浮式平台系泊动张力耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系泊系统是保证海洋工程设施系统结构中的重要组成部分,是支撑浮体抵抗风、波浪和流的重要手段之一。基于弹性杆原理建立的系泊线的计算模型可以模拟系泊线在三维空间中的任意几何形态,是研究系泊线运动特性的有效计算模型之一。系泊系统和浮式结构物之间的相互影响作用即耦合效应也是设计平台和系泊系统的重要因素之一。
     本文首先对浮体-系泊系统进行准动态时域耦合分析,运用基于该方法的软件对Spar平台的运动特性及其系泊系统进行计算研究。然后运用弹性杆理论对系泊线进行深入研究,通过分析弹性杆微元弧段的平衡推导出弹性杆微元的平衡方程,将得到的离散形式的系泊线静力和动力分析的运动方程分别使用牛顿迭代法和亚当斯-莫尔顿法对方程进行数值求解,同时使用线性弹簧模拟平坦海底,研究系泊线与海底接触问题。其次分析了浮体在流体中的六个自由度下的运动特性,推导出运动方程,并在时域下进行数值求解。在分析了浮体和系泊线的运动特性后深入研究了浮体和系泊线的耦合效应,使用弹簧和阻尼器模拟系泊线和浮体之间的连接,并运用相同的数值方法,使浮体和系泊系统的运动响应在时域内进行同步求解。
     本文在推导出矩阵形式的系泊线运动微分方程的刚度矩阵后,运用Fortran语言编制系泊线静力分析和动力分析计算程序,运用耦合分析软件HARP对浮体-系泊系统进行基于有限元法的全耦合分析,并与基于准动态分析的锚泊系统软件Ariane7的计算结果作比较,证明了考虑浮体和系泊系统之间耦合效应的重要性,并得到了两种耦合分析方法的适用范围。
Mooring system is one of the important part which guarantees the safty of the ocean engineering structures. And it is one of the important structures that resist the platform from the efficiency of the wind, wave and current. The calculation model which is based on the principle of slender rods can simulate the random geometry configuration of the mooring line in the three-dimension. The interaction between the mooring system and the floating body which is called the coupled efficiency. The coupled efficiency is one of the significant factors during the designing of the platform and the mooring system.
     First of all, the quasi-dynamic coupled analysis of the floating body-mooring system is described. Then some calculation researches on the motion characteristics have been done by using a software which is based on the quasi-dynamic coupled analysis. The research on the mooring line is under the theory of the slender rods. The motion equations of the slender rods have been derived by analyzing the equilibrium of the micro-unit. Using the Newton iteration method and Adams-Moulton method to solve the discrete form equations of the static and the dynamic analysis respectively. Linear spring is used to simulate the flat seabed. The contact problem between mooring line and the seabed has been studied. The motion characteristics in six degrees of freedomof the floating body are described. And the motion equation is solved under the time domain. After the above researches on the floating body and the mooring system, the coupled analysis between them is lucubrated. The spring and the damper are used to simulate the connection of the platform and the mooring line. The characteristics of the platform and the mooring line are solved in time domain synchronously.
     After get the stiffness martrix of the differential equation under the matrix form, the calculation program of the static and dynamic analysis is complied by using the Fortran language. The fully coupled analysis software HARP is used to calculate the platform-mooring system. And compare the results of fully coupled analysis with the quasi-dynamic analysis software Ariane7. The significance of the coupled efficiency between platform and the mooring system has been proved, and the application scope of these two methods has been researched.
