新疆西天山莱历斯高尔—肯登高尔铜钼铅锌矿集区成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆西天山莱历斯高尔—肯登高尔铜钼铅锌矿集区位于西天山博罗科努铜、金、钼、铅锌、铁、磷、硫铁矿成矿带的中西部,构造背景为博罗科努晚古生代活动陆缘的北坡。矿集区内成矿作用与晚古生代中酸性侵入岩有密切的空间和时间联系。相关的岩体主要有花岗闪长(斑)岩、二长花岗岩、钾长花岗岩。与碳酸盐岩接触部位形成矽卡岩型矿床,岩浆期后热液形成斑岩型及中低温热液脉型矿床。花岗闪长斑岩具有富集硅、铝、碱和富集Rb, Ba, Sr等大离子亲石元素,而亏损Ta、Hf, Zr、Sm、Th、Y、Yb等高场强元素。洋中脊花岗岩标准化的微量元素配分曲线与陆缘弧花岗岩配分型式相似。花岗闪长斑岩REE总量明显低于地壳重熔S型花岗岩的相应值,具有Ⅰ型或M型花岗岩浆的性质。锶同位素初始值为0.7079~0.7103,εNd(t)为-0.61~-3.71,指示岩浆具下地壳来源或壳幔混合源特点。
     矿集区内肯等高尔铜钼矿、来历斯高尔铜钼矿和七兴铅锌多金属矿三个典型矿床的矿石δ34SV-CDT平均值分别为1.14‰、3.8‰和4.0‰,前者显示硫源为幔源,后两者为壳幔混合源;铅同位素显示成矿物质来源具壳幔混合源特点;成矿流体属于低盐度、低密度流体,H、O同位素显示成矿热液为岩浆水并受到大气降水的混合。这三个典型矿床在成因类型、元素组合和成矿时代等方面存在明显差异,可划分出Cu-Mo、Fe-Cu、Pb-Zn、Au-Ag等多个成矿元素组合。其中,Cu-Mo的成矿作用产出在花岗闪长(斑)岩及与其相关的角岩、矽卡岩中,以莱历斯高尔-3571铜钼矿、肯登高尔铜钼矿为代表。Fe-Cu矿产于花岗岩与灰岩接触交代带部位的内(外)矽卡岩中,以哈勒尕提矿床为代表。Pb-Zn、Au-Ag的成矿作用与岩浆期后热液和构造有关,以七兴铅锌矿为代表。矿集区内元素分布与花岗岩和构造相关,花岗岩与陆源碎屑岩(如上志留统博罗霍洛山组细碎屑岩)接触部位产生热接触变质作用,形成角岩和铜钼矿;而与碳酸盐岩接触部位形成矽卡岩,并伴随铜钼和铁铜的成矿作用;远离岩体,则受构造控制在岩石裂隙中形成中低温热液脉型铅锌矿和金银矿。各成矿元素组合的形成时代规律明显:Cu-Mo矿形成于早石炭世,Fe-Cu矿形成于晚泥盆世—早石炭世,Pb-Zn矿形成于晚三叠世—早侏罗世,而Au-Ag矿形成时代由于没有相关测年数据,推测为石炭纪或燕山期。从晚泥盆世—石炭纪—晚三叠世—早侏罗世,成矿元素组合依次为Fe-Cu, Fe-Cu-Mo-(Au-Ag?), Pb-Zn-(Au-Ag?)。莱历斯高尔—肯登高尔一带多金属矿集区成矿作用与区内构造岩浆作用是同一地质—构造—岩浆活动过程在不同阶段的产物,是区域内同一成岩成矿系统综合作用的结果。
Lailisigaoer-Kendenggaoer Copper-Molybdenum-Lead-Zinc ore cluster lies at the Midwest of Boluokenu copper, gold, molybdenum, lead, zinc, iron, phosphorus, pyrite ore belt in West Tianshan, Xinjiang. The tectonic setting of the ore cluster is the north slope of Late Paleozoic Boluokenu active continental margin. Ore mineralization is closely related to acid intrusive rocks in the region in the late Paleozoic in space and time. Mainly related rocks are granodiorite/granodiorite porphyry, monzogranite and moyite. Skarn deposit forms in contact section between acid intrusive rock and carbonate rock, while porphyry-type deposits and mid-low temperature heat vein type deposits related to postmagmatic hydrothermal. Granodiorite porphyry is enriched in silicon, aluminum, alkali and large ion lithophile elements such as Rb, Ba and Sr, but depleted in high field strength elements such as Ta, Hf, Zr, Sm, Th, Y and Yb. Ocean ridge granite normalized trace element distribution patterns are similar with continental margin arc distribution patterns. The Rare Earth Elements content of Granodiorite porphyry was significantly lower than that of S-type granites and has the nature of I-type or M-type granitic magma.The initial strontium value is 0.7079-0.7103 and theεNd(t) value is-0.61 to-3.71 indicating that magma derived from the lower crustal source or crust-mantle mixing source.
