西天山莱历斯高尔—肯登高尔一带岩浆过程和铜钼成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莱历斯高尔-肯登高尔一带是西天山地区重要的铜钼矿集区,近年来受到多方关注。本文通过莱历斯高尔-3571铜钼矿、肯登高尔铜钼矿两个典型矿床,在区域地质、矿区地质基础上,利用岩相学、矿相学、岩石及矿床地球化学、年代学等方面来研究岩浆过程和铜钼成矿作用。
     莱历斯高尔-3571铜钼矿矿体呈脉状、板状和透镜状产在花岗闪长斑岩体顶部或边部、接触带和附近围岩中,具典型斑岩型矿床矿化蚀变分带特征。肯登高尔铜钼矿矿体呈板状、不规则脉状和透镜状产在花岗闪长岩与上石炭统碳酸盐岩外接触带矽卡岩中,受接触带构造控制,铜钼硫化物内生热液成矿经历了矽卡岩期和石英-硫化物期,属矽卡岩型铜钼矿
     莱历斯高尔-3571铜钼矿花岗闪长斑岩小岩体具有高硅、低镁、富铝、富碱、高钾钙碱性等特点,肯登高尔铜钼矿花岗闪长岩体具高硅、富碱、低镁、高钙、准铝质、高钾钙碱性的特点,表明岩浆的高酸、富碱、高钾地球化学环境有利于Cu、Mo的富集。岩石化学成分分析显示,岩体形成均与准噶尔洋壳向伊犁板块这一俯冲过程有关。
     流体包裹体显微测温和激光拉曼探针分析显示,莱历斯高尔-3571铜钼矿成矿流体早阶段为高中温、中低盐度的NaCl-H_2O体系,随后演化为高中温、低盐度的NaCl-H_2O-CO2体系,晚阶段演化为中温、低盐度NaCl-H_2O体系;肯登高尔铜钼矿主成矿流体属于中低温、低盐度、低密度的NaCl-H_2O流体。H、O同位素研究表明,成矿流体起源于岩浆水,成矿晚阶段不同程度混入大气降水。
     S、Pb同位素组成及辉钼矿Re含量研究表明,莱历斯高尔-3571铜钼矿、肯登高尔铜钼矿成矿与洋壳俯冲过程中的岩浆活动有关,成矿金属可能来自于俯冲洋壳熔融的岩浆。
     莱历斯高尔-3571铜钼矿成岩成矿于晚泥盆世-早石炭世;肯登高尔花岗闪长岩体锆石SHRIMP U-Pb年龄为313±4Ma,辉钼矿Re-Os等时线年龄为313.9±2.5Ma,成岩成矿于晚石炭世。显示铜钼矿成岩成矿于晚泥盆世-晚石炭世。综上所述,晚泥盆世-晚石炭世的高酸、富碱、高钾岩体对寻找斑岩-矽卡岩型铜钼矿具有指示意义。
As a important Cu-Mo ore concentration area in western Tianshan, the Lailigao`er-Kendenggaoer region is paid much attention to. Based on regional geology and mine geology, the magmatic processes and Cu-Mo mineralization by petrography, mineralography, geochemistry of petrology and ore deposit, geochronology of Lailisigao`er-3571 Cu-Mo deposit and kendenggaoer Cu-Mo deposit are studied in this paper.
     In the Lailisigao`er-3571 Cu-Mo deposit, the Cu-Mo sulfide ore-body with veins, tabular and lens in shape occurring in the top or edge parts of the granodiorite porphyry, contact belts and the wall-rock nearby, shows the typical mineralized alteration zoning characteristics of Porphyry deposit. The Kendenggaoer Cu-Mo ore bodies with tabular, laminated and lenticular shape occurs in the outer contact belt between late Carboniferous granodiorite and carbonate rocks of Upper Carboniferous, controlled by contact zone structure. The Kendenggaoer Cu-Mo sulfide endogenic mineralization has obviously experienced two stages,skarn stageand quartz-sulfide stage, showing the characteristics of skarn-type Cu-Mo deposit.
     Geochemical analysis shows that the Lailisigao`er granodiorite porphyry is rich in Si, Al, K and Na, and poor in Mg, with high-K calc-alkaline characteristic and the Kendenggaoer granodiorite has a relatively high quantity of SiO_2, Na_2O+K_2O and CaO, and low quantity of MgO, with metaluminous and high-K calc-alkaline characteristic. The characteristic of petrology geochemistry shows that the high-acid, rich-alkali, high-potassium magma is beneficial to the Cu-Mo enrichment, and the formation of rock mass happened after Junggar oceanic crust subducted to Kazakhstan-Yili plate.