引文
[1]金秋,张忠国.世界海洋油气开发现状及前景展望.《国际石油经济》,2005年3月第13卷第3期,43-57
    [2]《中国海洋统计年鉴》
    [3]Zajac E E. Stability of two planar loop elasticas. J. Appl. Mech.,1962
    [4]Cohen H. A nonlinear theory of elastic directed curves. Int. J. Engng Sci.,1966, (4):511-524P
    [5]James R D. The equilibrium and post-buckling behavior of an elastic curve governed by a npn-convex energy. J. Elasticity,1982,49:584-588
    [6]Coyne J. Analysis of the for,ulation and elimination of loops in twisted cable. IEEE J. of Oceanic Engen,1990,15(2):72-83P
    [7]Knap R H. Helical wire stresses in bent cables. Trans. ASME J. Offshore Mech. And Artie Engng,1988,110:55-66P
    [8]Miyazaki Y, Kondo K. Analytical solution of spatial elastica and its application to kinking problem. Intern. J. of Solid and Structures,1997,34:3619-3636
    [9]Seemann W. Deformation of an elastic helix in contact with a rigid cylinder. Archive of Applied Mechanics,1996,67:117-139P
    [10]Van Der H G H M. The spatial complexity of localized buckling in rods with noncircular cross section. SIAM J. Appl. math.,1998,59(1):198-221P
    [11]Kirchhoff G. Uber das Gleichgewicht und die Bewegung eines unendlich dunnen elastischen stabes. J. Rein Angew. Math.,1859,56:285-313P
    [12]Kirchhoff G. Vorlesung uber mathematische Physik. Leipzig:Teubner,1876
    [13]Nordgren, R.P. On computation of the motion of elastic rods. ASME Journal of Applied Mechanics, September,1974 777-780.
    [14]Garrett D L. Dynamic analysis of slender rods. Journal of Energy Resources Technology, Transaction of ASME,1982,104:302-307P
    [15]Ran Z. Coupled dynamic analysis of floating structures in waves and currents:[Ph.D学位论文].Texas A&M University.,2000
    [16]Arcandra. Hull/mooring/riser coupled dynamic analysis of a deepwater floating platform with polyester lines:[Ph.D.学位论文]. Texas A&M University.,2001
    [17]Chen X, Zhang J. Dynamic Analysis of Mooring Lines by Using Three Different Methods. NORWAY:2001
    [18]Chen X, Zhang J, Iranib P J A M. Dynamic analysis of mooring lines with inserted springs. Applied Ocean Research,2002,23(5)
    [19]Pangalila, F. V. and Martin, J. P.. A method of estimating line tensions and motions of a semi-submersible based on empirical data and model basis results. OTC,1969,2:90-96
    [20]Smith, T. M., Chen, M. C. and Radwan, A. M.. Systematic data for the preliminary design of mooring systems. Proceedings of the fourth International Offshore Mechanics and Arctic Engineering Symposium,1985,1:403-407
    [21]Smith, R. J. and MacFarlane, C. J.. Statics of a three component mooring line. Ocean Engineering.2001,28:899-914
    [22]Chaff, Y. T., Varyani, K. S. and Barltrop, D. N. P.. Semi-analytical quasi-static formulation for three2dimensional partially grounded mooring system problems. Ocean Engineering,2002,29:627-649
    [23]余龙,谭家华.深水多成分悬链线锚泊系统优化设计及应用研究.华东船舶工业学院学报(自然科学版),2004,18(5):8-13
    [24]马汝建,高学仕.悬链线锚链的非线性恢复系数.中国海洋平台,1994,21:180-183
    [25]马鉴恩,李凤来.锚泊列阵的设计研究.海洋工程,1996,14(2):52-62
    [26]陈广莲.确定锚泊设备的直接计算法.船舶设备通讯,2004,109(1):43-50
    [27]陈徐均,汤雪峰等.系泊浮体布链方式优劣的理论分析.河海大学学报,2001,29(5):1-9
    [28]陈徐均,崔维成,沈庆.对称式布置锚链系统的线性化处理.海洋工程,2002,22(1):779
    [29]Connell, G. M.. Analytical studies of resonance in taut-moored system. OTC,1974, 2:401-416
    [30]Bliek, A.. Dynamic analysis of single span cables. Ph.D. thesis, MIT, Cambridge, MA, U.S.A.,1994
    [31]Triantafyllou,M. S., Bliek, A.&Shin, S..Dynamic analysis as a tool for open-sea mooring system design. Transactions SNAME,1985,93:303-324
