滇池沉积物—水界面中氮的赋存形态及其在循环中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮营养盐是湖泊生态系统重要的营养元素之一,而且是湖泊富营养化过程中的关键因素,在外源污染得到控制的情况下,内源营养物质的释放将使水体中的氮保持较高浓度,对藻类及其他水生生物的生长具有重要的意义。本文以我国典型的富营养化城市浅水湖泊滇池为研究对象,研究了滇池不同区域水体、表层沉积物间隙水中氮营养盐的形态组成与含量,并采用逐级分离浸取的方法分析滇池表层沉积物中不同形态的氮的赋存形态特征,继而阐明滇池沉积物—水界面中各种形态氮的时空分布特征、变化规律和区域差异及其在氮循环中的作用,为滇池富营养化的治理提供参考依据。
     本论文的主要研究结果和结论如下:
     (1)滇池草海地区水体及表层沉积物间隙水中氮的质量浓度较外海高,同时外海地区氮的质量浓度分布以西北部最高,表层沉积物不同形态可转化态氮的含量也以西北部最高。
     (2)氮浓度在滇池表层、中层和上覆水中分布无明显差异,说明滇池水体运动剧烈、混合充分,而外海表层沉积物间隙水NH4+-N、TN浓度分别为上覆水平均浓度的14倍和6倍,NH4+-N、TN在湖水与表层沉积物间隙水间形成明显的浓度梯度,N03--N则没有呈现同样的浓度分布差异。同时氮在表层沉积物间隙水中主要以NH4’-N的形式存在,呈现出表层沉积物间隙水中氮以NH4’-N为主向上层水体释放的趋势,滇池存在内源释放导致滇池富营养化状态持续的潜在威胁。
     (3)自然粒度状态下,滇池表层沉积物中可转化态氮的含量比其他水域研究数据高很多,全湖平均值为1825.45gg/g,平均占总氮量的44.79%,由内源释放导致滇池富营养化状况持续的可能性更大。其中以SOEF-N的含量最高(733.68μg/g), IEF-N次之(501.76μg/g), SAEF-N含量最低(197.93μg/g) WAEF-N的含量(392.09μg/g)介于IEF-N和SAEF-N之间,因此SOEF-N是可转化态氮的绝对优势形态,IEF-N是可转化无机氮的绝对优势形态。
     (4)在可转化态氮都能参与循环的情况下,不同形态氮对循环的绝对贡献率大小为:SOEF-N(40.19%)>IEF-N(27.49%)>WAEF-N(21.48%)>S4EF-N (10.84%)。与其他水域比较,SOEF-N在滇池的绝对贡献率较低。
     (5)实验结果表明滇池表层沉积物间隙水中氮浓度与湖泊水体氮营养盐浓度的相互影响明显,同时滇池表层沉积物中所有形态的可转化态氮也与滇池上覆水及表层沉积物间隙水中的氮营养盐也呈现一定程度的相关性,而且IEF-N与它们都有一定的正相关关系,说明滇池表层沉积物及其间隙水中的不同形态氮与滇池整体湖泊氮循环过程密切相关。
Nitrogen nutrient is one of the important nutrient elements of the lake ecosystem, and is the key factor in the process of Lake eutrophication. If outer-originated pollution can be controlled, the release of internal nutrient will keep relatively high concentration of nitrogen in the water, which plays an essential role in the algal and other aquatic organisms growth.This paper selected the typical eutrophication urban shallow lake-Dianchi Lake as the research object, studying the forms of nitrogen nutrients and concentrations in the lake water, the pore water of surface sediments in different regions of Dianchi Lake, and characteristics of different forms of nitrogen in the surface sediments of Dianchi Lake were analyzed by chemical sequential extraction methods.Then explained the spatial and temporal distributions, variation trends, regional diversities and the functions in recycling of nitrogen with different forms in sediment-water interface, in order to providing references for the preventing and controlling eutrophication of the lake water.
     The main research results and conclusions are as follows:
     (1) The distributions of N in Caohai for lake water and the pore water of surface sediments, which were higher than that in Waihai, and the highest concentration area of N was northwest area in Waihai.So it is with different forms of TF-N in surface sediments.