     The analysis of the microthermometry and Laser Raman spectroscopy shows that the ore-forming fluid of Lailisigao`er-3571 Cu-Mo deposit in the early stage is a NaCl-H2O system, which has high-middle temperature, mid-low salinity, and then evolves a H2O-NaCl-CO_2 system, which has high-middle temperature, low salinity, and continuing evolves into a NaCl-H_2O system, which has middle temperature, low salinity. The main ore-forming fluid of Kendenggaoer is a NaCl-H_2O system, which has mid-low temperature, low salinity and density. The study of H~-, O-isotopic composition shows that the ore-forming fluid is originated from magmatic water, with a little mixing of precipitate water in the late stage.
     The study of S-, Pb-isotopic composition and the Re content of the molybdenite of Lailisigao`er-3571 Cu-Mo deposit and Kendenggaoer Cu-Mo deposit shows that the ore-forming process is related to magmatic activity in the process of ocean crust subduction, and the ore-forming metals may come from the subduction ocean melting magma.
     The forming of the Ores-Bearing Porphyries and ore-bodies in the Lailisigao`er-3571 Cu-Mo deposit occurs in the late Devonian or early Carbiniferous. In the Kendenggaoer Cu-Mo deposit, the granodiorite is dated as 313±4Ma by Zircon SHRIMP U-Pb method, and the model age and isochron age of molybdenite Re-Os are 315.4±1.8Ma and 313.9±2.5Ma. The study of chronology shows rock mass and ore body are formed in the late Devonian or late Carbiniferous in the Lailisigao`er-Kendenggaoer region.
     To sum up, the high-acid, rich-alkali, high-potassium rock mass in the late Devonian or late Carbiniferous has indicative significance for the exploration of prophyry - skarn type Cu-Mo deposit.
引文
Altherr R, Topuz G, Siebel W, et al. Geochemical and Sr-Nd-Pb isotopic characteristics of Paleocene plagioleucitites from the eastern Pontides(NE Turkey). Lithos, 2008, 105(1-2):149-161.
    Bao Z W, Wang Q, Bai G D, et al. Impact of hydrothermal alteration on the U-Pb isotopic system of zircons from the Fangcheng syenites in the Qinling Orogen, Henan Province, China[J]. Chinese Journal of Geochemistry, 2009, 28(2): 163-171.
    Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 1999, 46: 605-625
    Batchelor R A, Bowden P. Petrogenetic interpretation of granitiod rock series using muti-cationic parameters[J]. Chem. Geol., 1985, 48(1): 43-55.
    Belousova E A, Suzanne G W, Fisher Y. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contrib. Mineral. Petrol., 2002, 143: 602-622.
    Black L P, Kamo S L, Williams I S, et al. The Application of SHRIMP to Phanerozoic geochronology: A critical appraisal of four zircon standards[J]. Chem. Geol., 2003, 200(1/2): 171-188.
    Boari E, Avanzinelli R, Melluso L, et al. Isotope geochemistry (Sr-Nd-Pb) and petrogenesis of leucite-bearing volcanic rocks from“Colli Albani”volcano, Roman Magmatic Province, Central Italy: Inferences on volcano evolution and magma genesis[J]. Bulletin of Volcanology, 2009, 71(9): 977-1005.
    Bohlkea J K, Laeter J R and Bievre P D. Isotopic Compositions of the Elements[J]. Phys. Chem. Ref. Data, 2005, 34(1): 57-67.
    Breeding C M, Ague J J, Grove M, et al. Isotopic and chemical alteration of zircon by metamorphic fluids: U-Pb age depthprofiling of zircon crystal from Barrow′s garnet zone, northwest Scotland[J]. American Mineralogist, 2004, 89: 1067-1077.
    Burke E A J. Raman microspectrometry of fluid inclusions. Lithos, 2001, 55: 139-158.
    Chaussidon M and Lorand J P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege(North-eastern Pyrenees, France): An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1990, 54: 2835-2846.
    Clayton R N and Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis, Geochimica et Cosmochimica Acta, 1963, 27: 43-52.