     The average oreδ34Sv-CDT value of Kendenggaoe copper-molybdenum ore, Lailisigaoer copper-molybdenum ore and Qixing copper zinc polymetallic ore deposits in this ore district is 1.14‰,3.8‰and 4.0‰respectively, the former shows sulfur source for the mantle and the latter two for the crust-mantle mixing source; lead isotopes show that the source have a mixture of crust and mantle characteristics; forming fluids are low salinity and low-density fluid. Hydrogen and oxygen isotopes show hot forming magmatic fluids by meteoric water and mixing. The three typical deposits are significantly different in genesis, element association and mineralization times, and these elements association can be divided into the Cu-Mo, Fe-Cu, Pb-Zn, Au-Ag ore-forming elements and other combinations. In which, Cu-Mo mineralization outputs in granodiorite/ granodiorite porphyry and associated hornfels and skarn, with Lailisigaoer-3571 copper-molybdenum mine and Kendonggaoer copper-molybdenum mine represented. Fe-Cu deposit output in the inner (outer) skarn of granite and limestone contact metasomatic zone parts, with Halegati deposit represented. Pb-Zn and Au-Ag mineralizations as the representative of Qixing lead and zinc deposit are related to postmagmatic hydrothermal and structural. Distributions of elements in the ore region are associated with granite and structural.Contact parts between granite and terrigenous clastic rocks (as Boluohuoluoshan formation clastic rocks of upper Silurian) had thermal contact metamorphism and formed hornfels and copper-molybdenum deposit; while in the contact area between granite and carbonate formed skarn and copper-molybdenum and copper-iron mineralization. Away from the rock, mid-low hydrothermal vein type lead-zinc and gold-silver mine controlled by structures in the rock fractures, the ore formation age elements associations have obvious rule:Cu-Mo ore formed in the Early Carboniferous, Fe-Cu ore formed in the Late Devonian-Early Carboniferous, Pb-Zn ore formation in the Late Triassic-Early Jurassic, and Au-Ag ore may form in Carboniferous or Mesozoic because of lacking relevant dating data. From Late Devonian-Carboniferous-Late Triassic-Early Jurassic, forming elements were combined Fe-Cu, Fe-Cu-Mo-(Au-Ag?) and Pb-Zn-(Au-Ag?). The mineralization of Lailisigaoer-Kendenggaoer polymetallic ore cluster area and regional tectonic magmatism were the product of the same geological-tectonic-magmatic processes at different stages and the results of the combined effects in the same region diagenetic-mineralization system.
引文
[1]张良臣,刘德权.中国新疆优势金属矿产成矿规律[M].北京:地质出版社,2006:203-208.
    [2]李华芹,王登红,万阙,屈文俊,张兵,路远发,梅玉萍,邹绍利.2006.新疆莱历斯高尔铜钼矿的同位素年代学研究.岩石学报,22(10):2437-2443
    [3]李伍平,姜常义,谢广成,等.博罗科努加里东褶皱带海西早期花岗岩地质特征[J].西安地质学院学报,1995,17(1):43-49.
