强化电极生物膜处理地下水硝酸盐及生物多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水硝酸盐氮(NO3--N)的污染已成为广泛关注的环境问题。由于过度施肥以及工业、生活废水的不合理排放,使地下水中硝酸盐的浓度逐年升高。而饮用硝酸盐含量过高的水会严重威胁人类的健康。
     生物法是是目前应用的最经济有效的处理方法。但传统的生物反硝化法仍存在许多缺点。因此本研究针对生物法存在的不足设计了一种电极强化生物膜反应器,进行了处理地下水硝酸盐的试验研究,并运用了分子生物学手段对反应器中生物多样性进行了监测。
     本文研究了电极单独作用、碳氮比(C/N)、磷酸盐、电流强度对电极强化生物膜处理地下水硝酸盐处理效果的影响。试验结果表明,电极对硝酸盐的除去效果很微弱,主要作用还是水解产生氢气。碳源对电极生物膜反应器的去除效果至关重要,本实验中C/N =1.00时反应器的运行效果达到最佳,硝酸盐氮的去除率达到96%,亚硝酸盐氮的含量≤0.02mg/L,出水没有外加碳源甲醇的污染。缺少磷酸盐时,硝酸盐氮去除效果C/N=1.25、1.00时微弱下降,硝酸盐氮的去除率分别为84.6%和82.6%,在低C/N条件下明显降低,硝酸盐氮的去除率为47.6%。同时,造成了亚硝酸盐氮积累量的显著增加,出水亚硝酸盐氮的含量最高达到10mg/L左右,严重影响了出水水质。电流强度的增加对处理效果能起到促进作用,但是存在着一个极限,超过这个极限,会对处理效果起到抑制作用。在本实验中,电流强度的极限值是40mA。
     利用PCR-DGGE技术研究了反应器生物群落的演变规律。试验结果表明,在反应初期Acetobacterium和γ- proteobacterium的优势地位逐渐被β- proteobacterium取代。随着电流的通入, Hydrogenophaga sp、Pseudomonas sp、Alcaligenes sp、Denitratisoma sp成长迅速逐渐变成了优势菌种。总的来说,β-proteobacteria是电极强化生物膜反应器内的优势菌种。
Nitrate contamination of groundwater has become a widespread concern environmental problem. Nitrate concentration in groundwater aquifers has steadily been increasing over the years mainly due to the extensive use of chemical fertilizers in intensive agriculture as well as discharge of domestic and industrial wastes. High levels of nitrate in drinking water will pose a serious threat to human health.
     Biological method is the most cost-effective approach. However, the traditional method of biological denitrification still has many disadvantages. In this study, a strengthening biofilm- electrode reactor has been designed for overcome the disadvantages of biological methods. The nitrate remove from groundwater by this reactor has been studied. Biological diversity of the reactor has been monitored by use of molecular biology methods.
     This study is to investigate the performance of the strengthening biofilm- electrode reactor affect by electrochemical reduction,C/N,phosphate and current intensity. The result show that: the nitrate remove by electrochemical reduction is very weak and the main role of electrode is the hydrogen producing by hydrolysis; Carbon source is a critical parameter. In this study, the optimum C/N is 1.00. Nitrate nitrogen removal rate reached 96%, nitrite concentration 0.02 mg/L and no methanol as carbon source found in effluent. Lack of phosphate, nitrate nitrogen removal rate slight decrease when C/N =1.25 and 1.00.The rate is 84.6% and 82.6%, respectively. At low C/N conditions, nitrate nitrogen removal rate remarkable decrease, is only 47.6%. At the same time, the accumulation of nitrite has a significant increase. Nitrite nitrogen in effluent up to 10mg/L caused a serious impact on water quality. Current intensity increase has an accelerating influence for the efficiency of strengthening biofilm- electrode reactor. However, current intensity increase exist an optimum value. Exceed this value, current intensity increase plays an inhibition role. In this study, the optimum value is 40mA.
     The evolution of reactor system was studied with denaturing gradient gel electrophoresis(DGGE). The results indicated Acetobacterium andγ- proteobacterium were dominant at the beginning, then progressively replaced byβ- proteobacterium. Hydrogenophaga sp,Pseudomonas sp,Alcaligenes sp,Denitratisoma sp were dominant at current has passed.In a word,β-proteobacteria is dominant in reactor.
引文
Babiker IS. Assessment of groundwater contamination by nitrate leaehing from intensive vegetable cultivation using geographical information system.Environment International,2004,29:1009-1017.
    Bolger P, Stevens M.Contamination of Australian Groundwater Systems with Nitrate, Land and Water Resources Research and Development, 1999, 40:231- 235
    Charles Glass and JoAnn Silverstein. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation . Water Research, 1998, 32(3):831-839
    Chen Y X, Zhang Y, Chen G H. Appropriate conditions for maximizing catalutic reduction efficiency of nitrate into nitrogen gas in groundwater. Water Research. 2003, 37: 2489-2495
    Feleke Z,Araki K, Sakakibara Y,et al. Selective reduction of nitrate to nitrogen gas in a biofilm-electrode reactor. Water Research,1998,32(9):2728-2734.