    Coleman M L, Sheppard T J, Durham J J, et al. Reduction of water with zinc for hydrogen isotope analysis[J]. Analytical Chemistry, 1982, 54: 993-995.
    Compston W, Williams I S, Kirschvink J L. Zircon U-Pb ages of Early Cambrian time-scale[J]. Journal of Geological Society, 1992, 149: 171-184.
    Foley S F, Venturelli G, Green D H, et al. The ultrapotassic rocks: Charcateristics, classification, and constraints for petrogentic models[J]. Earth Science Reviews, 1987, 24(2): 81-134.
    Foster H J, Tisehendorf G and Trumbull R B. An evaluation of the Rb vs (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks[J]. Lithos, 1997, 40: 261-293.
    Hoefs J. Stable isotope geochemistry (the forth edition)[M]. Berlin: Springer-Verlag, 1997: 119-120.
    Lowell J D, Guilbert J M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Econ Geol., 1970. 65: 337-408.
    Ludwig K R. Squid1.02: A user′s manual. Berkeley Geochronology Center. Special Publication, 2001, 2: 1-19.
    Maniar P D, Piccoli P M. Tectonics discrimination of granitoids[J]. GSA bulletin, 1989, 101: 635-643.
    Mao J W, hang Z C, Zhang Z H and Du A D. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qilain mountains and its geological significance[J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12): 1815-1818.
    Moeller A, O′Brien P J, Kennedy A, et al. Linking growth episodes of zircon and mettalorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland, SW Norway[J]. Geol. Soc. Spe. Publ., 2003, 220: 65-81.
    Ohmoto H and Rye R O. Isotopes of sulfur and carbon, in Barnes, H.L. ed.[M], Geochemistry of hydrothermal ore deposits: New York, Wiley-Interscience, 1979: 509–567.
    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983.
    Richards J P. Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modifi ed lithosphere[J]. Geology. 2009, 37(3): 247~251.
    Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22: 247-263.
    Shirey S B and Walker R J. Carius tube digestion for low-blank rheniumosmium analysis[J]. Anal. Chem., 1995, 67: 2136-2141.
    Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Econ. Geol., 1972, 67: 184-197.
    Stein H J, Markey R J, Morgan J W, et al. Hiahly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China[J]. Economic Geology, 1997, 92: 827-835.
    Streckeisen A. To each plutionic rock its proper name[J]. Earth-Science Reciews, 1976, 12: 1-33.
    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [M]//Saunders A D, Norry M J. Magamtism in ocean basins. Geological Society London Special Publications, 1989, 42(1): 313-345.
    Tang G J, Wang Q, Wyman D A, et al. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan(west China): Ewidence for a tectonic transition from arc to post-collisional setting[J]. Lithos, 2010, 119: 393-411.
    White D E. Environments of generation of some basemetal ore deposits[J]. Econ Geol., 1968, 63(4): 301-335.
    Wieser M E. Atomic weights of the elements 2005 (iupac technical report)[J]. Pure Appl. Chem., 2006, 78(11)11: 2051–2066.
    Williams I S, Claesson S. Isotope evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Ⅱ. Ion microprobe zircon U-Th-Pb[J]. Contrib. Miner. Petrol., 1987, 97: 205-217.
    Zartman R E, and Doe B R. Plumbotectonics-the model[J]. Tectonophysics, 1981, 75(1-2): 135-162.
    陈毓川,刘德权,唐延龄,等.中国新疆战略性固体矿产大型矿集区研究[M].北京:地质出版社, 2007: 1-467.
    陈岳龙,杨忠芳,赵志丹.同位素地质年代学与地球化学[M].北京:地质出版社, 2005: 262-276.
    陈哲夫,成守德,梁云海,等.新疆开合构造与成矿[M].新疆科技卫生出版社, 1997: 121-156.
    程松林,冯京,涂其军,等.新疆莱历斯高尔铜钼矿地质特征及找矿前景[J].新疆地质, 2009, 27(3): 236-240.
    邓洪涛.博罗科努山北坡金铜矿成因类型探讨[J].新疆地质, 2001, 19(2): 123-127.
    邓小华,李文博,李诺,等.河南嵩县纸房钼矿床流体包裹体研究及矿床成因[J]. .岩石学报, 2008, 24(9): 2133-2148
    董连慧,朱志新,屈迅,等.新疆蛇绿岩带的分布、特征及研究新进展[J].岩石学报, 2010, 26(10): 2894-2904.
