用户名: 密码: 验证码:
多氯联苯在环境凝聚态水中的光致转化机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多氯联苯是一类毒性很强的持久性有机污染物,它们在环境中的转化和去除途径一直是人们所关注的热点问题。环境凝聚态水(如:江、河、湖、海、云、雨、雾、冰雪等)普遍存在于自然环境中。研究环境凝聚态水中联苯和氯代联苯的反应机理,有助于深入了解和全面掌握多氯联苯在自然环境中的转化规律。本文采用纳秒级激光瞬态光谱技术与高效液相色谱、气质联用技术相结合,以联苯和4-氯联苯作为主要研究对象,以N(Ⅲ)作为环境液态水中~·OH的主要来源,H_2O_2作为环境固态水中~·OH的主要来源,考察了环境凝聚态水中联苯(或4-氯联苯)与光诱导产生的~·OH之间的反应过程,并提出了反应机理。
     联苯与N(Ⅲ)混合溶液、4-氯联苯与N(Ⅲ)混合溶液光化学反应的主要研究结论如下:
     (1)联苯与N(Ⅲ)混合溶液、4-氯联苯与N(Ⅲ)混合溶液在紫外光的作用下均能够发生明显的反应。反应都起始于它们与N(Ⅲ)光解产生的~·OH之间的加成作用。实验测得的二级反应速率常数分别为(9.6±0.1)×10~9L mol~(-1) s~(-1)(298 K)、(8.0±0.5)×10~9 Lmol~(-1)s~(-1)(298 K)。
     (2)pH值对于联苯、4-氯联苯的降解效率影响显著,pH值越高,联苯、4-氯联苯的降解速率越慢。
     (3)~·OH加合产物Bp…OH加合物、4-PCB…OH加合物的衰减均较为复杂。溶液中存在的H~+、HONO、H_2ONO~+都会对其衰减产生影响。此外,4-PCB…OH加合物还能够发生自身衰减。与H~+、H_2ONO~+的作用将导致羟基化合物的生成,与HONO的作用将导致硝基化合物的生成。
     冰相中联苯与H_2O_2光化学反应的主要研究结论如下:
     (1)在冰相中联苯与H_2O_2同样能够发生光化学反应。但是,由于联苯被分隔在冰内部的晶界位置,H_2O_2则处于晶格中,两者不能有效的接触,只能通过~·OH在晶格中的扩散才有机会碰撞并发生反应,冰相的反应速率较之液相以及过冷液大幅下降。
     (2)冰内部存在的有机物(如:异丙醇、乙酸、丙酮等)主要分布于冰内部的QLL中,因此,对~·OH的淬灭现象不明显。相反,有机物不仅可以与联苯发生传能作用,促进联苯的直接光解,还可导致冰中QLL分数的提高,加速联苯的降解。
     以上研究结论将为联苯、4-氯联苯乃至多氯联苯等有机污染物在环境中发生的光化学转化提供重要的参考数据。
The fate of polychlorinated biphenyls in the environment constituted one oftoday's public environmental concerns in respect that they are recognized as one kindof persistent organic pollutants.Condensed water,eg.river,lake,sea,clouds,rain,fog,ice,and snow,is abundant in environment.The study on the reactions ofbiphenyl/4-chlorobiphenyl in environmental condensed water would facilitate thethorough understanding of the sink of polychlorinated biphenyls in environment.Nanosecond laser photolysis/transient absorption spectroscopic technique,togetherwith HPLC-UV and GC-MS, are employed to investigate photo-inducedtransformation mechanism of biphenyl/4-chlorobiphenyl.N(Ⅲ) and H_2O_2 are selectedas ~·OH precusor in liquid phase and in ice phase respectively.According to theassignment of transient species combined with the analysis of products distributions,the biphenyl/4-chlorobiphenyl reaction mechanism is proposed.
     Based on the experiment on the photochemical reaction between biphenyl(4-chlorobiphenyl) and N(Ⅲ),the following points could be drawn:
     (1) Both biphenyl and 4-chlorobiphenyl would undergo photo-induced reactionin the presence of N(Ⅲ) in aqueous phase.The reactions are initiated by the additionof OH radical,produced from N(Ⅲ) photolysis,to benzene ring.The second-orderreaction rate constants for the reactions of OH radical with biphenyl and4-chlorobiphenyl were determined to be (9.6±0.1)×10~9 L mol~(-1) s~(-1) and (8.0±0.5)×10~9 L mol~(-1) s~(-1) at 298 K,respectively.
     (2) It is found that pH value would exert a significant impact on thephotochemical reaction.The decomposition rate of biphenyl and 4-chlorobiphenylslows down with pH.
     (3) The decay of Bp…OH adduct and 4-PCB…OH adduct is fairly complicated.H~+,HONO,H_2ONO~+ are found to be capable of reacting with Bp…OH adduct and4-PCB…OH adduct.In addition,4-PCB…OH adduct can also undergo self decay.The reactions of Bp…OH adduct and 4-PCB…OH adduct with H~+,H_2ONO~+ are morelikely to produce hydroxylated compounds,while the reactions with HONO toproduce nitrate ones.
     Based on the experiment on the photochemical reaction between biphenyl(4-chlorobiphenyl) and H_2O_2 in ice,following conclusions could be drawn:
     (1) The photochemical reaction between biphenyl and H_2O_2 could also take placein ice phase.Since biphenyl is mainly located on grain boundary and H_2O_2 are locatedin bulk ice,the reaction rate is fairly slow as compared with that in liquid phase andsupercooled water.
     (2) Co-exist organic pollutants are concentrated in quasi-liquid layer.Therefore,the scavenge of OH radical in ice phase is not significant.On the contrary,becauseorganic pollutants could not only tranfer energy with biphenyl but also increase theQLL fraction in ice,the degradation of biphenyl is acclerated in ice in the presence ofco-exist organic pollutants.
     These conclusions will be helpful to the study on photo-induced transformationof organic pollutants like biphenyl and 4-chlorobiphenyl in environment.
引文
[1]Petrenko VF,Whitworth RW,Physics of Ice[M].New York:Oxford University Press,1999.
    [2]R(o|¨)ntgen WC.Ueber die constitution des flüssigen wassers (On the constitution of liquid water)[J].Ann.Phys.u.Chem.,1892,45:91-97.
    [3]Bernal JD,Fowler RH.A theory of water and ionic solution,with particular reference to hydrogen andhydroxyl ions[J].Journal of Chemical Physics,1933,1(8):515-548.
    [4]Stillinger FH.Water Revisited[J].Science,1980,209:451-457.
    [5]Bukowski R,Szalewicz K,Groenenboom GC,van der Avoird A.Predictions of the Properties of Water fromFirst Principles[J].Science,2007,315:1249-1252.
    [6]Wemet P.,Nordlund D.,Bergmann U.,Cavalleri M.,Odelius M.,Ogasawara H.,N(a|¨)slund L.(?).,Hirsch T.K.,Ojam(a|¨)e L.,Glatzel P.,Pettersson L.G,M,,Nilsson A.The Structure of the First Coordination Shell in Liquid Water[J].Science,2004,304(5673):995-999.
    [7]Tokushima T,Harada Y,Takahashi O,Senba Y,Ohashi H,Pettersson LGM,Nilsson A,Shin S.High resolution X-ray emission spectroscopy of liquid water:The observation of two structural motifs[J].Chemical Physics Letters,2008,460:387-400.
    [8]Manahan SE.Environmental Chemistry,7th ed.[M].Florida:CRC Press,2000:9.
    [9]Hobbs PV.Ice Physics,Oxford:Clarendon Press,1974.
    [10]Lobban C,Finney JL,Kuhs WF.The structure of a new phase of ice[J].Nature,1998,391:268-270.
    [11]Carrasco J,Michaelides A,Forster M,Haq S,Raval R,Hodgson A.A one-dimensional ice structure built from pentagons[J].Nature Materials,2009,8:427-431.
    [12]Faraday,M.Proc.R.Soc.London 1860,10:152.
    [13]Dash JG,Fu HY,Wettlaufer JS.The premelting of ice and its environmental consequences[J].Rep.Prog.Physics,1995,58:115-167.
    [14]Dash JG.Thermonuclear Pressure in Surface Melting:Motivation for Frost Heave[J].Science 1989,246,1591-1593.
    [15]Takagi SJ.Colloid Interface Sci.,1990,137:446.
    [16]Abraham FF.Statistical surface physics:a perspective via computer simulation of microclusters,interfaces and simple films Rep.Prog.Phys.1982,45,1113-1161.
    [17]Phillips JM.Layer by layer melting of argon films on graphite:a computer simulation study[J].Phys.Lett.A 1990,147,54-58.
    [18]Hakkinen,H.;Manninen,M.Computer simulation of disordering and premelting of low-index faces of copper[J].Phys.Rev.B 1992,46,1725-1742.
    [19]Lowen,H.Phys.Rep.-Rev.Sec.Phys.Lett.1994,237,249.
    [20]Ohnesorge,R.;Lowen,H.;Wagner,H.Phys.Rey.E 1994,50,4801.
    [21]Landa,A.;Wynblatt,P.;Hakkinen,H,;Barnett,R.N.;Landman,U.Phys.Rev.B 1995,51,10972.
    [22]Wettlaufer,J.S.Phys.Rev.Lett.1999,82,2516.
    [23]Golecki,I.;Jaccard,C.J.Phys.C:Solid State Phys.1978,11,4229.
    [24]Beaglehole,D.;Nason,D.Surf.Sci.1980,96,357.
    [25]Gilpin,R.R.J.Colloid Interface Sci.1980,77,435.
    [26]Elbaum,M.;Lipson,S.G;Dash,J.G.J.Cryst.Growth 1993,129,491.
    [27]Conklin,M.H.;Bales,R..C.J.Geophys.Res.-Atmos.1993,98,16851.
