC ultrasonic cleaning tank is measured and the sound pressure distribution images are obtained, too. Using the PPB US TK ultrasonic energy meter, the sound intensity distribution of the plane located at different distances (1cm,4cm,7cm,10cm,13 cm, 16cm) from bottom is measured with the cleaning tank's power of 100W,200W and 250W; the sound intensity distributions in radiation direction of every transducer are measured; the images of sound intensity distributions are plotted with Matlab, whose results are based on SYSNOISE and ANSYS calculation in accord with the results of measurement.
     Based on the calculation method of SYSNOISE and ANSYS, the sound pressure distributions of an ultrasonic cleaning tank are calculated under the conditions:different aspect ratio (1:1,2:1,3:2), different rows of transducers settled, and different ways of extraction. The relation between sound field distribution and the influence factors is found. The sound field distributions of cylindrical reactors are calculated as the calculation process as ultrasonic cleaning tank. The results of sound field distribution hereinbefore will provide simulation support for the ultrasonic extraction device designing.
     The main contributions of this thesis are as follows:
     (1) Based on the Fick's first law and the effect of ultrasonic breaking plant cells, ultrasonic extraction dynamic equations of mass transfer are established.
     (2) The experiments of extracting Ginkgo flavonoids from Ginkgo leaves and extracting Glycyrrhizic acid from Licorice, are completed. The ultrasonic extraction dynamic equation is verified.
     (3) Based on the calculation function of SYSNOISE and ANSYS, the method of sound field calculation is established.
     (4) The sound fields of the rectangular cleaning tank and the cylindrical reactor are calculated, based on the calculation function of SYSNOISE and ANSYS. The sound field distributions are obtained.
引文
[1]徐春龙,林书玉.超声提取中草药成分研究进展[J].药物分析杂志,2007,27(6):933-937.
    [2]郭孝武.超声提取分离[M].北京:化学工业出版社,2008:53,85-86.
    [3]胡秀丽.中药活性成分提取和分离的研究[D].长春:吉林大学,2008.
    [4]郭孝武.超声技术在中草药成分提取中的应用[J].中草药,1993,24(10):548-549.
    [5]李保国,申家龙,李栋等.超声技术在农产品加工中的应用[J].农机与食品机械,1998,(2):37-39.
    [6]郭孝武.一种提取中草药化学成分的方法——超声提取法[J].天然产物研究与开发,1998,11(3):37-40.
    [7]牛波,邱海霞,田景振等.超声强化提取技术[J].山东中医杂志,2000,19(10):629-630.
    [8]岳淑梅,郭辉.超声提取用于中成药的快速鉴别实验[J].开封医专学报,1999,18(4):49-50.
    [9]李红兵,孙立华,孙国才.超声波提取法在中国药典中的应用探讨[J].中国药品标准,2001,2(4):210-212.
    [10]汪国华,张文惠.超声波技术在药学中的应用[J].江西中医学院学报,1999,11(2):73.
    [11]胡松青,李琳,郭祀远.功率超声在生物工程中的应用[J].应用声学,2000,19(3):39-44.
    [12]于淑娟,高大维,李国基.超声波对多聚糖结构特性的影响[J].应用声学,1998,17(3):10-14.
    [13]王航宇,刘金荣,但建明等.新疆枸杞多糖的超声提取及含量测定[J].中药材,2002,25(1):42-43.
    [14]于淑娟.超声波催化酶法提取灵芝多糖[D].华南理工大学硕士学位论文,1996.
    [15]张文超,蔡妙颜,李琳等.物理波强化提取金针菇多糖[J].食用菌,2001,(1):5-6.
    [16]冯若,李华茂.声化学及其应用[M].合肥:安徽科学技术出版社,1992:3.
    [17]Robet E T. Mass-Transfer Operations [M]. Second Edition. New York:Mc Graw-Hill Book Company:1968.
    [18]梁戈亮.远志总皂苷的超声提取工艺及动力学研究[D].西安:陕西师范大学,2007.
    [19]Long V D. Aqueous extraction of black leaf tealll, Experiments with a stirred column [J]. J Food Technol,1979,14:449-462.
    [20]Spiro M, Siddique S. Kinetics and equilibria of tea infusion:Kinetics of Extraction of Theaflavins and Caffeine from Koonsong Broken Pekoe [J].J Sci Food Agric, 1981,32:1135-1139.