    [4]朱志新,王克卓,徐达,等.依连哈比尔尕山石炭纪侵入岩锆石SHIRIMP U-Pb测年及其地质意义[J].地质通报,2006,25(8):986-991.
    [5]吴淦国,董连慧,薛春纪,等.新疆北部主要斑岩铜矿带[M].北京:地质出版社,2008:1-335.
    [6]孙继东,王崇礼,于风池.新疆精河莱历斯高尔铜钼矿床原生地球化学异常[J].西安地质学院学报,1992,14(4):29-35.
    [7]张东阳,张招崇,艾羽,苏慧敏.2009a.西天山莱历斯高尔一带铜(钼)矿成矿斑岩矿物学特征及其成岩成矿意义[J].矿物岩石学杂志,28(1):3-16.
    [8]Leake B E, Woolley A R and Arps C E S.1997. Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Mineral and Mineral Names[J]. American Mineralogist,82:1019~1037.
    [9]Foster MD.1960. Interpretation of the composition of trioctahedral micas[J]. Geol Surv Prof Paper.,354-B:11~49.
    [10]邱家骧.应用岩浆岩岩石学[M].武汉:中国地质大学出版社,1991:225-248.
    [11]卢焕章,李秉伦,喻铁阶,等.包裹体地球化学[M].北京:地质出版社,1990:22-130.
    [12]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999:44-169.
    [13]邵洁涟.金矿找矿矿物学[M].北京:中国地质大学出版社,1990:1-158
    [14]SibSun S H.1988. Interpretation of chemical composition and subdivision of iron-lithium micas[J]. Sci Geol Sinica, 23(3):213~228(in Chinese with English abstract).
    [15]Gao S, Liu XM, Yuan HL, et al. Analysis of forty-two major and trace elements of USGS and NIST SRM Glasses by LA-ICP-MS[J]. GeostandNewsl.,2002,22:181-195.
    [16]Chappel BW, White A J R.1974. Two contrasting granite types[J]. Pacifc Geol.,8:173~174.
    [17]Clemens J D, Wall V J.1984. Origin and evolution of a peraluminous silicic ignimbrite suite:The Violet Town Volcanics. Contrib.Mineral[J]. Petrol.,88:354-371.
    [18]White A J R, Chappel B W.1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia[J]. Mem. Geol. Soc. Am.,159:21-34.
    [19]Leake B E.1978. Nomenclature of amphibole[J]. Am Mineral, (63):1023~1052.
    [20]陈光远,孙岱生,周珣若,等.1993.胶东郭家岭花岗闪长岩成因矿物学与金矿化[M].北京:中国地质大学出版社,1~131.
    [2l]丁孝石.1988.西藏中南部各类花岗岩中黑云母标型特征及其地质意义[J].中国地质科学院矿床地质研究所所刊,(1):33~50.
    [22]周作侠.1986.湖北丰山洞岩体成因探讨[Jl.岩石学报,2(1):59~70.
    [23]Whalen J B, Chappell B W.1988. Opaque mineralogy and mafic mineral chemistry of I-and S-type granites of Lachlan fold belt, southeast Australia[J]. American Mineralogist,73(3~4):281~296.
    [24]王洁民,刘振声.1988.西藏花岗岩类中黑云母的特征[J].矿物岩石,8:66~71.
    [25]徐克勤,孙鼐,王德滋,等.1984.华南花岗岩与成矿[A].徐克勤,涂光炽.花岗岩地质和成矿关系(国际学术会议论文集)[C].南京:江苏科学技术出版社,1~20.
    [26]Abdel-Rahman F M.1994. Nature of biotites from alkaline, calcalkaline, and peralumious magmas[J]. J. Petrol.,35(2): 525~541.