    [28] Dosch, H.; Lied, A.; Bilgram, J. H. Surf. Sci. 1996, 366, 43.
    [29] Furukawa, Y.; Nada, H. J. Phys. Chem. B 1997, 101, 6167.
    [30] Doppenschmidt, A.; Butt, H. J. Langmuir 2000, 16, 6709.
    [31] Pittenger, B.; Fain, S. C; Cochran, M. J.; Donev, J. M. K.; Robertson, B. E.; Szuchmacher, A.; Overney, R. M. Phys. Rev. B 2001, 6313, art. no.
    [32] Bluhm, H.; Ogletree, D. F.; Fadley, C. S.; Hussain, Z.; Salmeron, N. J. Phys.: Condens. Matter 2002, 14, L227.
    [33] Sadtchenko, V.; Ewing, G E. J. Chem. Phys. 2002, 116, 4686.
    [34] Girifalco LA. Statistical physics of materials[M]. New York: Wiley, 1973: Chap. 8.
    [35] Satoh, K.; Uchida, T.; Hondoh, T; Shinji, M. Proc. NIPR Symp. Polar Meterol. Glaciol. 1996, 10: 73.
    [36] Goto, K.; Hondoh, T.; Higashi, A. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 1986, 25, 351.
    [37] Woafo, P.; Takontchoup, R.; Bokosah, A. S. J. Phys. Chem. Solids 1995, 56, 1277.
    [38] Domin(?) F, Thibert E, Silvente E, Legrand M, Jafrezo JL. Determining past atmospheric HC1 mixing ratios from ice core analyses[J]. J. Atmos. Chem. 1995, 21: 165-186.
    [39] Domin(?) F, Thibert E. Diffusion of HNO_3in ice. Comments[J]. Geophys. Res. Lett. 1998, 25, 4389-4390.
    [40] Sommerfeld RA, Knight CA, Laird SK. Diffusion of HNO_3 in ice to comments[J]. Geophys. Res. Lett. 1998, 25,4391-4392.
    [41] Sommerfeld RA, Knight CA, Laird SK. Diffusion of HNO_3 in ice[J]. Geophys. Res. Lett. 1998, 25, 935-938.
    [42] Livingston FE, Smith JA, George SM. Depth-Profiling and Diffusion Measurements in Ice Films Using Infrared Laser Resonant Desorption[J]. Anal. Chem. 2000, 72, 5590-5599.
    [43] Domin6 F, Xueref I. Evaluation of depth profiling using laser resonant desorption as a method to measure diffusion coefficients in ice[J]. Anal. Chem. 2001, 73,4348-4353.
    [44] Livingston FE, Smith JA, George SM. General Trends for Bulk Diffusion in Ice and Surface Diffusion on Ice[J]. J. Phys. Chem. A 2002, 106, 6309-6318.
    [45] Perrier S, Sassin P, Domine F. Diffusion and solubility of HCHO in ice: Preliminary results[J]. Can. J. Phys. 2003,81,319-324.
    [46] Grannas AM, Jones AE, Dibb J, Ammann M, Anastasio C, Beine HJ, Bergin M, Bottenheim J, Boxe CS, Carver G, Chen G, Crawford JH, Domin(?) F, Frey MM, Guzman MI, Heard DE, Helmig D, Hoffmann MR, Honrath RE, Huey LG, Hutterli M, Jacobi HW, Kl(?)n P, Lefer B, McConnel J, Plane J, Sander R, Savarino J, Shepson PB, Simpson WR, Sodeau JR, von Glasow R, Weller R, Wolff EW, Zhu T, An overview of snow photochemistry: evidence, mechanisms and impacts[J]. Atmospheric Chemistry and Physics, 2007, 7:4392-4373.
    [47] Wiscombe W, Warren S. A model for the spectral albedo of snow. 1: pure snow[J]. J. Atmos. Sci., 1980, 37: 2712-2733.
    [48] Grenfell TC, Perovich DK, Ogren JA. Spectral albedos of an alpine snowpack[J]. Cold Regions Sci. Technol., 1981,4: 121-127.
    [49] Warren, S. G. Rev. Geophys. 1982, 20, 67.
    [50] Grenfell TC, Warren SG, Mullen PC. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths[J]. J. Geophys. Res., 1994, 99: 18669-18684,.
    [51] Perovich, D. K. and Govoni, J. W.: Absorption coefficients of ice from 250 to 400 nm, Geophys. Res. Lett., 18, 1233-1235, 1991.
    [52] Bohren, C. F. and Barkstrom, B.-R.: Theory of the optical properties of snow, J. Geophys. Res., 79, 4527-4535, 1974.
    [53] Grenfell, T. C. and Maykut, G. A.: The optical properties of ice and snow in the Arctic basin, J. Glaciol., 18(80), 445-462, 1977.
    [54] King, M. D. and Simpson, W. R.: Extinction of UV radiation in Arctic snow at Alert, Canada (82° N), J. Geophys. Res., 106,12 499-12 507,2001.
    [55] Simpson, W. R., King, M. D., Beine, H. J., Honrath, R. E., and Zhou X.: Radiation-transfer modeling of snowpack photochemical processes during ALERT2000, Atmos. Env., 36,2663-2670,2002a.
    [56] Warren, S. G., Brandt, R. E. and Grenfell, T. C: Visible and nearultraviolet absorption spectrum of ice from transmission of solar radiation into snow, Appl. Optics, 45,5320-5334,2006.
    [57] Galbavy, E. S., Anastasio, C, Lefer, B. L., and Hall, S. R.: Light penetration in the snowpack at Summit, Greenland: Part 1. Nitrite and hydrogen peroxide photolysis, Atmos. Environ., 41(24), 5077-5090,2007.
    [58] Galbavy, E. S., Anastasio, C, Lefer, B. L., and Hall, S. R.: Light penetration in the snowpack at Summit, Greenland: Part 2. Nitrate photolysis[J]. Atmos. Environ., 41(24), 5091-5100,2007.
    [59] Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and precipitation, Reidel Pub. Co., Dordrecht, Holland, 1978.
    [60] Mitchell, D. V. and Lamb, D.: Influence of riming on the chemical composition of snow in winter orographic storms, J. Geophys. Res., 94, 14 831-14 840,1989.
    [61] Poulida, O., Schwikowski, M., Baltensperger, U., Staehelin, J., and Gaeggeler, H. W.: Scavenging of atmospheric constituents in mixed phase clouds at the high-alpine site Jungfraujoch-part Ⅱ. Influence of riming on the scavenging of particulate and gaseous chemical species, Atmos. Environ., 32,3985-4000,1998.
    [62] Gross GW. Some effects of trace inorganics on the ice/water system[J]. Adv. Chem. Series 1968,27-97. [63] Gross, G. W.; McKee, C; Wu, C. H. J. Chem. Phys. 1975,62,3080. [64] Gross, G. W.; Wong, P. M.; Humes, K. J. Chem. Phys. 1977,67, 5264. [65] Gross, G. W.; Gutjahr, A.; Caylor, K. J. Physique 1987,48,527.
    [66] Takenaka, N.; Ueda, A.; Daimon, X; Bandow, H.; Dohmaru, X; Maeda, Y. J. Phys. Chem. 1996, 100, 13874. 11-32.
    [67] Wolff, E. W. Chemical exchange between the atmosphere and polar ice; Springer-Verlag: Berlin, 1996; Vol. Ⅰ 43.
    [68] Killawee, J. A.; Fairchild, I. J.; Tison, J. L.; Janssens, L.; Lorrain, R. Geochim. Cosmochim. Acta 1998, 62, 3637.
    [69] Rempel AW, Waddington ED, Wettlaufer JS, Worster MG Possible displacement of the climate signal in ancient ice by premelting and anomalous diffusion[J]. Nature 2001,411:568-571.
    [70] Mulvaney R, Wolff EW, Oates K. Sulfuric acid at grain boundaries in Antarctic ice[J]. Nature 1988, 331: 247-249.
    [71] Nye JF. The geometry of water veins and nodes in polycrystalline ice[J]. J. Glaciol. 1989,35:17-22.
    [72] Fukazawa H, Sugiyama K, Mae SJ, Narita H, Hondoh T. Acid ions at triple junction of Antarctic ice observed by Raman scattering[J]. Geophys. Res. Lett. 1998,25,2845-2848.
    [73] Dubowski Y, Colussi AJ, Hoffmann MR. Nitrogen dioxide release in the 302 nm band photolysis of spray-frozen aqueous nitrate solutions: Atmospheric Implications[J]. J. Phys. Chem. A, 2001,105:4928-4932.
    [74] Wei X, Miranda PB, Shen YR. Surface vibrational spectroscopic study of surface melting of ice[J]. Phys. Rev. Lett, 2001,86(8): 1554-1557.
    [75] Cho H, Shepson PB, Barrie LA, Cowin JP, Zaveri R. NMR investigation of the quasi-brine layer in ice/brine mixtures[J]. J. Phys. Chem. B, 2002,106,11226-11232. nitrate in ice and water between 238 and 294 K[J].J.Phys.Chem.A,2002,106:6967-6971.
    [77]Chu L.Anastasio C.Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice[J].J.Phys.Chem.A,2003,107:9594-9602,.
    [78]Kl(?)ov(?) J,Kl(?)n P,Nosek J,Holoubek I.Environmental ice photochemistry:monochlorophenols[J].Environ.Sci.Technol.,2003,37:1568-1574.
    [79]Robinson C,Boxe CS,Guzm(?)n MI,Colussi A J,Hoffmann MR.Acidity of Frozen Electrolyte Solutions[J].J.Phys.Chem.B,2006,110:7613-7616.
    [80]Heger D,Jirkovsky J,Kl(?)n P.Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy[J].J.Phys.Chem.A,2005,109:6702-6709,.
    [81]Lodge JP,Baker ML,Pierrard JM.Observations on ion separation in dilute solutions by freezing[J].J.Chem.Phys.1956,24:716-719.