    杜安道,何红蓼,殷宁万,等.辉钼矿的铼-锇同位素地质年龄测定方法研究[J].地质学报, 1994, 68(4): 339-347.
    高俊,钱青,龙灵利,等.西天山的增生造山过程[J].地质通报, 2009, 28(12): 1804-1816.
    高阳,李永峰,郭宝健,等.豫西嵩县前范岭石英脉型钼矿床地质特征及辉钼矿Re-Os同位素年龄[J].岩石学报, 2010, 26(3): 757~767.
    侯增谦,潘小菲,杨志明,等.初论大陆环境斑岩铜矿[J].现代地质, 2007, 21(2): 332-351.
    黄崇轲,白冶,朱裕生,等.中国铜矿床[M].北京:地质出版社, 2001.
    简平,刘敦一,孙晓猛.滇川西部金沙江石炭纪蛇绿岩SHRIMP测年:古特提斯洋壳演化的同位素年代学制约[J].地质学报, 2003, 77(2): 217-230.
    蒋少涌,杨竞红,赵葵东,等.金属矿床Re-Os同位素示踪与定年研究[J].南京大学学报(自然科学), 2000, 36(6): 669-677.
    黎诺.高温气态变岩浆成岩和地液成矿作用[J].中国地质科学院矿床地质研究所所刊, 1993, 1: 28-51.
    李厚民,叶会寿,王登红,等.豫西熊耳山寨凹钼矿床辉钼矿铼-锇年龄及其地质意义[J].矿床地质, 2009, 28(8): 133-142.
    李华芹,陈富文.中国新疆区域成矿作用年代学[M].北京:地质出版社. 2004: 169-205.
    李华芹,王登红,万阙,等.新疆莱历斯高尔铜钼矿的同位素年代学研究[J].岩石学报, 2006, 22(10): 2437-2443
    刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社, 1999..
    刘德权,唐延龄,周汝洪.中国新疆矿床成矿系列[M].北京:地质出版社, 1996: 117-126.
    刘敏,王志良,张作衡,等.新疆东天山土屋斑岩铜矿床流体包裹体地球化学特征[J].岩石学报, 2009, 25(6): 1446-1455.
    龙灵利.西天山造山带古生代构造演化与地壳增生-来自花岗岩和蛇绿岩的证据[D].北京: 中国科学院地质与地球物理研究所, 2007: 1-174.
    卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社, 2004: 1-487.
    罗铭玖,张辅民,董群贡,等.中国钼矿床[M].郑州:河南科学技术出版社, 1984.
    孟祥金,侯增谦,董光裕,等.江西金溪熊家山钼矿床特征及其Re-Os年龄[J].地质学报, 2007, 81(7): 946-950.
    秦克章.新疆北部古生代中亚型造山与成矿作用.博士后科研工作报告.北京:中国科学院地质与地球物理所, 2000: 1-195.
    邱家骧.应用岩浆岩岩石学.武汉:中国地质大学出版社, 1991: 225-248
    屈文俊,杜安道.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄[J]. 岩矿测试, 2003, 22(4): 254-262
    芮宗瑶,黄崇轲,齐国明,等.中国钼矿床[M].北京:地质出版社, 1984.
    沙德铭.西天山阿希金矿流体包裹体研究[J].贵金属地质, 1998, 7(3): 180~188.
    邵洁连.金矿找矿矿物学[M].北京:中国地质大学出版社, 1988: 1-158.
    舒良树,卢华复,印栋浩.新疆北部古生代大陆增生构造[J].新疆地质, 2001, 14(1): 59-63.
    孙丰月,金巍,李碧乐,等.关于脉状热液金矿床成矿深度的思考[J].长春科技大学学报, 2000, 30(增刊): 27-30.
    孙继东,王崇礼,于风池.新疆精河莱历斯高尔铜钼矿床原生地球化学异常[J].西安地质学院学报, 1992, 14(4): 29-35.
    唐功建,陈海红,王强,等.西天山达巴特A型花岗岩的形成时代与构造背景[J].岩石学报, 2008, 24(5): 947-958.
    田建涛,喻亨,祥扬准,等.矽卡岩成因及成矿作用研究进展综述[J].中国科技信息, 2005, 23(10): 107.
    童英,王涛,洪大卫,等.北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J].矿物岩石学杂志, 2010, 29(6): 619-641.