    [21]Price W E. Kinetics and equilibria of tea infusion [D].London:University of London,1985.
    [22]李有润,郑青.中草药提取过程的数学模拟与优化[J].中草药,1997,2(7):399-401.
    [23]Hou K, Zheng Q, Li Y, et al. Modeling and optimization of herb leaching processes[J]. Computers & Chemical Engineering,2000 (24):1343-1348.
    [24]储茂泉,古宏晨,刘国杰.中草药浸提过程的动力学模型[J].中草药,2000,l(7):504-506.
    [25]储茂泉,刘国杰.中药提取过程的动力学[J].药学学报,2002,37(7):59-562.
    [26]陈勇,蔡铭,瞿海滨等.基于圆柱型结构的中药材提取动力学模型[J],浙江大学学报,2006,40(9):1600-1603.
    [27]全学军,王万能,陆天健.超声提取植物有效成分的动力学研究[J].化学反应工程与工艺,2005,21(4):320-326.
    [28]黄可龙,李进飞,刘素琴.超声场强化中草药有效成分提取动力学模型[J].化工学报,2005,55(4):646-648.
    [29]丘泰球,李月花.花粉细胞超声破壁技术的研究[J].应用声学,1992,11(2):10-13.
    [30]徐春龙,林书玉,王成会等.超声提取中草药成分的动力学模型[J].陕西师范大学学报,2009,37(2):34-37.
    [31]Ebrahimzadeh H, Yamini Y, Sefidkon F, et al. Chemical composition of the essential oil and supercritical CO2 extracts of Zataria multiflora Boiss[J]. Food Chem,2003,83 (3):357-361.
    [32]Pourmortazavi S M, Hajimirsadeghi S S. Supercritical fluid extraction in plant essential and volatile oil analysis [J]. J. Chomatography A,2007,1163(1-2):2-24.
    [33]Mateus L, Cherkaoui S, Chisten P, et al. Enantioseparation of atropine by capillary electrophoresis using sulfated β-cyclodextrin:application to a plant extract[J]. J. Chomatography A,2000,868(2):285-294.
    [34]邓永智,袁东星,李权龙.银杏叶中聚戊烯醇酯的C02超临界流体提取及高效液相色谱分析[J].分析仪器,2005,(2):22-26.
    [35]Arthur C.L., Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Anal. Chem.,1990,62(19):2145-2148.
    [36]Liang M.M, Qi M.L, et al. Gas chomatography-mass spectrometry analysis of volatile compounds from Houttuynia cordata Thunb after extraction by solid-phase microextraction, flash evaporation and steam distillation[J]. Analytica Chimica Acta,2005,531:97-104.
    [37]王朝虹,果德安,胡春华.反相高效液相色谱法测定全血中马钱子碱和士的宁的含量[J].色谱,2003,21(4):382-384.
    [38]Eskilsson C.S, Bjorklund E. Analytical-scale microwave-assisted extraction[J]. J. ChomatographyA,2000,902(1):227-250.
    [39]王艳,张铁军.微波提取技术在中药有效成分提取中的应用[J].中草药,2005,36(3):470-473.
    [40]郭振库,金钦汉.微波提取技术[J].分析科学学报,2001,17(6):505-509.
    [41]Ganzler K, Szinai I, Salgo A. Effective sample preparation method for extracting biologically active compounds from different matrices by a microwave technique[J]. J. Chomatography,1990,520(1):257-262.
    [42]Onuska F.E, Terry K.A. Extraction of pesticides from sediments using a microwave technique [J]. Chomatographia,1993,36:191-194.
    [43]范华均,肖小华,李攻科.微波辅助提取石蒜和虎杖中有效成分的动力学模型[J].高等学校化学学报,2007,28(6):1049-1054.
    [44]沈岚,冯年平,韩朝阳.微波提取对不同形态结构中药及不同极性成分中药的选择性研究[J].中草药,2002,33(7):604-607.
    [45]Stout S J, Dacunha A R, Allardice D G. Microwave-assisted extraction coupled with gas chomatography/electron capture negative chemical ionization mass spectrometry for the simplified determination of imidazolinone herbicides in soil at the ppb level[J]. Anal Chem,1996, (68):653.
    [46]王铮敏.超声波在植物有效成分提取中的应用[J].三明高等专科学校学报,2002,19(4):45-53.
    [47]杨秀伟.实用天然产物手册一生物碱[M].北京:化学工业出版社,2005.