    [82]陈震.水环境科学[M].北京:科学出版社,2006:8.
    [83]陆渝蓉.地球水环境学[M].南京:南京大学出版社,1999.
    [84]Pruppacher HR,Jaenicke R.The processing of water-vapor and aerosols by atmospheric clouds,a global estimate[J].Atmospheric Research,1995,38,283-295.
    [85]Warneck P.Chemistry of the Natural Atmosphere.2~(nd).San diego:Academic Press,1999:69-78.
    [86]Seinfeld JH.Atmospheric Chemistry and Physics of Air Pollution.New York:John Wiley & Sons,1986:213-214.
    [87]唐孝炎.大气环境化学.北京:高等教育出版社.1991:264-265.
    [88]Martin LR.Atmospheric liquid water as a reaction medium,Conference on gas-liquid chemistry of natural waters,Brookhaven National Laboratory,Upton,NY,April 1986.
    [89]Pielke,R.A.,Liston,G.E.,Chapman,W.L.,and Robinson,D.A.:Actual and insolation-weighted northern hemisphere snow cover and sea ice between 1973-2002[J].Clim.Dynam.22,591-595,2004.
    [90]Ravishankara AR,Heterogeneous and Multiphase Chemistry in the Troposphere[J],Science,1997,276:1058-1075.
    [91]Ballschmiter,K.,Zell M.Analysis of Polychlorinated Biphenyls (PCBs) by Glass Capillary Gas Chromatography [J].Fresenius Z.Anal.Chem.,1980,302:20-31
    [92]王连生.有机污染物化学(下).北京:科学出版社,1991.
    [93]Paasivirta J,Sinkkonen SI.Environmentally Relevant Properties of All 209 Polychlorinated Biphenyl Congeners for Modeling Their Fate in Different Natural and Climatic Conditions[J].J.Chem.Eng.Data,2009,54 (4):1189-1213.
    [94]Jones KC and de Voogt P.Persistent organic pollutants(POPs):state of the science[J].Environ.Pollut.1999,100:209-221
    [95]Strachan WMJ,Huneault H.Automated rain sampler for trace organic substances[J].Environ.Sci.Technol.1984,18:127-130.
    [96]Offenberg JH;Baker JE.Polychlorinated Biphenyls in Chicago Precipitation:Enhanced Wet Deposition to Near-Shore Lake Michigan[J].Environ.Sci.Technol.1997,31:1534-1538.
    [97]Van Ry DA,Gigliotti CL,Glenn TR,Nelson ED,Torten LA,Eisenreich SJ.Wet Deposition of Polychlorinated Biphenyls in Urban and Background Areas of the Mid-Atlantic States[J].Environ.Sci.Technol.2002,36:3201-3209.
    [98]Murray M,Andren A.Precipitation scavenging of polychlorinated biphenyl congeners in the Great Lakes region[J].Atmos.Environ.,1992,26:883-897.
    [99]Franz TP,Eisenreich S J,Swanson MB.Evaluation of precipitation samplers for assessing atmospheric fluxes of trace organic contaminants[J]. Chemosphere, 1991,23: 343-361.
    [100] Agrell C, Larsson P, Okla L, Agrell J. PCB congeners in precipitation, wash out ratios and depositional fluxes within the Baltic Sea region, Europe[J]. Atmos. Environ., 2002, 36: 371-383.
    [101] Swackhamer DL, McVeety BD, Hites RA. Deposition and evaporation of polychlorobiphenyl congeners to and from Siskiwit Lake, Isle Royale, Lake Superior[J]. Environ. Sci. Technol., 1988,22:664-672.
    [102] Franz TP, Eisenreich SJ. Wet deposition of polychlorinated biphenyls to Green Bay, Lake Michigan[J]. Chemosphere, 1993,26: 1767-1788.
    [103] Park IS, Wade TL, Sweer S. Atmospheric deposition of organochlorine contaminants to Galveston Bay, Texas[J]. Atmospheric Environment, 2001,35: 3315-3324.
    [104] Poster DL, Baker JE. Influence of Submicron Particles on Hydrophobic Organic Contaminants in Precipitation. 1. Concentrations and Distributions of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Rainwater[J]. Environ. Sci. Technol. 1996,30:341-348.
    [105] Duinker JC, Bouchertall F. On the distribution of atmospheric polychlorinated biphenyl congeners between vapor phase, aerosols and rain[J]. Environ. Sci. Technol., 1989,23:57-62.
    [106] Blanchard M, Teil MJ, Guigon E, Larcher-Tiphagne K, Ollivon D, Garban B, Chevreuil M. Persistent toxic substance inputs to the River Seine basin (France) via atmospheric deposition and urban sludge application[J]. Science of the Total Environment, 2007,375(1-3): 232-243.
    [107] Mandalakis M, Stephanou EG Wet deposition of polychlorinated biphenyls in the Eastern Mediterranean[J]. Environ Sci Technol, 2004, 38, 3011-3018.
    [108] Villeneuve JP, Cattini C. Input of chlorinated hydrocarbons through dry and wet deposition to the Western Mediterranean[J]. Chemosphere, 1986,15:115.
    [109] Backe C, Larsson P, Agrell C. Spatial and temporal variation of polychlorinated biphenyl (PCB) in precipitation in southern Sweden[J]. Sci. Total Environ., 2002,285:117-132.
    [110] Harner T, Mackay D. Measurement of octanol-air partition coefficients for chlorobenzenes, PCBs and DDT. Environ Sci Technol 1995;29:1599-1606.
    [111] Carrera G, Fernandez P, Grimalt JO, Ventura M, Camarero L, Catalan J, Nickus U, Thies H, Psenner R. Atmospheric Deposition of Organochlorine Compounds to Remote High Mountain Lakes of Europe[J]. Environ. Sci. Technol., 2002,36:2581-2588.
    [112] Dickhut RM, Gustafson KE. Atmospheric inputs of selected polycyclic aromatic hydrocarbons and polychlorinated biphenyls to southern Chesapeake Bay[J]. Mar. Pollut. Bull., 1995,30: 385-396.
    [113] Pankow JF, Bidleman TF. Interdependence of the slopes and intercepts from log log correlations of measured gas particle partitioning and vapor-pressure. 1. theory and analysis of available data[J]. Atmos. Environ. Part A-General Topics, 1992,26:1071.
    [114] Falconer RL, Bidleman TF. Vapor pressures and predicted particle/gas distributions of polychlorinated biphenyl congeners as functions of temperature and ortho-chlorine substitution[J]. Atmos. Environ., 1994,28,547.
    [115] Capel PD, Leuenberger C, Giger W. Hydrophobic organic-chemicals in urban fog[J]. Atmospheric Environment Part A-General Topics 1991,25:1335-1346.
    [116] Lee WG, Yeh J. Sampling and analysis of atmospheric fog in the suburban area of a severely polluted city[J]. Journal of Aerosol Science, 1995,26: S383-S384.
    [117] Simcik MF. The importance of surface adsorption on the washout of semivolatile organic compounds by rain[J]. Atmospheric Environment, 2004,38:491-501.
    [118] Goss K. Predicting the enrichment of organic compounds in fog caused by adsorption on the water surface[J]. Atmos Environ, 1994,28(21): 3513-3517.
    [119] Valsaraj KT. On the physical-chemical aspects of partitioning of non-polar hydrophobic organics at the air-water interface[J].Chemosphere,1988,17:875-887.
    [120]Eisenreich S J,Looney BB,Thornton JD.Airborne organic contaminants in the Great Lakes ecosystem[J],Environ.Sci.Technol.1981,15:30-38.
    [121]Bums KA,Villeneuve JP.Chlorinated hydrocarbons in the open mediterranean ecosystem and implications for mass balance calculations[J].Mar.Chem.1987,20:337-359.
    [122]Tolosa 1,Readman JW,Fowler SW,Villeneuve JP,Dachs J,Bayona JM,Albaiges J.PCBs in the western Mediterranean.Temporal trends and mass balance assessment[J],Deep Sea Res.II,1997,44:907-928.
    [123]Sinklonen S,Paasivirta J.Degradation half-life times of PCDDs,PCDFs and PCBs for environmental fate modeling [J].Chemosphere,2000,40:943-949.
    [124]Li A,Rockne KJ,Sturchio N,Song W,Ford JC,Wei H.PCBs in sediments of the Great Lakes - Distribution and trends,homolog and chlorine patterns,and in situ degradation[J].Environmental Pollution,2009,157:141-147.
    [125]Zhang ZL,Hong HS,Zhou JL,et al.Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary,Southeast China[J].Chemosphere,2003,52:1423-1430.
    [126]任磊,毕宇强,苏燕,王晓蓉.五指山地区水和沉积物中HCHs、DDTs和PCBs分布特征及生态风险[J].农业环境科学学报,2007,26(5):1707-1713.
    [127]Xiangping Nie,Chongyu Lan b,Taili Wei,Yufeng Yang.Distribution of polychlorinated biphenyls in the water,sediment and .fish from the Pearl River estuary,China[J].Marine Pollution Bulletin,2005,50:537-546.
    [128]孙振中,戚隽渊,曾智超,张玉平,孙骥,郝永梅.长江口九段沙水域环境及生物体内多氯联苯分布[J].环境科学研究,2008,21:92.97.
    [129]丘耀文,周俊良,Maskaoui K,颜文,洪华生,王肇鼎.大亚湾海域多氯联苯及有机氯农药研究[J].海洋环境科学,2002,21:46-51.
    [130]谭培功,仕兰,曾宪杰,李静.莱州湾海域水体中有机氯农药和多氯联苯的浓度水平和分布特征[J].中国海洋大学学报,2006,36:439-446.
    [131]王泰,余刚,张祖麟.海河与渤海湾水体PCBs和OCPs污染水平与分布[A].见:第一届持久性有机污染物全国学术研讨会暨2006持久性有机污染物论坛论文集[C],2006:102-106.
