偏压软岩隧道开挖时空效应及合理支护时机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国交通建设的快速发展,软岩地区的隧道及地下工程越来越多。由于流变是软岩的重要力学特征,许多软岩隧道大变形都与流变特征有密切关系。目前,进行隧道设计时常采用弹塑性本构模型对隧道围岩进行描述,而实际上软岩隧道具有较明显的流变特性,因此考虑软岩的流变特性对于隧道支护问题具有重要的意义。本文以重庆市桃树垭隧道为依托工程,通过现场监控量测、室内试验研究及数值模拟相结合的方法,探讨施工过程中的大变形灾害,研究了该隧道施工力学特性、初期支护及二次衬砌合理支护时机及考虑时间效应的隧道开挖面空间约束效应。论文的研究工作和成果如下:
     ①针对国内外软岩蠕变特性的资料进行研究,对软岩蠕变试验及影响隧道大变形灾害因素进行总结,并对桃树垭隧道施工期间发生灾害进行分析。
     ②从桃树垭隧道施工现场采取岩样,进行室内单轴压缩试验,从而获得全应力—应变曲线。基于五级加载条件下的单轴蠕变试验,获得了不同加荷等级单轴应变—时间曲线,分析了蠕变曲线随着不同加载应力水平的变化规律。根据蠕变曲线特征来选择蠕变本构模型,并采用Origin7.0软件进行蠕变参数拟合。
     ③根据桃树垭隧道现场状况建立计算模型,分别采用弹塑性本构模型及蠕变本构模型进行模拟分析,结合现场监控量测成果进行对比,选择能较好描述现场围岩变形特征的本构模型。通过FLAC~(3D)的数值模拟研究,分析并探讨了具有蠕变特性的软岩隧道的初期支护及二次衬砌的合理支护时机。
     ④以FLAC~(3D)软件作为分析工具,对桃树垭隧道建立三维数值计算模型,进行施工力学行为的模拟,对隧道围岩及支护结构进行分析,并选择一个典型断面的围岩随着开挖面的空间效应及时间效应进行分析,探讨了开挖面的空间约束作用。
With the rapid development of traffic construction in our country,tunnel construction and underground engineering is increasing In soft rock area. Because rheological is an important mechanics characteristic of the soft rock,large deformation in soft rock tunnels always has close relationship with the rheological characteristic.
     At present,In tunnel design the elastic-plastic constitutive model is often adopted to describe surrounding rock,however,the soft rock tunnels have obviously rheological properties In fact. So considering the rheological properties of soft rock has the vital significance for tunnel support problems. This paper relies on the peach-nek-tunnel engineering In Chongqing,disguises the large deformation disaster in the tunnel construction process by the method of combining site monitoring, the indoor experiment and numerical simulation,and researched the construction mechanic characteristics of this tunnel,the reasonable time for the primary support and the second lining and the space constraints effect of tunnel excavation face considering time effect. The research work and results are as follows:
     ①Research the domestic and foreign material of soft rock creep properties,summarized soft rock creep test and the affecting factors of tunnel large deformation disaster,and analyzed the disasters that took place during the peach-nek-tunnel construction.
     ②Drilled rock sample from the peach-nek-tunnel construction site,do indoor rock uniaxial compression test, thus obtained the stress-strain curve. Based on the uniaxial creep test under five loading levels conditions,produced the uniaxial strain– time curve under different loading levels,and analyzed the changing rule of the creep curves with different stress levels of loading. According to creep curve characteristics to choose the creep constitutive model,and adopted Origin7.0 software to fit the creep parameters.
     ③According to peach-nek-tunnel site condition established calculate model, used elastic-plastic constitutive model and creep constitutive model to simulated and analyze respectively, combined site monitoring results contrast to contrast,chose the constitutive model that can describe deformation characteristics of surrounding rock mass from the site closely. Use FLAC~(3D) software as an analytical tool to analyze and discuss the reasonable supporting opportunity of primary support and secondary lining for soft rock tunnels that have creep characteristics.