    王博,舒良树, Dominique Cluzel,等.伊犁北部博罗霍努岩体年代学和地球化学研究及其大地构造意义[J].岩石学报, 2007, 23(8): 1885-1900.
    王强,赵振华,许继峰,等.天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义[J].岩石学报, 2006, 22(1): 11-30.
    王之田,秦克章,张守林.大型铜矿地质与找矿[M].北京:冶金工业出版社, 1994.
    王志良,毛景文,张作衡,等.西天山古生代铜金多金属矿床类型、特征及其成矿地球动力学深化[J].地质学报, 2004, 78(6): 836-847.
    王志良,毛景文,张作衡,等.新疆天山斑岩铜钼矿地质特征、时空分布及其成矿地球动力学演化[J].地质学报, 2006, 80(7): 943-955
    吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题岩石学报, 2007, 23(6): 1217-1238.
    吴开兴,胡瑞忠,毕献武,等.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学, 2002, 30(3): 73-81.
    肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社, 2002.
    肖序常,汤耀庆,冯益民.新疆北部及邻区大地构造[M].北京:地质出版社, 1992: 1-169.
    徐培苍,李如璧,王永强. 1996.地学中的拉曼光谱.西安:陕西科学技术出版社.
    徐学义,马中平,夏祖春,等.天山中西段古生代花岗岩TIMS法锆石U-Pb同位素定年及岩石地球化学特征研究[J].西北地质, 2006, 39(1): 50-76.
    徐学义,夏林圻,马中平,等.北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J].岩石学报, 2006, 22(1): 83-94.
    杨志明,侯增谦.初论碰撞造山环境斑岩铜矿成矿模型[J].矿床地质, 2009, 28(5):515-538.
    张东阳,张招崇,艾羽,等.西天山莱历斯高尔一带铜(钼)矿成矿斑岩年代学、地球化学及其意义[J].岩石学报, 2009a, 25(6): 1319-1331.
    张东阳,张招崇,艾羽,等.西天山莱历斯高尔一带铜(钼)矿成矿斑岩体矿物学特征及其成岩成矿意义[J].岩石矿物学杂志, 2009b, 27(1): 3-16.
    张理刚.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社, 1985: 23-151.
    张良臣,刘德权.中国新疆优势金属矿产成矿规律[M].北京:地质出版社, 2006: 116~150.
    张旗,潘国强,李承东,等.花岗岩构造环境问题-关于花岗岩研究的思考之三[J].岩石学报, 2007, 23(11): 2683-2698.
    张旗,王焰,熊小林,等.埃达克岩和花岗岩:挑战与机遇[M].中国大地出版社, 2008.
    张玉萍,王瑞,王德贵.新疆博乐科克赛花岗闪长斑岩锆石SHRIMP U-Pb定年及找矿意义[J].新疆地质, 2008, 26(4): 340-342.
    张志欣,杨富全,闫升好,等.新疆包古图斑岩铜矿床成矿流体及成矿物质来源—来自硫、氢和氧同位素证据[J].岩石学报,2010, 26(3): 707-716.
    张作衡,毛景文,王志良,等.新疆西天山达巴特铜矿床地质特征和成矿时代研究[J].地质论评, 2006, 52(5): 683-689.
    张作衡,王志良,左国朝,等.西天山达巴特矿区火山岩的形成时代、构造背景及对斑岩型矿化的制约[J].地质学报, 2008, 82(11): 1494-1503.
    赵仁夫,程晓红,王庆明,等.西天山-西南天山成矿带勘查新发现及找矿远景[J].西北地质, 2006, 39(2): 35-56.
    赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床[M].北京:地质出版社, 1990.
    赵一鸣,吴良士,白鸽,等.中国主要金属矿床成矿规律[M].北京:地质出版社, 2004: 63~99.
    郑永飞,徐宝龙,周根陶.矿物稳定同位素地球化学研究[J].地学前缘, 2000, 7(2): 299-320.
    朱炳泉.地球科学中同位素体系理论与应用[M].北京:科学出版社, 1998. 216-235.
    朱明田,武广,解洪晶,等.新疆西天山莱历斯高尔斑岩型铜钼矿床辉钼矿Re-Os同位素年龄及流体包裹体研究[J].岩石学报, 2010, 26(12): 3667-3682
    朱志新,王克卓,徐达,等.依连哈比尔尕山石炭纪侵入岩锆石SHRIMP U-Pb测年及其地质意义[J].地质通报, 2006, 25(8): 986-991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700