    [132]张祖麟,洪华生,哈里德,周俊良,陈伟琪,徐立.厦门港表层水体中有机氯农药和多氯联苯的研究[J].海洋环境科学,2000,19:48-51.
    [133]Hong H,Xu L,Zhang L,et al.Environmental Fate and Chemistry of Organic Pollutions in the sediment of Xiamen and Victoria Harbours[J].Marine Pollution Bulletin,1995,31 (4-12):229-236.
    [134]李敏学,岳贵春,高福民等.第二松花江中PCBs与有机氯农药的迁移和分布[J].环境化学,1989,8(2):49-54.
    [135]张祖麟,陈伟琪,哈里德,周俊良,徐立,洪华生.九龙江口水体中多氯联苯的研究[J].云南环境科学,2000,19:124-129.
    [136]Zhang ZL,Huang J,Yu G Hong HS.Occurrence of PAHs,PCBs and organochlorine pesticides in the Tonghui River ofBeijing,China[J].Environmental Pollution,2004,130:249-261.
    [137]习志群,储少岗,徐晓白,张甬元,徐盈.东湖水体中多氯联苯的研究[J].海洋与湖沼,1998,29(4):436-440.
    [138]杨永亮,潘静,李红莉,高虹,史双昕,石磊.烟台、日照近海及南四湖沉积物中的多氯联苯[J].矿物岩石地球化学通报,2003,22(2):108-113.
    [139]He M,Sun Y,Li X,Yang Z.Distribution patterns of nitrobenzenes and polychlorinated biphenyls in water,suspended particulate matter and sediment from mid- and down-stream of the Yellow River (China)[J].Chemosphere,2006,65:365-374.
    [140]Yang Z,Shen Z,Gao F,Tang Z,Niu J.Occurrence and possible sources of polychlorinated biphenyls in surface sediments from the Wuhan reach of the Yangtze River,China[J].Chemosphere,2009,74:1522-1530.
    [141]Shen M,Yu YJ,Zheng GJ,Yu HX,Lamn PKS,Feng JF,Wei ZB.Polychlorinated biphenyls and polybrominated diphenyl ethers in surface sediments from the Yangtze River Delta[J].Marine Pollution Bulletin,2006,52:1299-1304.
    [142]李洪,傅宇众,周传光等.大连湾和锦州湾表层沉积物中有机氯农药和多氯联苯的分布特征[J].海洋环境科学,1998,17(2):73-76.
    [143]杨永亮,潘静,李悦等.青岛近海沉积物PCBs的水平与垂直分布及贝类污染[J].中国环境科学,2003,3(5):515-520.
    [144]孙维相,陈荣莉,孙安强等.南迦巴瓦峰地区有机氯化合物的污染[J].环境科学,1986,7(6):64-69.
    [145]康跃惠,盛国英,傅家谟等.珠江三角洲一些表层沉积物中多氯联苯的初步研究[J].环境化学,2000,19(3):262-269.
    [146]WHO,1993.Polychlorinated biphenyls and terphenyls.2nd Ed.Geneva:154.
    [147]Rissato SR,Galhiane MS,Ximenes VF,et al.Organochlorine pesticides and polychlorinated biphenyls in soil and water samples in the Northeastern part of S(?)o Paulo State,Brazil[J].Chemosphere,2006,65:1949-1958.
    [148]Hope B,Scatolini S,Titus E,et al.Distribution patterns of polychlorinated biphenyl congeners in water,sediment and biota from midway Atoll (North Pacific Ocean)[J].Marine Pollution Bulletin,1997,34(7):548-563.
    [149]Howell NL,Suarez MP,Rifai HS,et al.Concentrations of polychlorinated biphenyls (PCBs) in water,sediment,and aquatic biota in the Houston Ship Channel,Texas[J].Chemosphere,2008,70(4):593-606.
    [150]Manodori L,Gambaro A,Piazza R,et al.PCBs and PAHs in sea-surface microlayer and subsurface water samples of the Venice Lagoon (Italy)[J].Marine Pollution Bulletin,2006,52:184-192.
    [151]Pinto B,Garritano SL,Cristofani R,et al.Monitoring of polychlorinated biphenyl contamination and estrogenic activity in water,commercial feed and farmed seafood[J].Environ Monit Assess,2008,144:445-453.
    [152]Babu Rajendran R,Imagawa T,Tao H,et al.Distribution of PCBs,HCHs and DDTs,and their ecotoxicological implications in Bay of Bengal,India[J].Enviro Int,2005,31:503-512.
    [153]Wurl O,Obbard JP.Chlorinated pesticides and PCBs in the sea-surface microlayer and seawater samples of Singapore[J].Marine Pollution Bulletin,2005,50:1233-1243.
    [154]Wurl O,Obbard JP.Organochlorine pesticides,polychlorinated biphenyls and polybrominated diphenyl ethers in Singapore's coastal marine sediments[J].Chemosphere,2005,58:925-933.
    [155]Onuska FI,Davies S.Multivariate observations of the distribution of polychlorinated biphenyls in environmental compartments of two harbors[J].Int.J.Environ.Anal.Chem.,1991,43:137-150.
    [156]Hartmann PC,Quinn JG,Cairns RW,King JW.Polychlorinated biphenyls in Narragansett Bay surface sediments[J].Chemosphere,2004,57:9-20.
    [157]Camacho-lbar VF,McEvoy J.Total PCBs in Liverpool Bay sediments[J].Marine Environmental Research,1996,41:241-263.
    [158]Barakat AO,Kim M,Qian Y,Wade TL.Organochlorine pesticides and PCB residues in sediments of Alexandria Harbour,Egypt [J].Marine Pollution Bulletin,2002,44:1421-1434.
    [159]Bavel BV,Nat C,Bergqvist P,et al.Levels of PCBs in the Aquatic Environment of the Gulf of Bothnia Benthic Species and Sediments[J].Marine Pollution Bulletin,1995,32(2):210-218.
    [160]Iwata H,Tanabe S,Sakai N,et al.Geographical distribution of persistent orano-chlorines in air,water,and sediments from Asia and Oceania,and their implications for global redistribution from lower latitudes[J].Environmental Pollution,1994,85:15-33.
    [161]Hong SH,Yim UH,Shim WJ,Li DH,Oh JR.Nationwide monitoring of polychlorinated biphenyls and organochlorine pesticides in sediments from coastal environment of Korea[J].Chemosphere,2006,64:1479-1488.
    [162] Mangani F, Crecenrini G, Sisti E, et al. PAHs, PCBs, and chlorinated pesticides in Meditereaneal coastal sediments[J]. Int J. Environ. Anal. Chem., 1991, 45(2): 89-100.
    [163] Derek CGM, Alex O, Norbert PG, et al. Spatial trends and historical deposition of polychlorinated biphenyls in Canadian midlatitude and Arctic Lake sediments[J]. Environ. Sci. Technol., 1996, 30(12): 3609-3617.
    [164] Fernandez MA, Alonso C, Gonzalez MJ, Hern(?)ndez LM. Occurrence of organochlorine insecticides PCBs and PCBs congeners in waters and sediments of the Ebro River (Spain)[J]. Chemosphere, 1999, 38: 33-43.
    [165] Fillmann G, Readman JW, Tolosa I, Bartocci J, Villeneuve JP, Cattini C, Mee LD. Persistent organochlorine residues in sediments from the Black Sea[J]. Mar. Pollut. Bull., 2002, 44: 122-133.
    [166] Jeong GH, Kim HJ, Joo YJ, Kim YB, So HY. Distribution characteristics of PCBs in the sediments of the lower Nakdong River Korea[J]. Chemosphere, 2001, 44: 1403-1411.
    [167] Bremle G, Okla L, Larsson P. Uptake of PCBs in fish in contaminated fiver systems: bioconcentration factors measured in field[J]. Environmental Science & Technology, 1995, 29: 2010-2015.
    [168] Karapanagioti HK, Childs J, Sabatini DA. Impacts of heterogeneous organic matter on phenanthrene sorption: Different soil and sediment samples[J]. Environmental Science & Technology, 2001, 35(23): 4684-4690.
    [169] Domin(?), F.; Cabanes, A.; Legagneux, L. Structure, microphysics, and surface area of the Arctic snowpack near Alert during the ALERT2000 campaign. Atmos. Environ. 2002, 36, 2753-2765.
    [170] Franz, T. P.; Eisenreich, S. J. Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota. Environ. Sci. Technol. 1998, 24, 1771-1778.
    [171] Lei, Y. D.; Wania, F. Is rain or snow a more efficient scavenger of organic chemicals? Atmos. Environ. 2004, 38,3557-3571.
    [172] Hutterli, M.A.; Bales, R.C.; McConnell, J.R.; Stewart, R.W. HCHO in Antarctic snow: Preservation in ice cores and air-snow exchange. Geophys. Res. Lett. 2002,29, 1235.
    [173] Beine, H. J.; Honrath, R. E.; Domine', F.; Simpson, W. R.; Fuentes, J. D. NOx during background and ozone depletion periods at Alert: Fluxes above the snow surface. J. Geophys. Res. 2002, D107.
    [174] Perrier, S.; Houdier, S.; Domine', F.; Cabanes, A.; Legagneux, L.; Sumner, A. L.; Shepson, P. B. Formaldehyde in Arctic snow. Incorporation into ice particles and evolution in the snowpack. Atmos. Environ. 2002, 36, 2695-2705.
    [175] Houdier, S.; Perrier, S.; Domine', F.; Grannas, A. M.; Guimbaud, C; Shepson, P. B.; Boudries, H.; Bottenheim, J. W. Acetaldehyde and acetone in the Arctic snowpack during the ALERT2000 field campaign. Snowpack composition, incorporation processes and atmospheric impact. Atmos. Environ. 2002, 36, 2609-2618.