    Feleke Z,Sakakibara Y. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide, Water Research,2001,36:3092-3102
    Flora J R V,Suidan M T, Islam S,et al. Numerical modeling of a biofilm-electrode reactor used for enhanced denitrification. Water Science and Technology, 1994, 29(10-11):4517-4524.
    Green M, Tarrea S, Schnizer M, et al.Ground water denitrification using an upflow sludge blanket reactor. Water Research, 1994, 28(3):6 31-637.
    Haugen K S, Semmens M J, Novak P J. A novel in situ technology for the treatment of nitrate contaminated groundwater.Water Research, 2002, 36(14):3497 -3506.
    Hell F, Lahnsteiner J, Fischherz H, etal. Experience with full-scale electrodialysis for nitrate and hardness removal .Desalination.,1998, 117:173-180
    Hunter W.J..Accumulation of nitrite in denitrifying barriers when phosphate is limiting.Journal of Contaminant Hydrology, 2003,66 : 79– 91
    Islam S, Suidan M T. Electrolytic denitrification: long term performance and effectof current intensity. Water Reserch, 1998,32 (2): 528–536.
    Keeney D.R..Sources of nitrate to groundwater.Critical Reviews in Environmental Control,1986,16(3):257-304.
    Khan I.A., Spalding R.F. Development of a procedure for sustainable in-situ aquifer denitrification. Remediation. Cleanup Costs Technol. 2003,13 (2): 53–69.
    Lame C F. The chemical reduction of nitrate in aqueous solution.Coordination Chemistry reviews. 2000, 199:159-179
    Liessens J, Germonpre R, Beemaert S, et al. Removing nitrate with a methylotrophic fluidized Bed: Technology and Operating Performance. JAWWA.1993, 85(4):144-148
    McMahon P.B, Dennehy, K.F, Bruce B.W.. In situ bioremediation of nitrate contaminated groundwater—a pilot test, Julesburg, Colorado, 1996-1997.
    USGS .Water Resources Investigations Report, 1998,98:4046-4050.
    Park H.I, Choi Y.J, Pak D. Autohydrogenotrophic denitrifying microbial community in a glass beads biofilm reactor, Biotechnology Letters ,2005,27: 949–953.
    Park Ho II, Kim Ji Seong, Dong Kun Kim,et al. Nitrate-reducing bacterial community in a biofilm-electrode reactor. Enzyme and Microbial Technology, 2006,39(3):453-458.
    Prosnansky Michal,Sakakibara Y, Kuroda Masao.High-rate denitrification and SS rejection by biofilm-electrode reactor(BER) combined with microfiltration, Water Research,2002;36:4801-4810.
    Rivett M O,Buss S R,Morgan P,et al.Nitrate attenuation in groundwater:A review of biogeochemical controlling processes.Water Research, 2008, 42 (16) : 4215 - 4232.
    Sakakibara Y, Flora J R V,et al.Modeling of electrochemically activated denitrfying biofilm .Water Research,1994,28(5):1077-1086.
    Sakakibara Y, Kroda M. Electric prompting and control of denitrification.. Biotech. Bioeng ,1993, 42: 535-537.
    Sakakibara Y,Nakayama T. A novel multi-electrode system for electrolytic and biological water treatments:electric charge transfer and application to denitrification, Water Research,2001,35(3):768-778.
    Schipper L.A. Nitrate Removal from Groundwater and Denitrification Rates in a Porous Treatment Wall Amended with Sawdust. Ecological Engineering, 2000,14: 269-278.
    Sison N.F.,Hanaki K.,Matsuo T. High loading denitrification by biological activated carbon process.Water Research,1995,29(12):2776-2779.
    Smith R L, Miller D N,Brooks M H, et al. In situ stimulation of groundwater denitrification with formate to remediate nitrate contamination. Environmental Science Technology,2001 ,35 (1) : 196-203.
    Soares M.,Abeliovich A..Wheat straw as substrate for water denitrification.Water Research,1998,32(12):3790-3794.
    Steindorf K, Schlehofer B, Becher H , et al. Nitrate in drinking water A Case - Control study on primary brain tumors with an embedded drinking water survey in Germany .International Journal of Epidemiology, 1994 , 23 ( 3 ) : 451 - 457.
    Van Rijn J, Tal Y, Barak Y.Influence of Volatile Fatty Acids onNitrite Accumulation by a Pseudomonas stutzeri Strain Isolated from a Denitrifying Fluidized Bed Reactor. Applied and Environmental Microbiology,1996,62(7): 2615~2620.
    Vasiliadou I A, Pavlou S, Vayenas D V.A. kinetic study of hydrogenotrophic denitrification. Process Biochemistry,2006,41:1401- 1408.
    Wang Qinghong, Feng Chuanping, Zhao Yingxin, ea tl.Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor.Bioresource Technology,2009,100:2223-2227
    Watanabe T,Motoyama H,Kuroda M. Denitrification and neutralization treatment by direct feeding of an acidic wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process,Water Research,20 ,35(17):4102-4110
    World Health Organzation.Guidelines for drinking water quality.Geneva: World health organization, 1996.120-300.