     (2) There was no discrepancy between the distributions of N in surface, middle and overlaying water, it showed that lake water was moved dramatically and fixed completely. But the concentrations of NH4+-N,TN in pore water of surface sediments were fourteen times and six times higher than the concentrations in overlaying water of Waihai respectively, and they formed a remarkable concentration gradient.However the concentrations of NO3--N in pore water of surface sediments were almost the same with those in overlaying water of Waihai. In the pore water of surface sediments, N was mainly consisted of NH4+-N, and the concentrations of which was much higher than that of NO3--N, thus there was the trend of N release from sediment to watef, and it was a potential threat of eutrophication in Dianchi Lake.
     (3) The content of TF-N in natural grain size surface sediments of Dianchi Lake was much higher than other waters. On average, the content of TF-N was 1825.45μg/g, and TF-N accounted for 44.79% of TN. Consequently, the internal pollution sources were more likely to maintain the persistent eutrophic status in Dianchi Lake. The SOEF-N contents (733.68μg/g) were the highest among the four forms of nitrogen; and the contents of IEF-N (501.76μg/g) were lower than those of SOEF-N, while were the highest among the inorganic nitrogen; the contents of WAEF-N (392.09μg/g) were lower than those of IEF-N and higher than those of SAEF-N(197.93μg/g).
     (4)Analysis of TF-N and their functions in sediment-water exchange showed that absolute contributions of different nitrogen forms in nitrogen recycling were consistent with their contents in sediment, which had the sequence SOEF-N(40.19%)>IEF-N(27.49%)>WAEF-N(21.48%)>SAEF-N(10.84%). Compared with other waters, the absolute contributions of SOEF-N were lower.
     (5)The results showed that there was remarkable relativity between the concentrations of N in pore water of surface sediments and the water body. Meanwhile, the analysis on correlation indicated that very close correlations existed between the distributing characteristics of TF-N in Surface sediments and that of different forms nitrogen in overlaying water and the pore water from the surface sediments. Especially, IEF-N was highly and positively correlated to them. There were the results that the different forms of nitrogen in sediment-water interface and the nitrogen cycling in Dianchi Lake were found interaction.
引文
[1]彭近新,陈慧君.水质富营养化与防治.北京:中国环境科学出版社,1988.
    [2]金相灿.湖泊富营养化研究中的主要科学问题—代“湖泊富营养化研究”专栏序言.环境科学学报,2008,28(1):21-23.
    [3]国家环境保护局科技标准司.湖泊污染控制技术指南.北京:中国环境科学出版社,1997.
    [4]万国江.环境质量的地球化学原理.北京:中国环境科学出版社,1988.
    [5]隋少峰,罗启芳.武汉东湖底泥释磷特点.环境科学,2001,22(1):102-105.
    [6]吴丰昌,万国江,蔡玉蓉.沉积物—水界面的生物地球化学作用.地球科学进展,1996,2(11):191-197.
    [7]KIM Lee-Hyung, Choi Euiso, Stenstrom Michael K. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere,2003,50(1):53-61.
    [8]LIJKLEMA L, KOELMANS A A, PORTIELJE R. Water quality impacts of sediment pollution and the role of early diagenesis. Water Sci Technol,1993,28:1-12.
    [9]MCCOMB A J, QIUO s, LUKATELICH R J, et al.. Spatial and temporal heterogeneity of sediment phosphorus in the Peel Harvey estuarine system.Estuarine, Coastal and Shelf Science,1998,47(5):561-577.
    [10]NASNOLKAR CM, SHIRODKAR PV, SINGBAL SYS.Studies on organic carbon, nitrogen and phosphorous in the sediments of Mandovi Estuary, Goa.Indian Journal of Marine Sciences,1996,25:120-124.
    [11]高浒.滇池污染治理流域人口总量控制研究.经济论坛,2007,7:29-30.
    [12]张路,范成新,王建军,等.太湖草藻型湖区表层沉积物间隙水理化特性比较.中国环境科学,2004,24(5):556-562.
    [13]张水元,刘瑞秋,黎道丰.保安湖沉积物和表层沉积物间隙水中氮和磷的含量及其分布.水生生物学报,2000,5(24):434-438.
    [14]范成新,杨龙元,张路.太湖底泥及其表层沉积物间隙水中氮磷垂直分布及相互关系分析.湖泊科学,2000,12(4):359-366.
    [15]韩伟明.底泥释放磷及其对杭州西湖富营养化的影响.湖泊科学,1993,5(1):71-77.
    [16]王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征.湖泊科学,2002,14(4):301-309.
    [17]黄丽娟,常学秀,刘洁,等.滇池水-沉积物界面氮分布特点及其对控制蓝藻水华的意义.云南大学学报,2005,27(3):256-260.