    [176] Herbert, B. M. J.; Halsall, C. J.; Villa, S.; Jones, K. C; Kallenborn, R. Rapid changes in PCB an OC pesticide concentrations in Arctic snow. Environ. Sci. Technol. 2005, 39,2998-3005.
    [177] Peters, A. J.; Gregor, D. J.; Teixeira, C. F.; Jones, N. P.; Spencer, C. The recent depositional trend of polycyclic aromatic hydrocarbons and elemental carbon to the Agassiz ice cap, Ellesmere Island, Canada. Sci. Total Environ. 1995, 160/161, 167-179.
    [178] Donald, D.; Holdsworth, G; Muir, D. C. G; Rosenberg, B.; Sole, A.; Schindler, D. W., Delayed deposition of organochlorine pesticides at a temperate glacier. Environ. Sci. Technol. 1999, 33, 1794-1798.
    [179] Domine', F.; Shepson, P. B. Air-snow interactions and atmospheric chemistry. Science 2002b, 297, 1506-1510.
    [180] Riseberough RW, Walker II W, Schmidt TT, De Lappe BW, Connors CW, Transfer of chlorinated biphenyls to Antarctica, Nature, 1976, 264, 738-739.
    [181] Gregor, D. J.; Gummer, W. D. Evidence of atmospheric transport and deposition of organochlorine pesticides and polychlorinated biphenyls in Canadian Arctic snow. Environ. Sci. Technol. 1989, 23, 561-565.
    [182] Gregor, D. J.; Peters, A. J.; Teixeira, C.; Jones, N.; Spencer, C. The historical residue trend of PCBs in the Agassiz Ice Cap, Ellesmere Island, Canada. Sci. Total. Environ. 1995,160/161, 117-126.
    [183] Blais, J. M.; Schindler, D. W.; Muir, D. C. G.; Kimpe, L. E.; Donald, D.; Rosenberg, B. Accumulation of persistent organochlorine compounds in mountains of western Canada. Nature 1998,395, 585-588.
    [184] Herbert, B.M.J., Halsall, C.J., Fitzpatrick, L., Villa, S., Jones, K.C., Thomas, GO., 2004. Chemosphere 56, 227-235.
    [185] Frank Wania, Donald Mackay, and John T. Hoff. The Importance of Snow Scavenging of Polychlorinated Biphenyl and Polycyclic Aromatic Hydrocarbon Vapors. Environ. Sci. Technol., 1999,33 (1), 195-197.
    [186] Hanot, L.; Domine', F. Evolution of the snow area of a snow layer. Environ. Sci. Technol. 1999, 33, 4250-4255.
    [187] Cabanes, A.; Legagneux, L; Domine', F. Evolution of the specific surface area and of crystal morphology of Arctic fresh snow during the Alert 2000 campaign. Atmos. Environ. 2002, 36,2767-2777.
    [188] Legagneux, L.; Cabanes, A.; Domine', F. Measurement of the specific surface area of 176 snow samples using methane adsorption at 77 K. J. Geophys. Res. 2002,107, No. 4335.
    [189] Cabanes, A,; Legagneux, L.; Domine', F. Rate of evolution of the specific surface area of surface snow layers. Environ. Sci. Technol. 2003,37,661-666.
    [190] Debbie A. Burniston, William J. M. Strachan, John T. Hoff, and Frank Wania, Changes in Surface Area and Concentrations of Semi volatile Organic Contaminants in Aging Snow. Environ. Sci. Technol., 2007, 41 (14), 4932-4937.
    [191] Hansen KM, Halsall CJ, Christensen JH. A dynamic model to study the exchange of gas-phase persistent organic pollutants between air and a seasonal snowpack[J]. Environ. Sci. Technol. 2006,40:2644-2652.
    [192] Finizio A., Villa S., Raffaele F., Vighi M. Variation of POP concentrations in fresh-fallen snow and air on an Alpine glacier (Monte Rosa)[J]. Ecotoxicology and Environmental Safety 63 (2006) 25-32.
    [193] Guillem Carrera, Pilar FemaHndez, Rosa M. Vilanova, Joan O. Grimalt. Persistent organic pollutants in snow from European high mountain areas[J]. Atmospheric Environment 35 (2001) 245-254.
    [194] Seema Datta, Laura L. McConnell, Joel E. Baker, James LeNoir, and James N. Seiber. Evidence for Atmospheric Transport and Deposition of Polychlorinated Biphenyls to the Lake Tahoe Basin, California-Nevada[J]. Environ. Sci. Technol., 1998,32 (10), 1378-1385.
    [195] Semkin, R. Processes and fluxes of contaminants in aquatic systemss 1994/95. In Synopsis of research conducted under the 1994/95 Northern Contaminants Program; Environmental Studies Report No. 73; Murray, J. L., Shearer, R. G., Han, Indian, S.L., Eds.; Northern Affairs Canada: Ottawa, Ontario, Canada, 1996; pp 105-118.
    [196] Melnikov, S., Carroll, J., Gorshkov, A., Vlasov, S., Dahle, S., 2003. Snow and ice concentrations of selected persistent organic pollutants in the Ob-Yenisey River watershed. The Science of the Total Environment 306, 27-37.
    [197] Melissa J. Lafreni(?)re, Jules M. Blais, Martin J. Sharp, and David W. Schindler. Organochlorine Pesticide and Polychlorinated Biphenyl Concentrations in Snow, Snowmelt, and Runoff at Bow Lake, Alberta[J]. Environ. Sci. Technol., 2006,40 (16), 4909-4915.
    [198] Lide DR. CRC Handbook of Chemistry and Physics 73rd ed[M]. Boca Raton FL: CRC Press, 1999.
    [199] Riordan E, Minogue N, Healy D. O'Driscoll P, Sodeau JR. Spectroscopic and optimization modeling study of nitrous acid in aqueous solution[J]. Journal of the Physical Chemistry A, 2005,109: 779-786.
    [200] Ryther JH, Dunstan WM. Nitrogen, Phosphorus, and Eutrophication in the Coastal Marine Environment[J]. Science, 1971,171:1008-1013.
    [201] Waldman JM, Munger JW, Jacob DJ, Flagan RC, Morgan JJ, Hoffinann MR. Chemical composition of acid fog[J]. Science, 1982,218:677-680.
    [202] Munger JW, Jacob DJ, Waldman JM, Hoffmann MR. Fogwater chemistry in an urban environment[J]. J Geophys Res, 1983,88:5109-5119.
    [203] Arakaki T, Miyake T, Shibata M, Sakugawa H. Measurement of photochemically formed hydroxyl radical in rain and dew waters[J]. Nippon Kagaku Kaishi, 1998: 619-625.
    [204] Arakaki T, Miyake T, Hirakawa T, Sakugawa H. pH dependent photoformation of hydroxyl radical and absorbance of aqueous-phase N(Ⅲ) (HNO_2 and NO_2~-)[J]. Environ. Sci. Technol., 1999, 33: 2561-2565.
    [205] Li SM, Macdonald AM, Strapp JW, Lee YN, Zhou XL. J. Geophys. Res.-Atmos. 1997, 102, 21341-21353.
    [206] Okochi H, Kajimoto T, Arai Y, Igawa M. Bull. Chem. Soc. Jpn., 1996, 69: 3355-3365.
    [207] Igawa M, Tsutsumi Y, Mori T, Okochi H. Environ. Sci. Technol., 1998, 32: 1566-1572.
    [208] Finlayson-Pitts BJ, Pitts JN Jr. Atmospheric Chemistry[M]. New York: John Wiley & Sons, 1986.
    [209] Acker K, Beysens D, M(?)ller D. Nitrite in dew fog cloud and rain water: An indicator for heterogeneous processes on surfaces[J]. Atmospheric Research, 2008, 87: 200-212.
    [210] Lee YN, Schwartz SE. Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure[J]. J. Phys. Chem., 1981, 85(7): 840-848.
    [211] Bambauer A, Brantner B, Paige M, Novakov T. Laboratory study of NO_2 reaction with dispersed and bulk liquid water[J]. Atmos. Environ., 1994, 28: 3225-3232.
    [212] Lammel G, Metzig G On the occurrence of nitrite in urban fogwater[J]. Chemosphere, 1998, 37(8): 1603-1614.
    [213] Ammann M, Kalberer M, Jost D T, Tobler L, R(?)ssler E, Piguet D, G(?)ggeler HW, Baltensperge U. Heterogeneousproduction of nitrous acid on soot in polluted air masses[J]. Nature, 1998, 395: 157-160.
    [214] Stemmler K, Ammann M, Donders C, Kleffmann J, George C. Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid[J]. Nature, 2006, 440(9): 195-198.
    [215] Goodman AL, Underwood GM, Grassian VH. Heterogeneous Reaction of NO_2: Characterization of Gas-Phase and Adsorbed Products from the Reaction 2NO_2(g) + H_2O(a) →HONO(g) + HNO_3(a) on Hydrated Silica Particles[J]. J. Phys. Chem. A, 1999,103: 7217-7223.
    [216] Grasshoff K. Determination of nutrients[A]. In: Methods of Seawater Analysis 2nd ed. edited by Grasshoff K, Ehrhardt M and Kremling K[M]. Verlag Chemie: Weinheim, 1983: 143.
    [217] Clesceri LS, Greenbert AE, Trussell RR Eds. Standard Methods for the Examination of Water and Wastewater[M]. Baltimore: Port City Press, 1989.
    [218] Verma KK, Verma A. Determination of nitrite by precolumn derivatization and high-performance Iiquid-chromatography[J]. Analytical Letters, 1992,25: 2083-2093.
    [219] Cox RD. Determination of nitrate and nitrite at the parts per billion level by chemiluminescence[J]. Anal. Chem., 1980, 52: 332-335.