    [48]郭孝武.超声与常规法对部分中药甙类成分提出率的比较[J].中国医药工业杂志,1998,29(2):51-54.
    [49]郭孝武.一种提取中草药化学成分的方法——超声提取法[J].天然产物研究与开发,1999,11(3):37-39.
    [50]郭孝武,杨锐.不同频率超声提取对益母草总碱提出率的影响[J].中国医院药学杂志,1999,19(8):465-466.
    [51]郭孝武.超声技术在提取中药碱类成分中的应用[J].世界科学技术—中药现代化,2002,4(3):59-61.
    [52]张崇禧,郑友兰,张春红等.不同方法提取人参总皂苷工艺的优化研究[J].人参研究,2003(4):5-8.
    [53]梁惠花,刘晓河,王志宝.坝目油菜蜂花粉中总黄酮的超声提取及含量测定[J].张家口医学院学报,2003,20(4):8-9.
    [54]刘峥.超声波提取银杏叶总黄酮[J].桂林工学院学报,2001,21(3):276-279.
    [55]刘金荣,赵文斌,王宇航等.超声提取快速鉴定黄酮类化合物[J].华西药学杂志,2002,17(2):141-143.
    [56]袁忠海,吴道澄,吴红等.超声提取法测定魔芋精粉葡甘露聚糖含量的实验研究[J].中国中药杂志,2003,28(4):324-327.
    [57]江发寿,刘金荣,但建明等.沙枣多糖的超声提取及含量测定[J].西北药学杂志,2002,17(1):13-14.
    [58]刘金荣,江发寿,但建明等.独尾草多糖的超声提取及含量测定[J].中草药,2002,33(4):322-323.
    [59]吉力,高效液相色谱法测定香薷药材中香芹酚和百里香酚的含量[J].中国中药杂志,2004,29(11):1030-1032.
    [60]李志西,苹果渣多酚超声波提取工艺及其抗氧化性研究[J].西北农林科技大学学报,2005,33(8):131-134.
    [61]王祝举,HPLC测定当归中藁本内酯的含量[J].中国中药杂志,2005,30(21):1699-1700.
    [62]朱国元,HPLC/MS/MS技术在中药白花前胡成分鉴定中的应用[J].中国天然药物,2004,2(5):304-308.
    [63]王亭兰,汤为.银杏产业的可行性调研报告[J].时珍国医国药,2004,15(5):311-312.
    [64]梁立兴.从银杏文献计量分析研究看我国银杏研究现状及发展趋势[J].林业 科技通讯,1994(12):18-20.
    [65]Beek T A V, Scheeren H A, Melger W C. Determination of ginkgnlides and bilnbalide in Ginkgo biloba leaves and phyto-pharmaceuticals[J]. Journal of Chromatography.1991(543):375-387.
    [66]Sticher O. Quality of Ginkgo preparation[J]. Planta Med.1993,59(1),2-11.
    [67]YasukawaK,TakidoM,TakeuchiM.Effects of chemical constituents from plantson 12-O-tetradecanoylphorbol-13-acetateinducedin flammationinmice[J]. Chem Pharm Bull.1989.37(4):1071-1073.
    [68]Habtemariam S. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor Necrosis factor-ainL-929 tumor cells[J].JNatProd.1997.60(8):775-778.
    [69]Ming-Shih Lee, Dar-Yu Yang, Chen-Li Cheng, et al. G inkgo biloba extract preserves pyruvate and enhances ascorbate in the cortex of gerbils during focal cerebral ischemia A microdialysis-liquid chromatography study[J]. Journal of Chromatography A,2003,98(5):387-394.
    [70]Piergiorgio Pietta, Paolo Simonetti, Claudio Gardana, et al. Trolox equivalent antioxidant capacity (TEAC) of Ginkgo biloba flavonol and Camellia sinensis catechin metabolites[J]. Journal of Pharmaceutical and Biomedical Analysis,2000, (23):223-226.
    [71]姚新生.天然药物化学[M].第二版.北京:人民卫生出版社,1996:191-193.
    [72]P.G. Pietta, C. Gardana, P.L.Mauri, et al. Identification of flavonoid metabolites after oral administration to rats of a Ginkgo biloba extracts [J]. Journal of Chromatography B.1995,67(3):75-80.
    [73]马盼香,方成根,连渝平.银杏叶制剂研究的现状与展望[J].现代中西医结合杂志.2003,12(22):2486-2487.