     ④Use FLAC~(3D) software as an analytical tool to establish the 3D model of peach-nek-tunnel, and simulated the mechanical behavior of the tunnel surrounding rock and support structure during construction period, and select a typical cross section of the surrounding space to analyze the excavation surface effects and time effects, discusses the space constraints effect of excavation face .
引文
[1]上海证券.四万亿计划投资分布避免重复建设[N/OL] .北京:新财富网,[2009-03-06]. http://www.xcf.cn/ztlb/200909/t20090923_57543.htm
    [2]蒋树屏.我国公路隧道建设技术的现状及展望[J].交通世界.2003,2:22-28.
    [3]陈宗基.根据流变学与地球动力学观点研究新奥法[J].岩石力学与工程学报,1988,7(2): 97-106.
    [4]刘雄著.岩石流变学概论[M].北京:地质出版社,1994.
    [5] Griggs,D.T. Creep of rocks[J]. Journal of Geology.1939,47:225-251
    [6]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997,l6(3):246-251
    [7]彭苏萍,王希良,刘咸卫等.“三软”煤层巷道围岩流变特性研究[J].煤炭学报,2001,26(2):149-152.
    [8]张向东,郑雨天,肖裕性.第三系软弱岩体蠕变理论[J].东北大学学报,1997,18 ( 1) : 31 - 35.
    [9] Maranimi E,Brignoli M.Creep Behavior of a Weak Rock Experimental Characterization [J].Int.J.Rock Mech Min.Sci,1999,36(3):127-138
    [10] D Sterpi,G Gioda.Visco-plastic behavior around advancing tunnels in squeezing rock[J].Rock Mechanics Rock Engineering,2007,40(2).
    [11]杨淑碧,徐进,董孝璧等.红层地区砂泥岩互层状斜坡岩体流变特性研究[J].地质灾害与环境保护,1996,7(2):12-24.
    [12] LI Y S,XIA C C. Time-dependent tests on intact rocks in uniaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(3):467–475.
    [13] Ito H,Sasajima S.A ten-year creep experiment on small rock specimens[J].Int.J.Rock.Mech. Mine.Sci.and Geomech.Abstr.,1987,24(2):113-121.
    [14] Malan DF,Vogler UW,Drescher K.Time-dependent behaviour of hard rock in deep level goldmines[J].Journal of the South African Institute of mining and Metallurgy,1997,135-137.
    [15]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报,1995, 16 (1) : 39 - 47.
    [16] Li Yongsheng, Xia Caichu . Time - dependent tests on intact r ocks in uniaxial comp ression[J]. Int . J . RockMech . Mine Sci . and Geomech .Abstr . 2000, 37: 467– 475.
    [17]夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报,1996,15(4):312-322.
    [18]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996,18(4):63-67.
    [19] Sun Jun, Hu Y Y . Time - dependent effects on the tensile strength of saturated granite at Three Gorges Pr oject in China[J]. I nt . J . Rock Mech . Mine Sci . 1997, 34: 381– 384.
    [20]李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3),299-303.
    [21]杨松林.不连续岩体弹粘性力学研究(博士后研究报告)[D].南京:河海大学,2003.
    [22]侯宏江,沈明荣.岩体结构面流变特性及长期强度的试验研究[J].岩土工程技术,2003,(6):324-326.
    [23]邓广哲,朱维申.岩体裂隙非线性蠕变过程特性与应用研究[J].岩石力学与工程学报,1998, 17 (4) : 358 - 365.
    [24]邓广哲,朱维申.蠕变裂隙扩展与岩石长时强度效应实验研究[J].实验力学,2002,17 (2) : 177 - 183.
    [25]丁秀丽,刘建,刘雄.三峡船闸区硬性结构面蠕变特性试验研究[J].长江科学院院报,2000,17(4):30-33.
    [26]周火明,徐平,王复兴.三峡永久船闸边坡现场岩体压缩蠕变试验研究[J].岩石力学与工程学报,2001,20(增):1882-1885.