    [220] Garcide C. A chemiluminescent technique for the determination of nanomolar concentrations of nitrate and nitrite in seawater[J]. Mar. Chem., 1982, 11: 159-167.
    [221] Zafiriou OC, Ball LA, Hanley Q. Trace nitrite in oxic waters[J]. Deep-Sea Research Part A-Oceanographic Research Papers, 1992, 39: 1329-1347.
    [222] Montomizu S, Mikasa H, Toei K. Talanta, 1986, 33: 729.
    [223] Zhou JY, Prognon P, Dauphin C, Hamon M. HPLC fluorescence determination of nitrites in water using precolumn derivatization with 4-methyl-7-aminocoumarin[J], Chromatographia, 1993, 36: 57-60.
    [224] Kang X, Sharma SK, Taylor GT, Muenow DW. Determination of low concentrations of the azo-dye complex of nitrite in fresh-water and seawater using surface-enhanced resonance raman-spectroscopy (serrs)[J]. Applied Spectroscopy, 1992,46: 819-826.
    [225] Soropogui K, Sigaud M, Vittori O. A cobalt film electrode for nitrite determination in natural water[J]. Electroanalysis,2007,19(24):2559-2564.
    [226]Kieber RJ,Seaton PJ.Determination of subnanomolar concentrations of nitrite in natural waters[J].Anal.Chem.,1995,67(18):3261-3264.
    [227]Salhi E,yon Gunten U.Simultaneous determination of bromide bromate and nitrite in low mg 1-1 levels by ion chromatography without sample pretreatment[J].Water Research,1999,33(15):3239-3244.
    [228]Rozan TF,Luther Ⅲ GW.An anion chromatography/ultraviolet detection method to determine nitrite nitrate and sulfide concentrations in saline (pore) waters[J].Marine Chemistry,2002,77:1-6.
    [229]Yao W,Byrne RH,Waterbury RD.Determination of nanomolar concentrations of nitrite and nitrate in natural waters using long path length absorbance spectroscopy[J].Environ.Sci.Technol.,1998,32(17):2646-2649.
    [230]Zhang J.Shipboard automated determination of trace concentrations of nitrite and nitrate in oligotrophic water by gas-segmented continuous flow analysis with a liquid waveguide capillary flow cell[J].Deep-Sea Research Part Ⅰ,2000,47:1157-1171.
    [231]Chen G,Yuan D,Huang Y,Zhang M,Bergman M.In-field determination of nanomolar nitrite in seawater using a sequential injection technique combined with solid phase enrichment and colorimetric detection[J].Analytica Chimica Acta,2008,620:82-88
    [232]Sharp JH.In:Nitrogen in the Marine Environment Carpenter E.J.Capone D.G.Eds.[M].New York:Academic Press,1983:1-35.
    [233]van Bennekom AJ,Berger GW,Helder W,De Vries RTP.Nutrient distribution in Zaire estuary and river plume[J].Neth.J.Sea Res.,1978,12:296-323.
    [234]袁建生.水源水中氮元素化合物与相关污染指标间的关系分析[J].中国公共卫生,2000,16(5):452-453.
    [235]朱赖民,暨卫东.夏季南海水团垂直分布的聚类分析研究[J].海洋湖沼通报,2002,4:1-6.
    [236]Codispoti LA,Friederich GE,Packard TT,Glover HE,Kelly PJ,Spinrad RW,Barber RT,Elkins JW,Ward BB,Lipschultz F,Lostaunau N.High Nitrite Levels off Northern Peru:A Signal of Instability in the Marine Denitrification Rate[J].Science,1986,233(4769):1200-1202.
    [237]Rheinheimer G.Mikrobiologische untersuchungen in der Elbe zwischen Schnackenburg und Cuxhaven (Microbiological studies in the River Elbe between Schnackenburg and Cuxhaven)[J].Arch Hydrobiol Ⅱ(3-4):181-251.
    [238]邓健,许金生,陈文,袁亚莉.湘江衡阳段水体中氮含量的动态变化及成因分析[J].中国卫生检验杂志,2001,11(4):398-399.
    [239]张为民.影响饮用自来水亚硝酸盐指标的几个主要因素[J].食品科学,2003,24(8):234-236.
    [240]姚琪,吴芝英.离子色谱法测定西湖水体中的Cl~-和NO_2~-[J].化学计量分析,2002,ll(2):63.
    [241]Okafor PN,Ogbonna UI.Nitrate and nitrite contamination of water sources and fruit juices marketed in South-Eastern Nigeria[J].Journal of Food Composition and Analysis,2003,16(2):213-218.
    [242]Heckman CW,Campos JLE,Hardoim EL.Nitrite Concentration in Well Water from Pocon(?) Mato Grosso and Its Relationship to Public Health in Rural Brazil [J].Bull.Environ.Contain.Toxicol.,1997,58:8-15.
    [243]Von der Wiesche M,Wetzel A.Temperol and spatial dynamics of nitrite accumulation in the River Lahn[J].Water Research,1998,32(5):1653-1661.
    [244]Okita T.Concentration of sulfate and other inorganic materials in fog and cloud water and in aerosol[J].J.Met.Sot.Japan,1968,46:120-127.
    [245]Cape JN,Hargreaves KJ,Storeton-West R,Fowler D,Colvile RN,Choularton TW,Gallagher MW.Nitrite in orographic cloud as an indicator of nitrous acid in rural air[J].Atmos.Environ.Part A-General Topics,1992,26:2301-2307.
    [246]Kieber RJ,Rhines MF,Willey JD,Brook Avery G Jr.Nitrite Variability in Coastal North Carolina Rainwater and Its Impact on the Nitrogen Cycle in Rain[J].Environ Sci Technol,1999,33(3):373-377.
    [247] Rubio MA, Lissi E, Villena G Nitrite in rain and dew in Santiago city, Chile. Its possible impact on the early morning start of the photochemical smog[J]. Atmospheric Environment, 2002, 36: 293-297.
    [248] Lammel G, Metzig G. On the occurrence of nitrite in urban fogwater[J]. Chemosphere, 1998, 37(8): 1603-1614.
    [249] Ruprecht H, Sigg L. Interactions of aerosols (ammonium sulfate ammonium nitrate and ammonium chloride) and of gases (HCI-HNO_3) with fogwater[J]. Atmos. Environ. Part A-General Topics, 1990, 24(3): 573-584.
    [250] Anastasio C, McGregor KG Chemistry of fog water in California's central valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen[J], Atmos. Environ., 2001, 35: 1079-1089.
    [251] Takenaka N, Suzue T, Ohira K, Morikawa T, Bandow H, Maeda Y. Natural denitrification in drying process of dew[J]. Environ. Sci. Technol., 1999, 33(9): 1444-1447.
    [252] Moore KF, Eli Sherman D, Reilly JE, Collett JL Jr. Drop size-dependent chemical composition in clouds and fogs. Part I. Observations[J]. Atmos. Environ., 2004a, 38: 1389-1402.
    [253] Moore KF, Eli Sherman D, Reilly JE, Hannigan MP, Lee T, Collett JL Jr. Drop size-dependent chemical composition of clouds and fogs. Part II: Relevance to interpreting the aerosol/trace gas/fog system[J]. Atmospheric Environment, 2004b, 38: 1403-1415.
    [254] Zuo Y, Wang C, Van T. Simultaneous determination of nitrite and nitrate in dew rain snow and lake water samples by ion-pair high-performance liquid chromatography[J]. Talanta, 2006, 70: 281-285.
    [255] Kleffmann J, Gavriloaiei T, Hofzumahaus A, Holland F, Koppmann R, Rupp L, Schlosser E, Siese M, Wahner A.Daytime formation of nitrous acid: a major source of OH radicals in a forest[J]. Geophysical Research Letters, 2005, 32: L05818 (doi:10.1029/2005GL022524).
    [256] Acker K, M(?)ller D, Wieprecht W, Meixner FX, Bohn B, Gilge S, Plass-D(?)lmer C, Berresheim H. Strong production of OH from HNO_2 at a rural mountain site[J]. Geophysical Research Letters, 2006, 33: L02809 (doi: 10.1029/2005GL024643).
    [257] Treinin A, Hayon E. Absorption spectra and reaction kinetics of NO_2, N_2O_3, and N_2O_4 in aqueous phase[J]. Journal of the American Chemical Society, 1970,92: 5821-5828.
    [258] Strehlow H, Wagner I. Flash-photolysis in aqueous nitrite solutions[J]. Zeitschrift Fur Physikalische Chemie-Wiesbaden, 1982,132:151-160.
    [259] Zellner R, Exner M, Herrmann H. Absolute OH quantum yields in the laser photolysis of nitrate nitrite and dissolved H_2O_2 at 308 and 351 nm in the temperature range 278-353 K[J]. J. Atmos. Chem. 1990,10: 411-425.
    [260] Zafiriou OC, Bonneau R. Wavelength-dependent quantum yield of oh radical formation from photolysis of nitrite ion in water[J]. Photochem. Photobiol., 1987, 45: 723-727.
    [261] Fischer M, Warneck P. Photodecomposition of nitrite and undissociated nitrous acid in aqueous solution[J].J. Phys. Chem., 1996, 100: 18749-18756.
    [262] Chu L, Anastasio C. Temperature and wavelength dependence of nitrite photolysis in frozen and aqueous solutions[J]. Environ. Sci. Technol., 2007, 41: 3626-3632.
    [263] Alif A, Boule P. Photochemistry and environment Part XIV. Phototransformat(?)on of nitrophenols induced by excitation of nitrite and nitrate ions[J]. J. Photochem. Photobiol. A: Chem., 1991, 59: 357-367.
    [264] Ouyang B, Dong W, Hou H. A laser flash photolysis study of nitrous acid in the aqueous phase[J]. Chem Phys Lett, 2005, 402: 306-311.
    [265] Buxton GV, Greenstock V, Hellman CL, Ross AB. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O~-) in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17: 513-886.