    [74]刘顺良,张喜旺,郭翠英.银杏叶开发应用研究现状[J].药学探讨,2001,10(5):46-47.
    [75]刘晶芝,赵永光,冯玉珠等.超声法提取银杏叶黄酮类化合物的工艺研究[J].安徽农业科学,2007,35(14):4105-4106,4119.
    [76]郭国瑞,谢永荣,钟海山等.超声波提取银杏黄酮苷的工艺研究[J].赣南师范学院学报,2001(3):45-48.
    [77]李莹,周剑忠,王功等.超声波和微波联合提取银杏叶黄酮的研究[J].食品科技,2008,6:153-155.
    [78]张志红,黄毅.银杏叶提取物中黄酮类化合物的分光光度分析方法[J].分析
    试验室,2005,24(6):17-19.
    [79]上官小东,王党社.AlCl3分光光度法测量银杏黄酮的含量[J].宝鸡文理学院学报,2004,24(2):273-275.
    [80]王靖,邹雨佳,唐华澄等.高效液相色谱法(HPLC)测定银杏黄酮含量[J].食品工业科技,2006,27(3):184-185,191.
    [81]张毅平,张仲平.高效液相色谱法比较了香椿叶、银杏叶的黄酮含量[J].中国现代应用药学,2003,20(3):231.
    [82]尚志远.检测声学原理与应用[M].西安:西北大学出版社,1996:58.
    [83]Du Q Z, Xia M, Ito Y. Purification of icariin from the extract of Epimedium segittatum using high-speed countercurrent chromatography [J]. J Chomatography A,2002,962 (12):239-241.
    [84]郭孝武,杨锐.不同频率超声提取对益母草总碱提出率的影响[J].中国医院药学杂志,1999,19(8):465-466.
    [85]金宏.浅谈甘草药理作用[J].时珍国医国药,2000,11(1):78-79.
    [86]Eng Shi Ong, Shea Mei Len. Pressurized hot water extraction of berberine, baicalein and glycyrrhizin in medicinal plants [J]. Analytica Chimica Acta,2003, 482:81-89.
    [87]谢松梅,崔慧斐.甘草酸的研究进展[J].食品与药品,2006,8(3):1-5.
    [88]国家医药管理局中草药情报中心站.植物学有效成分分册[M].北京人民卫生出版社,1986:465-465.
    [89]付玉杰,刘晓娜,施晓光等.正交实验优化异甘草素超声提取工艺[J].化学工程,2007,35(1):75-78.
    [90]李剑君,国蓉,莫晓燕.甘草酸提取工艺的优化研究[J].食品科学,2006,27(12):326-330.
    [91]国蓉,李剑君,国亮等.采用响应曲面法优化甘草饮片中甘草酸的超声提取工艺[J].西北农林科技大学学报,2006,34(9):188-192.
    [92]谢果,霍丹群,侯长军等.超声波法从甘草中揭取甘草酸的工艺研究[J].工艺技术,2002,23(4):41-43.
    [93]杨瑛,李全禄,郑文轩.超声波法从甘草中提取甘草酸工艺研究[J].江苏农业科学,2008(5):239-241.
    [94]杨俊红,郭锦棠,朱养妮等.甘草酸的提取动力学特性与强化传质机理[J].工程热物理学报,2002,23suppl:161-164.
    [95]李炳奇,汪河滨,李学禹等.超声法联合提取甘草黄酮和甘草酸的研究[J].山 东中医杂志2005,24(1):38-40.
    [96]谷会岩,郭兴顺,杨逢建.国内甘草酸测定方法研究进展[J].东北林业大学学报,2002,30(47):79-83.
    [97]方从容,杨大进.保健食品中甘草酸测定方法的研究[J].中国卫生检验杂志,2007,17(6):986-987,1007.
    [98]韩洪伟,王敏庆,胡卫强.基于SYSNOISE的建筑模板耦合振动及声辐射特性研究[J].噪声与振动控制,2006,26(5):37-40.
    [99]王晶,商德江.ANSYS和SYSNOISE软件用于计算水下结构声的性能分析[J].声学技术,2004,23(z1):90-92.
    [100]黎胜,赵德有.用有限元/边界元方法进行结构声辐射的模态分析[J].声学学报,2001,26(2):174-179.
    [101]周朝善,马卫平.基于SYSNOISE的汽车气动噪声仿真[J].企业技术开发,2009,28(3):58-60.