    [32]Hover, F. S., Grosenbaugh, M. A. and Triantafyllou, M. S..Calculation of dynamic tension in towed underwater cable. IEEE Journal of Oceanic Engineering,1994,19:449-457
    [33]Thomas, D. O.&Heam, G. E.. Deepwater mooring line dynamics with emphasis on sea-bed interference effects. Offshore Technology Conference,1991, Paper OTC#7488
    [34]Korterayama, W.. Motions of moored floating body and dynamic tension of mooring lines in regular waves. Rep. Res. Inst. Appl. Mech.1978, X X N:99-126
    [35]Korterayama, W. and Nakamura, M. Hydrodynamic forces acting on a vertical circular cylinder oscillating with a very low frequency in waves. Ocean Engng.1988,15(3):271-287
    [36]Huse, E.. New developments in prediction of mooring system damping. OTC,1991, 2:291-298
    [37]Shashikala, A.P. et. al.. Dynamics of a barge under regular and random waves. Ocean 1997,24(5):401-430
    [38]Leonard, J.W. and Recker, W.W.. Nonlinear dynamics of cables with low initial tension. Journal of the Engineering Mechanics, Division, ASCE,1972,98(2):204-234
    [39]Chatjigeorgion, L. K. and Mavrakos, S. A.. Comparative evaluation of numerical schemes for 2D mooring dynamics. International journal of offshore and polar engineering, 2000,10(4):301-309
    [40]Kwan, C. T. and Bruen, F. J.. Mooring line dynamics:comparison of time domain, frequency domain and quasi-static analysis. OTC,1988,2:513-521
    [41]Paulling, J.R., Webster, W.C.,1986. Large-amplitude analysis of the coupled response of a TLP and tendon system, Proceedings of OMAE'86, Tokyo,86 1986
    [42]Chakrabarti, P., Chandwani, R., Larsen, I.,1996. Analyzing the Effect of Integrating Riser/Mooring Line Design, Proceedings of OMAE'961996
    [43]Ormberg, H., Larsen, K.,1998. Coupled analysis of floater motion and mooring dynamics for a turret-moored ship. Applied Ocean Research 20,55-67
    [44]Ma W., Lee M.-Y., Zou J., Huang E.W,. Deepwater Nonlinear Coupled Analysis Tool. OTC 2000.12085
    [45]Colby C., Sodahl N., Katla E., Okkenhaug S. Coupling Effects for a Deepwater Spar. OTC,2000.12083
    [46]Heurtier, J.M., le Buhan, P., Fontaine, E., le Cunff, C., Biolley, F., Berhault, C. Coupled Dynamic Response of Moored FPSO with Risers, Proceedings of the ISOPE'01, Stavanger 2001
    [47]Senra S.F., Correa F.N., Jacob B.P., Mourelle M.M., Masetti I.Q. Towards the Integration of Analysis and Design of Mooring Systems and Risers, Part I:Studies on a Semisubmersible Platform. OMAE,2002.2002-28046, Oslo
    [48]Correa F.N., Senra S.F., Jacob B.P., Masetti I.Q., Mourelle M.M. Towards the Integration of Analysis and Design of Mooring Systems and Risers, Part II:Studies on a DICAS System. OMAE 2002-28151, Oslo
    [49]Garrett D.L., Gordon R.B., Chappell J.F.. Mooring-and Riser-Induced Damping in Fatigue Seastates. OMAE2002-28550, Oslo
    [50]徐兴平.单点系泊系统动力响应计算.中国海洋平台.1994.1:209-302
    [51]徐兴平,童英玉.单点系泊系统动力响应分析石油大学学报(自然科学版)1994.18(5):74-78
    [52]马汝建.单点系泊装置的非线性动力分析.石油大学学报(自然科学版)1994.18(5):65,769
    [53]谢炜,唐新铭.用于CALM系统分析的修正准静力方法.中国海洋平台.1994,1:243-248
    [54]黄剑,朱克强.半潜式平台两种锚泊系统的静力分析与比较.华东船舶工业学院学报(自然科学版).2004.18(3):1-5
    [55]刘应中,缪国平,李谊乐等.系泊系统动力分析的时域方法.上海交通大学学报,1997.31(11):7-12
    [56]李向群.多点系泊船舶在波浪中的运动及其系泊力.交通部上海船舶运输科学研究所学报,1999.22(1):9-15
    [57]范菊,纪亨腾,黄祥鹿.浮式塔的动力计算.海洋学报,2001.23:117-123
    [58]周崇庆,刘土光和李天匀.风浪中锚泊渔船的锚链系泊张力的分析研究.中国水产科学.1999.6(3):78-80
    [59]杜度,张宁,马骋和张纬康.系泊系统的时域仿真及其非线性动力学特性分析.船舶力学.2005.9(4):37-45
    [60]缪国平.挠性部件力学导论.上海交通大学出版社.1995.9
    [61]李远林.近海结构水动力学.华南理工出版社.1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700