    [27]任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2001(1):10-15.
    [28] Ren Jianxi, Ge Xiurun et al. Study of rock meso-damgae Propagation law in the uniaxial compression loading and its constitutive mode[J]. Chinese Journal of Rock Mechanics and Engineering 2001, 20(4):425-431(in Chinese) .
    [29] Yang Gengshe, Zhang Guangqi. .Rock mass damage and monitoring[M]. Xi’an: Shan xi science and Technology Press.1998(in Chinese) .
    [30] Ge Xiurun, Ren Jianxi et al. Study on the real intime CT test of the rock meso-damage Propagation law[J]. Science in China.SeriesE.2000, 30(2):104-111(in Chinese) .
    [31]朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报,2002,24(5):77-79
    [32]刘建忠,杨春和,李晓红,姜德义.万开高速公路穿越煤系地层的隧道围岩蠕变特性的试验研究[J].岩石力学与工程学报,2004,23(22):3794-3798.
    [33]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002, 21(5): 632-634.
    [34]赵延林,曹平,文有道,汪亦显,柴红保.岩石弹黏塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报,2008,27(3):477-486.
    [35]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报(自然科学版),1999,22(s):99-103.
    [36]吴立新王金庄孟胜利煤岩流变模型与地表二次沉陷研究[J].地质力学学报,1997,3(3):29-35
    [37] Va1anis K C. On the substance of Riv1 in’s remarks on the endochronic theory[J]. International Journal of Solids and Structures,1981,17 (5) :249 - 265.
    [38] Valanis K C. A theory of viscop lasticity without a yield suface[J]. Archives ofMechanics, 1971, 23 (5) : 5 l7– 551.
    [39]陈沅江,潘长良等.基于内时理论的软岩流变本构模型[J].中国有色金属学报,2003,13 (3) : 736 -742.
    [40]凌建明,孙钧脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993, 12(4):304-312.
    [41]杨延毅,周维垣节理裂隙岩体损伤一断裂力学模型及其在岩体工程中的应用[D].北京:清华大学,1990.
    [42]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002, 21(11):1602-1604.
    [43]邓广哲,朱维申等.裂隙岩体卸荷过程及裂隙蠕滑机制模拟研究[R].武汉:中国科学院武汉岩土力学研究所研究报告,1996.
    [44] Costin L S.Time-dependent damage and creep of brittle rock.Damage Mechanics and Continuum Modeling[J].ASCE,New York,1985:25-38.
    [45] Korezniowski.W.The rheological model of hard rock pillave[J].Rock Mech.Rock Eng.1991(24):155-166.
    [46] Fossum A F, Brodsky N S, Chan K S, etal. Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression[J].Int.J.Rock Mech. Min.Sci.&Geom.Abst.,1993,30:1341-1344.
    [47] Chna K S, Bodner S R, Fossum A F, etal. A constitutive model for inelastic flow and damage evolution in solids under tri-axial compression[J]. Mech. Of Math,1992,(14):1-14.
    [48] Chna K S, Brodsky N S, Fossum A F, etal. Damage-induced nonassociated inelastic flow in rook salt[J]. Int.J.Plasticity,1994(10):623-642.
    [49]李青麒等.软岩蠕变参数的曲线拟合计算方法[J].岩石力学与工程学报,1998,17(5): 559-564.
    [50]夏才初,孙均.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996, 24(5): 498-503.
    [51]许宏发,陈新万.多项式回归间接求解岩石流变力学参数的方法[J].有色金属,1994, 46(4):19-22.
    [52]陈子荫.由位移测定值反算流变岩体变形性质参数及地应力[J].煤炭学报,1982,17(4): 45-51.
    [53]薛琳.岩体粘弹性力学模型的判定定理与应用[J].岩土工程学报,1994, 16(5): 1-10.
    [54]薛琳.圆形隧道围岩蠕变柔量的确定及粘弹性力学模型的识别[J].岩石力学与工程学报,1993,12(4): 338-345.