    [102]孙进才,王冲.机械噪声控制原理[M].西安:西北工业大学出版社,1993:58.
    [103]M.C. Junger, D. Feit. Sound, Structures and Their Interaction[M]. Cambridge: MIT Press,1986.
    [104]徐春龙,石焕文.弧向裂纹圆板的振动与辐射声场[J].西北大学学报.2007,37(4):539-542.
    [105]黎胜,赵德有.用有限元/边界元方法进行结构声辐射的模态分析[J].声学学报,2001,26(2),174-179.
    [106]M.C. Junger, D. Feit, Sound, Structures and Their Interaction, [M]. Cambridge: MIT Press,1986.
    [107]Jin O Kim, Sunghoon Choi, Jung Ho Kim. Vibroacoustic characteristics of ultrasonics cleaners[J]. Applied acoustics,1999,58(2):211-228.
    [108]王秋萍,刘瑞聪.超声清洗槽内声场分布的研究[J].兰州交通大学学报,2006,25(1):48-51.
    [109]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001.
    [110]张明铎,任金莲,牛勇.侧面辐射声化学反应器的声场研究[J].西北大学学报,2009,39(6):940-943.
    [111]任金莲,张明铎,牛勇等.改善大功率超声清洗声场均匀性的一种方法[J].压电与声光,2003,25(4):347-350.
    [112]任金莲,牛勇,张明铎.复合频率超声波清洗声场均匀性研究[J].声学学报,2003,23(2):127-129.
    [113]梁召峰,周光平.低频超声清洗声场强度的测量[J].清洗技术,2004,2(10):15-19.
    [114]P. A. Lewin, R. C. Chivers. Two miniature ceramic ultrasonic probes[J]. Phys.E: Sci. Instrum,1981,14 (12):1420-1424.
    [115]林仲茂,方启平.超声波清洗(Ⅱ)[J].化学清洗,1998,14(5):41-44.
    [116]方启平,颜忠余,黄金兰等.用染色法记录液体中大功率超声场的分布[J].声学技术,1996,15(4):177-179.
    [117]庄楚强,吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,1992.
    [118]L.D.Rozenberg.High-intensity ultrasonic field [M].
    [119]李太宝.计算声学[M].北京:科学出版社,2005,248.
    [120]H Hatano. IEEE Trans. UFFC,199441(5):772-777.
    [121]A Eller. Force on a bubble in a standing acoustic wave[J]. Acoustical Society of America,1968,43:170-171.
    [122]L A Crum and A Prosperetti. Nolinear oscillations of gas bubbles in liquids:An interpretation of some experimental results[J]. Acoustical Society of America, 1983,73:121-127.
    [123]T J Asaki and P L Marston. Acoustic radiation force on a bubble driven above resonance[J]. The Journal of the Acoustical Society of America,1994,96(5), pt.1: 3096-3099.
    [124]冯若,赵逸云,陈兆华.声化学主动力—声空化及其检测技术[J].声学技术,1994,13(2):51-61.
    [125]Sinisterra J V. Application of ultrasound to biotechnology:an overview [J]. Ultrasonics,1992,30(3):180-185.
    [126]莫润阳,林书玉,王成会.超声空化的研究方法及进展[J].应用声学,2009,28(5):389-400.
    [127]莫润阳.超声实现离体肿瘤细胞磁性标记[D].西安:陕西师范大学,2009.
    [128]林亚平,卢维伦.非溶蚀型药物体系的释放动力学新模型-Fick第一扩散定律的修正及其应用[J].药学学报,1997,32(11):869-874.
    [129]秦炜,张英,戴猷元.超声场对毛细管内电解质扩散系数的影响[J].清华大学学报,2001,41(6):41-43.
    [130]杨雪飞.植物活性成分的超声波双频双向组合湍动提取装置的研制[D].北京:北京化工大学,2006.
    [131]石新军.单频及复频超声声动力降解氯苯酚废水研究[J].沈阳工程学院学 报,2006,2(3):218-221.
    [132]徐桂华,于颖.溶剂提取法提取银杏叶总黄酮的工艺研究[J].农业科学研究,2008,29(3):37-39,61.
    [133]李艳丽,黄强,班春兰等.分光光度法测定银杏叶提取液中总黄酮含量[J].河南化工,2006,23(1):35-36.