    [266] Anastasio C, Chu L. Photochemistry of nitrous acid (HONO) and nitrous acidium ion (H_2ONO~+) in aqueous solution and ice[J]. Environ. Sci. Technol., 2009,43: 1108-1114.
    [267] Zafiriou OC, True MB. Nitrite photolysis in seawater by sunlight[J]. Marine Chem., 1979, 8: 9-32.
    [268] Sigg, A., Stafflebach, T., and Neftel, A.: Gas phase measurements of hydrogen peroxide in Greenland and their meaning for the interpretation of H2O2 in ice cores, J. Atmos. Chem., 14,223-232, 1992.
    [269] Hutterli, M. A., McConnell, J. R., Stewart, R. W., Jacobi, H.-W., Bales, R.C.: Impact of temperature-driven cycling of hydrogen peroxide (H_2O_2) between air and snow on the planetary boundary layer, J. Geophys. Res., 106(D14), 15 395-15 404,2001.
    [270] McConnell, J. R., Bales, R. C, Winterle, J. R., Kuhns, H., Stearns, C. R.: A lumped parameter model for the atmosphere-to-snow transfer function for hydrogen peroxide, J. Geophys. Res., 102, 26 809-26 818,1997.
    [271] McConnell, J. R.; Bales, R. C; Stewart, R. W.; Thompson, A. M.; Albert, M. R.; Ramos, R. J. Geophys. Res. 1998,103,10561.
    [272] Hutterli, M. A., McConnell, J. R., Stewart, R. W., and Bales, R.C.: Sensitivity of hydrogen peroxide (H2O2) and formaldehyde (HCHO) preservation in snow to changing environmental conditions: Implications for the interpretation of ice core records, J. Geophys. Res., 108,4023, doi:10.1029/2002JD002528,2003.
    [273] Frey, M. M., Bales, R. C, and McConnell, J. R.: Climate sensitivity of the century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from West Antarctica, J. Geophys. Res., 111, D21301, doi:10.1029/2005JD006816,2006.
    [274] Jacob, P.; Klockow, D. Measurements of hydrogen peroxide in Antarctic ambient air, snow and firn cores[J]. Fresenius, J. Anal. Chem. 1993,346,429-434.
    [275] Riedel, K. Reports on polar and marine research 394; Riemann, F., Wegener, A., Eds.; Institute for Polar and Marine Research, Bremerhaven, Germany, 2001.
    [276] Anastasio, C.; Jordan, A. Photoformation of hydroxyl radical and hydrogen peroxide in aerosol particles from Alert, Nunavut: implications for aerosol and snowpack chemistry in the Arctic[J]. Atmos. Environ. 2004,38, 1153-1166.
    [277] Wolff, E. W; Jones, A. E.; Martin, T. J.; Grenfell, T. C. Geophys. Res. Lett. 2002, 29, 1944; doi: 10.1029/2002GL015823.
    [278] Jacobi HW, Bales RC, Honrath RE, Peterson MC, Dibb JE, Swanson AL, Albert MR. Reactive trace gases measured in the interstitial air of surface snow at Summit, Greenland[J], Atoms. Environ. 2004,38,1687-1697.
    [279] Dibb, J. E.; Talbot, R. W.; Munger, J. W; Jacob, D. J.; Fan, S. M. J. Geophys. Res.-Atmos. 1998,103,3475.
    [280] Chu L, Anastasio, C. Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide, J. Phys. Chem. A, 109(28), 6264-6271,2005.
    [281] Jacobi, H.W., Armor, T., Quansah, E. Investigation of the photochemical decomposition of nitrate, hydrogen peroxide, and formaldehyde in artificial snow, J. Photochem. Photobiol. A, 179,330-338,2006.
    [282] France, J. L., King, M. D., and Lee-Taylor, J.: Hydroxyl (OH) radical production rates in snowpacks from photolysis of hydrogen peroxide (H2O2) and nitrate (NO3-), Atmos. Environ., 41,5502-5509,2007.
    [283] Anastasio, C, Galbavy, E. S., Hutterli, M. A., Burkhart, J. F., Friel, D. K.: Photoformation of hydroxyl radical on snow grains at Summit, Greenland, Atmos. Environ., 41(24), 5110-5121,2007.
    [284] Safe S, Huzinger O. Polychlorinated Biphenyls: photolysis of 2462'4'6'-Hexachlorobiphenyl[J]. Nature, 1971,232:641-642.
    [285] Yao Y, Kakimoto K, Ogawa HI, Kato Y, Hanada Y, Shinohara R, Yoshino E. Photodechlorination Pathways of Non-Ortho Substituted PCBs by Ultraviolet Irradiation in Alkaline 2-Propanol Bull[J]. Environ. Contam. Toxicol., 1997a, 59:238-245.
    [286] Yao Y, Kakimoto K, Ogawa HI, Kato Y, Hanada Y, Shinohara R, Yoshino E. Reductive dechlorination of non-ortho substituted polychlorinated biphenyls by ultraviolet irradiation in alkaine 2-propanol[J]. Chemosphere, 1997b,35(12):2891-2897.
    [287]Miao X,Chu S,Xu X.Degradation pathways of PCBs upon UV irradiation in hexane[J].Chemosphere,1999,39(10):1639-1650.
    [288]Orvis J,Weiss J,Pagni RM.Further-Studies on the photoisomerization and hydrolysis of chlorobiphenyls in water - common ion effect in the photohydrolysis of 4-Chlorobiphenyl[J].Journal of Organic Chemistry,1991,56 (5):1851-1857.
    [289]Chang FC,Hsieh YN,Wang YS.Dechlorination of PCBs in water under UV irradiation and the relationship between the electric charge distribution on the carbon atom and the site of dechlorination occurrence[J].Bull.Environ.Contam.Toxicol.,2003,71:971-978.
    [290]Lepine FL,Milot SM,Vincent NM,Gravel D.Photochemistry of higher chlorinated PCBs in cyclohexane[J].Journal of Agricultural and Food Chemistry,1991,39 (11):2053-2056.
    [291]Hawari J,Demeter A,Samson R.Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol:dechlorination of Aroclor 1254 in soil samples by solar radiation[J].Environ.Sci.Technol.,1992,26(10):2022-2027.
    [292]Wong KH,Wong PK.Degradation of Polychlorinated Biphenyls by UV-Catalyzed Photolysis[J].Human and Ecological Risk Assessment,2006,12:259-269.
    [293]Chu W,Jafvert CT,Diehl CA,Marley K,Larson RA.Phototransformations of polychlorobiphenyls in Brij 58 Micellar Solutions[J].Environ.Sci.Technol.,1998,32(13):1989-1993.
    [294]Chu W,Kwan CY.The direct and indirect photolysis of 44'-dichlorobiphenyl in various surfactant/solvent-aided systems[J].Water Research,2002,36:2187-2194.
    [295]Chu W,Kwan CY.Amphoteric Effect of Humic Acids in Surfactant-Aided Photolysis of Polychlorobiphenyls[J].Journal of Environmental Engineering,2003:716-722.
    [296]Chu W,Chan KH,Kwan CY,Jafvert CT,Acceleration and Quenching of the Photolysis of PCB in the Presence of Surfactant and Humic Materials[J].Environ.Sci.Technol.,2005,39:9211-9216.
    [297]施周,余健,袁玉梅,王政华,Ghosh MM.表面活性剂溶液中四氯联苯光降解机理研究[J].环境科学学报,2000,20,S1期:110-114.
    [298]施周,刘欣华,王政华.改性糊精溶液中四氯联苯光降解途径[J].湖南城市学院学报(自然科学版),2006,15:57-59
    [299]Ohashi M,Tsujimoto K,Seki K.Photoreduction of 4-chlorobiphenyl by aliphatic-amines[J].J.Chem.Soc.Chem.Commun.,1973:384.
    [300]Epling GA,Wang Q,Qiu Q.Efficient utilization of visible light in the photoreduction of chloroaromatic compounds[J].Chemopshere,1991,22:959-962.
    [301]Lin Y,Gupta G,Baker J.Photodegradation of polychlorinated biphenyl congeners using simulated sunlight and diethylamine[J].Chemosphere,1995,31(5):3323-3344
    [302]Tsujimoto K,Tasaka S,Ohashi M.Photoreduction of chlorobiphenyls by NABH4[J].J.Chem.Soc.Chem.Commun.,1975:758-759.
    [303]Chaudhary SK,Mitchell RH,West PR.Photodechlorination of polychlorinated-biphenyls in the presence of hydroquinone in aqueous alcoholic media[J].Chemosphere,1984,13:1113-1131.
    [304]Poster DL,Chaychian M,Neta P,Huie RE,Silverman J,Al-Sheikhly M.Degradation of PCBs in a marine sediment treated with ionizing and UV radiation[J].Environ.Sci.Technol.,2003,37:3808-3815.
    [305]Manzano MA,Perales JA,Sales D,Quiroga JM.Using solar and ultraviolet light to degrade PCBs in sand and transformer oils[J].Chemosphere,2004,57:645-654.
    [306]Bunce N J,Landers JP,Langshaw J,Nakal JS.An assessment of the importance of direct solar degradation of some simple chlorinated benzenes and biphenyls in the vapor phase[J].Environ.Sci.Technol.,1989,23(2): 213-218.
    [307]Dulin D,Drossman H,Mill T.Products and quantum yields for photolysis of chloroaromatics in water[J].Environ.Sci.Technol.,1986,20:72-77.
    [308]Matykiewiczov(?) N,Kl(?)ov(?) J,Kl(?)n P.Photochemical Degradation of PCBs in Snow[J].Environmental Science & Technology,2007,41(24):8308-8314.
    [309]Ruzo LQ,Zabik MJ,Schuetz RD.Photochemistry of bioactive compounds.Photochemical processes of polychlorinated biphenyls[J].J.Am.Chem.Soc.,1974,96:3809-3813.