    [27]Journon J, Tribolet C, Azema J.1989.Amphibolites from Panama:anticlockwise P-T Paths from a pre-upper cretaceous metamorphic basement in isthmian central American[J]. Joural of metamorphic Geology, (7):539-546.
    [28]Guidotti C V.1984. Micas in metamorphic rock[A]. Bailey S E.Micas (Review in Mineralogy, v.13)[C]. Washington D C: Mineralogy Society of America,357~467.
    [29]Hewitt D A, Wones D R.1984. Experimental phase relations of the Micas[A]. Bailey S E. Micas (Review in Mineralogy, v.13)[C]. Washington D C: Mineralogy Society of America,201~256.
    [30]Speer J A.1984. Micas in igneous rocks[A]. Bailey S E. Micas (Review in Mineralogy, v.13)[C]. Washington D C: Mineralogy Society of America,299~356.
    [3l]孙世华.1988.Fe-Li云母化学成分的解释和分类[J].地质科学,23(3):213~228.
    [32]Sun S H, Yu J.2000. Actual Fe-Li mica series as a series with Ⅵ constant but not with A1 or A1VI[J]. Mineral Mag.,64(4):755-775.
    [33]张遵忠,顾连兴,王硕,等.2004.新疆白石头泉高铷氟花岗岩不同相带云母成分及其演化[J].地球化学,33(5):433~441.
    [34]Albuquerque A C.1973. Geochemistry of biotites from granitic rocks, northern Portugal. Geochim[J]. Cosmochim Acta, 37:1779~1802.
    [35]Buddington A F, Lindsley D H.1964. Iron-titanium oxide minerals and synthetic equivalents[J]. J. Petrol,5:310■357.
    [36]林文蔚,殷秀兰.1998.玲珑花岗质杂岩体形成的物理化学条件及其地质意义[J].地球学报,19(1):40~49.
    [37]Henry D J, Guidotti C V, Thomson J A.2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms[J]. Am. Mineral.90:316-328.
    [38]Ma C Q.1999. Magmatic plumbing as a window to crustal dynamics:an example from the Dabieshan ultradeep metamorphic rock region, central China[M]. Ph. D. Thesis,?bo Akademi University Press, Turku/bo.
    [39]龚松林.2004.角闪石全铝压力计对黄陵岩体古隆升速率的研究[J].东华理工学院学报,27(1):52~58
    [40]Hollister L S, Grissom G C, Peters E K.1987. Confirmation of the empirical correlation of Al in hornblende with pressure of plutons[J]. Am. Mineral.,72:231-239.
    [41]Wones D R, Eugster H P.1965. Stability of biotite:experiment, theory, and application[J]. Am. Mineral.,50:1228-1235.
    [42]蒋少涌,杨竞红,赵葵东,于际民.2000.金属矿床Re-Os同位素示踪与定年研究[J].南京大学学报(自然科学),36(6):669-677.
    [43]Anczkiewicz R, Oberli F, Burg JP, et al. Timing of normal faulting along the Indus Suture in Pakistan Himalaya and a case of major 231Pb/235U initial disequilibrium in zircon [J]. Earth and Planetary Science Letters,2001,1991:101-114.
    [44]Bohlkea J K, Laeter J R and Bievre P D.2005. Isotopic Compositions of the Elements[J]. Phys. Chem. Ref. Data,34(1): 57-67.
    [45]Ohmoto H and Rye R O.1979. Isotopes of sulfur and carbon, in Barnes, H.L. ed.[M], Geochemistry of hydrothermal ore deposits: New York, Wiley-Interscience.509-567.
    [46]朱炳泉.地球科学中同位素体系理论与应用[M].北京:科学出版社,1998:216-235.
    [47]Zartman R E, and Doe B R.1981. Plumbotectonics-the model[J]. Tectonophysics,75(1-2):135-162.
    [48]刘敏,王志良,张作衡,等.新疆东天山土屋斑岩铜矿床流体包裹体地球化学特征[J].岩石学报,2009,25(6):1446-1455.