    [55]薛琳.粘弹性岩体力学模型识别与参数反演解析方法研究[J].工程地质学报,1995,3(1): 70-77.
    [56]刘保国,孙均.岩体流变本构模型的辨识及其应用[J].北方交通大学学报,1998, 22(4): 10-14.
    [57]韩瑞庚.地下工程新奥法[M].科学出版社,1987.
    [58] Brown.E.T.Putting the NATM into Perspective,Tunnels and Tunneling,1990(S) .
    [59] Barton.Nick,Grimstad,etc.Rock mass conditions dictate choice between NMT and NATM[J], Tunnels and Tunnelling,1994(10):39-42.
    [60]郑颖人等.地下工程锚喷支护设计指南[M].中国铁道出版社,1988.
    [61]董方庭等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [62]何满潮.软岩巷道工程概论[M].中国矿业大学出版社,1993.
    [63]方祖烈.拉压域特征及主次承载区的维护理论.世纪之交软岩工程技术现状与展望:煤炭工业出版社,1999,48-51.
    [64]李蔗林等.应力控制技术及其应用综述[J].岩土力学,1997(3).
    [65]何满潮.中国煤矿软岩巷道支护理论与实践[M].北京:中国矿业大学出版社,1996.
    [66]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [67]李晓红.隧道新奥法及其测量技术[M].北京:科学出版社,2002.
    [68]于学馥等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983, 298-299.
    [69]许健.新奥法原理在膨胀土质隧道中的应用[J].广西大学学报:自然科学版, 1989,14(1): 42~45.
    [70]王梦恕等.大瑶山隧道—20世纪隧道修建新技术[M].广东:广东科技出版社, 1994.
    [71]孙元春,尚彦军.岩石隧道围岩变形时空效应分析[J].工程地质学报,2008,16(02):211~215.
    [72]谭代明,漆泰岳,莫阳春.考虑时空效应的软弱围岩隧道施工稳定性研究[J].水文地质工程地质,2009,4:85-89.
    [73]杨有海,王长虹.考虑时空效应的隧道工程黏弹性位移反分析[J].地下空间与工程学报,2009,3(5):468-472.
    [74]于学馥,郑颖人,等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [75]郑雨天.岩石力学的弹塑粘性理论基础[M].北京:煤炭工业出版社,1985.
    [76]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [77]周维垣.高等岩石力学[M].北京:水利水电出版社,1990.
    [78]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001.
    [79]中交第二公路勘察设计研究院.国家重点公路杭州至兰州线巫(山)奉(节)段桃树垭隧道施工图设计文件[C].武汉:中交第二公路勘察设计研究院,2006.
    [80]重庆大学桃树垭隧道监测组.桃树垭隧道右线YK38+398至YK38+460出口段异常报告[R].重庆:重庆大学,2006.
    [81]吴强.马垭口隧道塌方灾害发生机理及处治措施的研究[D].重庆:重庆大学,2009.
    [82]郑成果.桃树垭软弱围岩隧道底鼓机理及控制技术研究[D].重庆:重庆大学,2009.
    [83]重庆大学桃树垭隧道监测组.桃树垭隧道右线YK38+180至YK38+380段异常报告[R].重庆:重庆大学,2006
    [84]段永胜,刘新荣,黄林伟等.软岩隧道大变形灾害区加固前后监测分析[J].公路交通科技应用技术版,2010,9,17-22.
    [85]黄明.含水泥质粉砂岩蠕变特性及其在软岩隧道稳定性分析中的应用研究[D].重庆:重庆大学,2010.
    [86]彭文斌.FLAC3D实用教程[M].北京:机械工程出版社,2009.
    [87]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [88]岩土工程勘察规范[S].GB 50021-2001,北京:中国建筑工业出版社,2001.
    [89]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.
    [90]刘元锋.米家寨隧道施工力学及其空间效应研究[D].重庆:重庆大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700