    [18]胡俊,刘永定,刘剑彤.滇池沉积物表层沉积物间隙水中氮、磷形态及相关性的研究.环境科学学报,2005,25(10):1391-1396.
    [19]陈永川,汤利,谌丽,等.滇池水体中磷的时空变化特征研究.农业环境科学学报,2005,24(6):1145-1151.
    [20]陈永川,张德刚,汤利.滇池水体氮的时空变化与藻类生长的关系.农业环境科学学报,2010,29(1):139-144.
    [21]中国大百科全书(环境科学部分).北京:中国大百科全书出版社.1983.
    [22]张莉.湖泊富营养化及控制对策研究.环境与可持续发展,2008,(6):62-64.
    [23]刘建康.东湖生态学研究(二).北京:科学出版社,1995.
    [24]顾宗镰.中国富营养化湖泊的生物修复.农村生态环境,2002,18(1):42-45.
    [25]彭俊杰,李传红,黄细花.城市湖泊富营养化成因和特征.生态科学,2004,23(4):370-373.
    [26]袁龙义,李伟,刘贵华.湖泊富营养化的生态影响及治理措施.湖北农业科学,2004,5:13-15.
    [27]尹真真.国内外水体富营养化机理研究历史与进展.微量元素与健康研究.2006,23(3):46-47.
    [28]Jorgensen. Application of ecology in environmental management.Boca Raton. FL. USA:CRC Press,1983.
    [29]饶钦止.武汉东湖浮游植物的演变和富营养化问题.水生生物集刊.1980,7(1):1-17.
    [30]金相灿,屠清瑛.湖泊富营养化调查规范(第二版).北京:中国环境科学出版社,1990.
    [31]Vollenweider R A, KevekesJ J. Eutrophication of waters:monitoring, assessment and control. OECD. Paris.1982.
    [32]Bostrom B, Anderson J M, Fleischer S. Exchange of phosphorus across the sediment-water interface. Hydrobiologia,1988,170:229-244.
    [33]Lau S.S.S, Lane SN. Biological and chemical factors influencing shallow lake eutrophication:a long-term study.Science of the total environment,2002,288:167-181.
    [34]Kemp A L W, Mudrochova A. Distribution and forms of nitrogen in a lake Ontario sediment core. Limnology and Oceanography,1972,17(6):855-867.
    [35]Kemp ALW. Organic carbon and nitrogen in the surface sediments of Lake Ontario. Erie and Huron. Journal of Sedimentary Petrology,1970,41:537-548.
    [36]钟立香.巢湖水—沉积物系统中氮的赋存变化及其与水华发生的关系研究:[硕士学位论文].北京:中国环境科学研究院,2009.
    [37]De lange G J. Distribution of Exchangeable, Fixed, Organic and Total Nitrogen in Interbedded Turbiditic Pelagic Sediments of the Madeira Abyssal-Plain, Eastern North-Atlantic. Marine Geology,1992,109(1-2):95-114.
    [38]何清溪,张穗,方正信.大亚湾沉积物中氮和磷的地球化学形态分配特征.热带海洋,1992,11(2):38-34.
    [39]吴丰昌.湖泊沉积物—水界面营养元素的生物地球化学作用和环境效应Ⅰ.界面氮循环及其环境效应.矿物学报,1996,16(4):403-409.
    [40]马红波,宋金明,吕晓霞,等.渤海沉积物中氮的形态及其在循环中的作用.地球化学,2003,32(1):48-54.
    [41]吕晓霞.黄海沉积物中氮的粒度结构及在生物地球化学循环中的作用:[博士学位论文],青岛,中国科学院海洋研究所,2005.
    [42]王圣瑞,金相灿,焦立新.不同污染程度湖泊沉积物中不同粒级可转化态氮分布.环境科学研究,2007,20(3):52-57.
    [43]钟立香,王书航,姜霞,等.连续分级提取法研究春季巢湖沉积物中不同结合态氮的赋存特征.农业环境科学学报,2009,28(10):2132-2137.
    [44]吴丰昌.云贵高原湖泊沉积物和水体氮磷和硫的生物地球化学作用和生态环境效应.地质地球化学,1996,(6):88-89.
    [45]范成新,相崎守弘.好氧和厌氮条件对霞浦湖沉积物—水界面氮磷交换的影 响.湖泊科学,1997,9(4):337-342.
    [46]杨龙元,蔡启铭,秦伯强,等.太湖梅梁湾沉积物—水界面氮迁移特征初步研究.湖泊科学,1998,10(4):41-47.