    Zhou M H,Fu W J,Gu H Y,et al.Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor.Electrochimica Acta,2007,52:6052-6059.
    毕二平,张翠云,张胜,等.地下水硝酸盐污染原位微生物修复技术研究进展.水资源保护,2009,25(3):1-5
    毕晶晶,彭昌盛,胥慧真.地下水硝酸盐污染与治理研究进展综述.地下水,2010 ,32(1):97-102
    戴启,莫美仙,陈海宁.昆明盆地北部浅层地下水硝酸盐污染分析.云南地质,2009,28(4):437-444
    党民团.氮素化肥的污染现状与防治对策.渭南师范学院学报,2003,18(2):50-51
    董克虞.畜禽粪便对环境的污染及资源化途径.农业环境保护, 1998 , 17 ( 6 ) : 281– 283
    范彬,黄霞.化学反硝化法脱除地下水中的硝酸盐.中国给水排水.2001,17(11): 27-31
    范彬.复三维电极-生物膜反应器脱除饮用水中的硝酸盐.环境科学,2001,21(1):39-43
    傅利剑.反硝化微生物生物学特性及其固定化细胞对硝态氮去除的研究:[硕士学位论文].南京:南京农业大学,2004
    高新昊,江丽华,刘兆辉,等.山东省农村地区地下水硝酸盐污染现状调查与评价.中国农业气象,2011, 32(1): 89-93
    关亮炯.我国水污染现状及治理对策.科技情报开发与经济, 2004 , 14 ( 6 ) : 80– 81
    国家环境保护总局《水和废水监测分析方法》编委会,水和废水监测分析方法,第4版,北京:中国环境科学出版社,2002
    河北省石家庄市地质环境监测报告.(1991-1995)河北省环境地质勘察院石家庄勘察院,1996
    黄民生,高廷耀.电极生物膜法反硝化的试验.上海环境科学,1996,15(6):25-27
    黄民生,景有海,王水华.具有反硝化能力的氢细菌特性及其应用.上海环境科学,1997,16(1):36-37
    冷家峰,崔丽英,肖美丽.济南市地下水硝酸盐污染研究.农村生态环境, 1998 , 14 ( 1 ) : 55 -57
    刘小楠,尚鹤,姚斌.我国污水灌溉现状及典型区域分析.中国农村水利水电,2009,6:7-11
    刘兆吕,张兰生,等.地下水系统的污染与控制.北京:中国环境科学出版社,1991.
    罗启芳,谭佑铭,王琳,等.饮用水反硝化脱氮方法研究[J].安全与环境学报,2003,3(2):58-61
    罗启仕,王慧,张锡辉,等.土壤无机离子在非均匀电场作用下的迁移.中国环境科学,2004,24(5):519-523
    罗泽娇,靳孟贵.地下水三氮污染的研究进展.水文地质工程地质, 2002 ( 4 ) : 65– 69
    潘明霞.萃取膜生物反应器在地下水硝酸盐污染去除中的研究:[硕士学位论文].青岛:青岛理工大学2005
    邱凌峰.电极生物膜法反硝化作用初探.福建环境,1999,28(2):116-120
    曲久辉,范彬,刘锁祥.固定床-微电解反硝化去除饮用水中的硝酸盐氮.环境科学,2002,13(2):25-28
    谭佑铭,罗启芳.不同碳源对固定化反硝化菌脱氮的影响.卫生研究,2003,32(2):95-97
    汪仁,解占军,华利民,等.辽宁省蔬菜主产区地下水硝酸盐污染调查.安徽农业科技,2009,37(15):7132-7133
    王海燕,曲久辉,雷鹏举.介质粒径对复三维电极-生物膜脱硝反应器的影响.环境科学,2003,17(11): 27-31
    王弘宇,马放,苏俊峰,等.不同碳源和碳氮比对一株好氧反硝化细菌脱氮性能的影响.环境科学学报,2007,27(6):968-972
    王旭明,从二丁,罗文龙,等.固体碳源用于异养反硝化去除地下水中的硝酸盐.中国科学(B辑:化学),2008,38(9):824-828
    王玉,钟爽,刘博,等.原位生物修复硝酸盐污染地下水的模拟实验.中国环境管理.2009,2:39-40
    温浩,李昭苏,付学功.污水灌溉后硝态氮在土壤和地下水中运移特性.水利科技与经济,2010,32:256-261
    杨靖民,刘金华,于晓斌,等.长春地区河水和地下水中氮含量的时空变化.水土保持学报,2010,24(6):255-257
    张洪,王五一,李海蓉,等.地下水硝酸盐污染的研究进展.水资源保护,2008,24(6):7-11
    张庆乐,王浩,张丽青,等.饮水中硝态氮污染对人体健康的影响.地下水,2008,30(1):57-59 张汝黻.胃癌病因的研究.国外医学参考资料,肿瘤分册,1979,3:107-114
    张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80-87
    周欲飞,赵国智,田光明,等.电流强度对电化学产氢自养反硝化脱氮效率的影响.水处理技术,2010,36(9):38-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700