    [134]曾凡骏,陈松波,曾里等.一种改进的银杏黄酮紫外分光光度检测方法的研究[J].食品科学,2003,24(11):102-104.
    [135]鲁守平,孙群,王建华等.甘草中有效成分甘草酸的提取和测定方法研究概况[J].中国中药杂志2006,31(5):357-360.
    [136]张峻松,张常记,潘存宽等.超高压提取甘草酸的工艺研究[J].食品科学,2009,30(18):75-79.
    [137]魏有良,党创世.正交函数分光光度法测定甘草浸膏和甘草流浸膏中甘草酸的含量[J].基层中药杂志,1998,12(2):29-30.
    [138]中国国家药典委员会.中华人民共和国药典(2005年)[M].北京:化学工业出版社,2005.
    [139]李炳奇,汪河滨,李红等.甘草黄酮和甘草酸联合提取溶剂系统的筛选[J].现代食品科技,2005,21(1):6-8.
    [140]杨德庆,郑靖明,王德禹等.基于SYSNOISE软件的船舶振动声学数值计算[J].中国造船,2002,43(4):32-37.
    [141]邱亚宇.基于SYSNOISE的车内噪声主动控制研究[J].科技信息,2009(15):470,460.
    [142]戚茜,陈航,李道江等.基于SYSNOISE的水下目标高频近场散射特性仿真研究[J].系统仿真学报,2009,21(24)24:7751-7754.
    [143]梁兴雨,舒歌群.基于SYSNOISE的柴油机外声场模拟研究[J].内燃机工程,2008,29(2):37-41.
    [144]王晶,商德江.ANSYS和SYSNOISE之间的数据接口技术研究[J].应用科技,2004,31(8):32-34.
    [145]华宏星,沈荣瀛.国际著名振动和声软件系列介绍之一LMS声学软件SYSNOISE [J].噪声与振动控制,1999,19(1):44-46.
    [146]李增刚.SYSNOISE REV5.6详解[M].北京:国防工业出版社,2005.
    [147]黄志刚,白基成,周正干等.超声波C扫描系统研制及其关键技术[J].军民两用技术与产品,2007(12):40-42.
    [148]郭伟灿.超声波C扫描水浸聚焦技术在叶轮钎焊质量检验中的应用[J].无
    损检测,2001,23(9):391-395.
    [149]王晓宁.USL超声C扫描喷水检测系统在哈飞复合材料检测中的应用[J].航空制造技术,2008(15):58-60.
    [150]王晓宁.全自动超声扫描系统在航空复合材料检测中的应用[J].航空制造技术,2008(4):57-59.
    [151]王铮,史亦韦.多层钎焊结构件超声C扫描信号特征分析[J].航空材料学报,2006,26(3):357-358.
    [152]王浩全,曾光宇.玻璃纤维复合材料超声C扫描检测研究[J].兵工学报,2005,26(4):570-572.
    [153]魏勤,尤建飞.超声C扫描系统在超声检测实验中的应用[J].实验室研究与探索,2003,22(5):96-97,108.
    [154]徐向群,倪培君,张唯国.电子束焊焊缝超声C扫描检测技术研究[J].兵器材料科学与工程,2007,30(4):70-74.
    [155]孙凯,杨青,郭广平. 喷水穿透超声C扫描自动检测系统的研制[J].无损探伤,2006,30,(6):21-22.
    [156]姜庆昌,王军,田春英.水浸超声C扫描检测系统扫描机构设计[J].佳木斯大学学报,2007,25(5):641-643.
    [157]许会芳.小径管超声C扫描数据处理软件的实现[J].实验室研究与探索,2007,26(12).62-63,74.
    [158]林时钱,周晓军,莫锦秋.超声C扫描图像处理和仿真研究[J].无损检测,1997,19(11):301-307.
    [159]李凌,周晓军,李雄兵.超声C扫描图像的缺陷边缘提取及特征参数构建[J].中国机械工程,2007,18(15):1822-1824.
    [160]曹宗杰,潘希德,薛锦等. 提高超声C扫描图像分辨率的插值方法研究[J].西安交通大学学报,2005,39(9):921-924,1006.
    [161]曹宗杰,陈怀东,薛锦等.一种基于超声C扫描成像原理的图像边缘检测方法[J].中国机械工程,2005,16(5):392-395.
    [162]苏婕,吴胜举,胡淑芳等.圆柱形反应器声场分布研究[J].陕西师范大学学报,2009,37(6):35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700