    [47]张兴正,陈振楼,邓焕广,等.长江口北支潮滩沉积物—水界面无机氮的交换通量及季节变化.重庆环境科学,2003,25(9):31-34.
    [48]玉坤宇,刘素美,张经,等.海洋沉积物-水界面营养盐交换过程的研究.环境科学,2001,20(5):425-431.
    [49]汪丽.滇池水体中氮的化学形态及特征.云南环境科学,1993,12(3):76-79.
    [50]云南省环境科学研究院,中国市政工程中南设计研究院,等.滇池草海水污染综合治理规划(2006~2015年)[K].2006,11.
    [51]李亚.滇池环境治理与保护规划研究:[硕士学位论文].重庆:重庆大学,2008.
    [52]吕利军,王嘉学,袁花, 等.滇池水体环境污染的综合研究.云南化工,2009,36(3):57-61.
    [53]邓晴.滇池流域生态环境现状及保护措施.云南环境科学,1998,17(3):32-34.
    [54]郝晓蕾,杨常亮,魏勤,等.滇池污染现状的综合评价及其分析.云南大学学报(自然科学版),1998,20:589-592.
    [55]祝艳.滇池水质演替趋势及防治对策分析.云南环境科学,2004,23(增刊):97-100.
    [56]沈满洪.滇池流域环境变迁及其环境修复的社会机制.中国人口资源与环境,2003,13(6):76-80.
    [57]吴宇.中国湖泊富营养化研究.生态经济,2007(7):14-19.
    [58]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第4版).北京:中国环境科学出版社,2002.
    [59]Ruttenberg K C. Development of a Sequential Extraction Method for Different Forms of Phosphorus in Marine-Sediments. Limnology and Oceanography,1992, 37(7):1460-1482.
    [60]马红波.渤海沉积物中氮的赋存形态及其在循环中的作用研究:[硕士学位论文].青岛:中国科学院海洋研究所,2001.
    [61]莫美仙,张世涛,叶许春,等.云南高原湖泊滇池和星云湖pH值特征及其影 响因素分析.农业环境科学学报,2007,26(增刊):269-273.
    [62]朱元荣,张润宇,吴丰昌.滇池沉积物生物有效性氮和磷的分布及相互关系.环境科学研究,2010,23(8):993-998.
    [63]Kleeberg A, Kozerski H P. Phosphorus release in lake Groer Muggelsee and its implications for lake restoration.Hydrobiologia,1997,342/343:9-26.
    [64]Muller P J. C/N ratios in Pacific deep-sea sediments effect of inorganic ammonium and organic nitrogen compounds sorbed by clay. Geochim Cosmochim Acta,1977,41:765-776.
    [65]Vinithkumar N V, Kumaresan S, Manjusha M. Organic matter, nutrients and major ions in the sediments of coral reefs and seagrass beds of Gulf of Manner Biosphere Reserve, Southeas Coast of India. Indian J Marine Sci,1999,28(4):383-393.
    [66]Lee C, Wakeham S G, Hedges J I. Composition and flux of parti culate amino acids and chloropigments in equatorial Pacific seawater and sediments. Deep-Sea Res, 2000,47(8):1535-1568.
    [67]焦立新.浅水湖泊表层沉积物氮形态特征及在生物地球化学循环中的功能:[硕士学位论文].呼和浩特:内蒙古农业大学,2007.
    [68]Kaiserli A, Voutsa D, Samara C. Phosphorus fractionation in lake sediments-Lakes Volvi and Koronia, N. Greece. Chemosphere,2002,46:1147-1155.
    [69]袁国林,贺彬.滇池流域地理特征对滇池水污染的影响研究.环境科学导刊,2008,27(5):21—23.
    [70]马红波,宋金明,吕晓霞.渤海南部海域柱状沉积物中氮的形态研究.海洋学报,2002,24(5):64-70.
    [71]Wang S R, Jin X C, Bu Q Y, et al. The efects of particle size, organic matter content and ionic strength in solution on the phosphate serption by different trophic lake sediments. J Hazard Materi,2006,128:95-105.
    [72]吕晓霞,宋金明,袁华茂,等.南黄海表层不同粒级沉积物中氮的地球化学特征.海洋学报,2005,27(1):64-69.
    [73]彭丹,金峰,吕俊杰,等.滇池底泥中有机质的分布状况研究.土壤,2004,36(5):568-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700