    [49]张志欣,杨富全,闫升好,等.新疆包古图斑岩铜矿床成矿流体及成矿物质来源—来自硫、氢和氧同位素证据[J].岩石学报,2010,26(3):707-716.
    [50]隗合明,吴文奎,薛春纪.1999.新疆西天山金属矿床成矿系列和形成演化规律[J].地质学报,73(3):29-40.
    [51]刘德权,唐延龄,周汝洪.中国新疆铜矿床和镍矿床[M].北京:地质出版社,2005:30-34.
    [52]王志良,毛景文,张作衡,左国朝,王龙生.2004.西天山古生代铜金多金属矿床类型、特征及其成矿地球动力学深化[J].地质学报,78(6):836-847.
    [53]邓洪涛.2001.博罗科努山北坡金铜矿成因类型探讨[J]新疆地质,19(2):123-127.
    [54]郑永飞,徐宝龙,周根陶.2000.矿物稳定同位素地球化学研究[J].地学前缘,7(2):299-320.
    [55]陈岳龙,杨忠芳,赵志丹.2005.同位素地质年代学与地球化学[M].北京:地质出版社.262-276.
    [56]张理刚.1985.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社.23-151.
    [57]简平,刘敦一,刘晓猛.2003.滇西北白马雪山和鲁甸花岗岩基SHRIMP U-Pb年龄及其地质意义.地球学报,24(4):337-342.
    [58]Ludwig K R. User's Manual for Isoplot 3.00: A geochronological toolkit for Microsoft ExcelfJ]. Berkeley: Geochronology Center, Special Publication,2003(4):1-70.
    [59]Hoefs J. Stable isotope geochemistry [M].4th ed. Berlin: Springer-Verlag,1997:119-120.
    [60]Chaussidon M and Lorand J P.1990.Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege(North-eastern Pyrenees, France): An ion microprobe study[J]. Geochimica et Cosmochimica Acta,54: 2835-2846.
    [61]吴开兴,胡瑞忠,毕献武,彭建堂,唐群力.2002.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学,30(3):73-81.
    [62]孟祥金,侯增谦,董光裕,刘建光,屈文俊,杨竹森,左力艳,万禄进,肖茂章.2007.江西金溪熊家山钼矿床特征及其Re-Os年龄[J].地质学报,81(7):946-950.
    [63]赵一鸣,林文蔚,毕承思,李大新,蒋崇俊.1990.中国矽卡岩矿床[M].北京:地质出版社.123-136.
    [64]Taylor H P. The application of oxyen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology,1974,69(6):843-883.
    [65]苏巧云,王敏,石继红,等.新疆西天山奈楞格勒金多金属矿地质特征及找矿标志田.新疆地质,2007,25(3):279~282.
    [66]沙德铭.1998.西天山阿希金矿流体包裹体研究[J].贵金属地质,7(3):180~188.
    [67]徐芹芹,季建清,韩宝福,朱美妃,储著银,周晶.2008.新疆北部晚古生代以来中基性岩脉的年代学、岩石学、地球化学研究.岩石学报,24(5):977~996.
    [68]宋彪,张玉海,万渝生,简平.2002.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论.地质论评,48(增刊):26
    [69]李华芹,陈富文.2004.中国新疆区域成矿作用年代学[M].北京:地质出版社.169-205.
    [70]吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,49(16):1589-1604.
    [71]张长青,李向辉,余金杰,毛景文,陈福坤,李厚民.2008.四川大梁子铅锌矿床单颗粒闪锌矿铷-锶测年及地质意义[J].地质论评,54(4):532-538.
    [72]郭春影,杨立强,张静,高帮飞,王庆飞,于海军.2008.胶东大磨曲家金矿床成矿流体成分及稳定同位素研究[J].矿物岩石,28(3):51-56.
    [73]赵伦山,岑矿,叶荣.2000.热液流体泵吸上侵管流动力学模拟及其预测意义[J].地学前缘,7(1):205-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700