    [310]Bunce N J,Kumar Y,Ravanal L,Safe S.Photochemistry of chlorinated biphenyls in iso-octane solution[J].J.Chem.Soc.Perkin Trans.,1978,2:880-884.
    [311]Bunce NJ,Kumar Y.An assessment of the impact of solar degradation of polychlorinated biphenyls in the aquatic environment[J],Chemosphere,1978,2:155-164.
    [312]Sedlak DL,Andren AW.Aqueous-phase oxidation of polychlorinated biphenyls by hydroxyl radicals[J].Environ.Sci.Technol.,1991,25(8):1419-1427.
    [313]董文博,朱承驻,房豪杰,欧阳彬,张仁熙,侯惠奇,乙腈溶液中NO_3自由基与联苯的反应机理[J].化学学报,2005,63(23):2147-2152.
    [314]Atkinson R,Aschmann SM.Rate constants for the gas-phase reaction of hydroxyl radicals with biphenyl and the monochlorobiphenyls at 295 ± 1 K[J].Environ.Sci.Technol.,1985,19:462-464.
    [315]Atkinson R,Arey J,Zlelinska B,Aschmann SM.Kinetics and Products of the Gas-Phase Reactions of OH Radicals and N_2Os with Naphthalene and Biphenyl[J].Environ.Sci.Technol.,1987b,27:1014-1022.
    [316]Anderson PN,Hites RA.System To Measure Relative Rate Constants of Semivolatile Organic Compounds with Hydroxyl Radicals[J].Environ.Sci.Teehnol.,1996a,30:301-306.
    [317]Anderson PN,Hites RA.OH Radical Reactions:The Major Removal Pathway for Polychlorinated Biphenyls from the Atmosphere[J].Environ.Sci.Technol.,1996b,30:1756-1763.
    [318]Wayne Brubaker W,Hires RA.Gas phase oxidation products of biphenyl and polychlorinated biphenyls[J].Environmental Science & Technology,1998,32(24):3913-3918.
    [319]Totten LA,Eisenreich SJ,Brunciak PA.Evidence for destruction of PCBs by the OH radical in urban atmospheres[J].Chemosphere,2002,47(7):735-746.
    [320]Mandalakis M,Berresheim H,Stephanou EG.Direct Evidence for Destruction of Polychlorobiphenyls by OH Radicals in the Subtropical Troposphere[J].Environ.Sci.Technol.,2003,37:542-547.
    [321]Atkinson R,Aschmann SM,Pitts JN Jr.Kinetics of the Reactions of Naphthalene and Biphenyl with OH Radicals and with O_3 at 294 ± 1 K[J].Environ.Sci.Technol.,1984,18:110-113.
    [322]Atkinson R.Estimation of OH Radical Reaction Rate Constants and Atmospheric Lifetimes for Polychlorobiphenyls Dibenzo-p -dioxins and Dibenzofurans[J].Environ.Sci.Technol.,1987a,21:305-307.
    [323]Kwok ESC,Atkinson R,Arey J.Rate Constants for the Gas-Phase Reactions of the OH Radical with Dichlorobiphenyls 1-Chlorodibenzo-p-dioxin 12-Dimethoxybenzene and Diphenyl Ether:Estimation of OH Radical Reaction Rate Constants for PCBs PCDDs and PCDFs[J].Environ.Sci.Technol.,1995,29:1591-1598.
    [324]Abramowicz DA.Aerobic and anaerobic PCB biodegradation in the environment[J].Environ Health Perspect,1995,103(S5):97-99.
    [325]Cookson JT Jr.Bioremediation engineering:design and application[M].New York:McGraw Hill,1995.
    [326]Kuipers B,Cullen WR,Mohn WW.Reductive dechlorination of nonachloro biphenyls and selected octachloro biphenyls by microbial enrichment cultures[J].Environ Sci Technol,1999,33:3579-3585.
    [327]Josephine B,Donna MT,Joseph A,Susan G.Polychlorinated biphenyls and their biodegradation[J].Process Biochemistry,2005,40:1999-2013.
    [328] Isabel S, Jose LV, Marina ML, Fernando L. Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibactersp.)[J]. Chemosphere, 2003, 53: 609-618.
    [329] Triska J, Gabriela K, Martina M, Novakova H, Jaakko P, Miria L, Nadezda V. Isolation and identification of intermediates from biodegradation of low chlorinated biphenyls (Delor-103)[J]. Chemosphere, 2004, 54:725-733.
    [330] Unterman R. A history of PCB biodegradation[A]. In: Crawford R. L. and Crawford D. L. (ed.) Bioremediation: principles and applications[M]. New York: University Press Cambridge, 1996: 209-253.
    [331] Flanagan WP, May RJ. Metabolite detection as evidence for naturally-occurring aerobic PCB biodegradation in Hudson River sediments[J]. Environmental Science & Technology, 1993, 27: 2207-2212.
    [332] Brown J, Bedard DL, Brennan MJ, Carnahan JC, Feng H, Wagner RE. Polychlorinated biphenyl dechlorination in aquatic sediments[J]. Science, 1987, 236: 709-12.
    [333] Quensen JF, Tiedje JM, Boyd SA. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments[J]. Science, 1988, 242: 752-754.
    [334] Patureau D, Trably E. Impact of anaerobic and aerobic processes on Poly Chloro Biphenyl removal in contaminated sewage sludge[J]. Biodegradation, 2006, 17: 9-17.
    [335] Holliger C, Wohlfarth G, Diekert G Reductive dechlorination in the energy metabolism of anaerobic bacteria[J]. FEMS Microbiol Rev, 1998, 22: 383-98.
    [336] Rhee Y. Microbial community dynamics of PCB dechlorination in sediments. Progress Report[R]. New York: Department of Health Wadsworth Center, 1999.
    [337] Magar VS, Johnson GW, Brenner RC, Quensen III JF, Foote EA, Durell G, Ickes JA, Peven-McCarthy C. Long-term recovery of PCB-contaminated sediments at Lake Hartwell superfund site: PCB dechlorination. 1. End-member characterization[J]. Environmental Science & Technology, 2005, 39(10): 3538-3547.
    [338] Bzdusek PA, Lu J, Christensen ER. PCB congeners and dechlorination in sediments of Sheboygan River Wisconsin determined by matrix factorization[J]. Environmental Science & Technology, 2006, 40: 109-119.
    [339] Bedard DL, May RJ. Characterization of the polychlorinated biphenyls in the sediments of woods pond: evidence for microbial dechlorination of Aroclor 1260 in situ[J]. Environmental Science & Technology, 1996, 30: 237-245.
    [340] Fava F, Gentilucci S, Zanaroli G Anaerobic biodegradation of weathered polychlorinated biphenyls (PCBs) in contaminated sediments of Porto Marghera (Venice Lagoon Italy)[J]. Chemosphere, 2003, 53: 101-109.
    [341] Li A, Tai C, Zhao ZS, Wang YW, Zhang QH, Jiang GB. Debromination of decabrominated diphenyl ether by resin-bound iron[J]. Environmental Science & Technology, 2007, 41: 6841-6846.
    [342] Wiegel J, Wu Q. Microbial reductive dehalogenation of polychlorinated biphenyls[J]. FEMS Microbiol Ecol, 2000,32:1-15.
    [343] Lake JL, Pruell RJ, Osterman FA. An examination of dechlorination processes and pathways in New Bedford Harbor sediments[J]. Mar. Environ. Res., 1992, 33: 31-47.
    [344] Yang S, Yoshida N, Baba D, Katayama A. Anaerobic biodegradation of biphenyl in various paddy soils and river sediment[J]. Chemosphere, 2008, 71: 328-336.
    [345] Ravishankara AR, Longfellow CA, Reactions on tropospheric condensed matter[J], Phys. Chem. Chem. Phys., 1999, 1:5433-5441.
    [346] Ravishankara AR, Heterogeneous and Multiphase Chemistry in the Troposphere[J], Science, 1997, 276: 1058-1075.
    [347] Chandler AS, Choularton TW, Dollard GJ, Eggleton AEJ, Gay MJ, Hill TA, Jones BMR, Tyler BJ, Bandy BJ, Penkett SA. Measurements of H_2O_2 and SO_2 in clouds and estimates of their reaction-rate[J]. Nature, 1988, 336: 562-565.
    [348]Warneck P,Wurzinger C.Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution[J].J Phys.Chem.1988,92:6278-6283.
    [349]Grant,N.H.;Clark,D.E.;Album,H.E.J.Am.Chem.Soc.1961,83,4476-4477.
    [350]Weatherbum,M.W.;Logan,J.E.Clin.Chim.Acta 1964,9,581-584.
    [351]Album,H,E.;Grant,N.H.J.Am.Chem.Soc.1965,87,4174-4177.
    [352]Grant,N.H.;Album,H.E.Science 1965a,150,1589-1590.
    [353]Grant,N.H.;Album,H.E.Nature 1966,212,194.
    [354]Takenaka,N.;Ueda,A.;Maeda,Y.Nature 1992,358,736-738.
    [355]Takenaka,N.;Ueda,A.;Maeda,Y.Proc.NIPR Symp.Polar Meterol.Glacial.1993,7,24-32.
    [356]Betterton,E,A.;Anderson,D.J.J.Atmos.Chem.2001,40,171-189.
    [357]Takenaka,N.;Furuya,S.;Sato,K.;Bandow,H.;Maeda,Y.;Furukawa,Y.Int.J.Chem.Kinet.2003,35,198-205.
    [358]Sato,K.;Furuya,S.;Takenaka,N.;Bandow,H,;Maeda,Y.;Furukawa,Y.Bull.Chem.Soc.Jpn.2003,76,1139-1144.
    [359]Arakaki,T.;Shibata,M.;Miyake,T.;Hirakawa,T.;Sakugawa,H.Geochem.J.2004,38,383-388.
    [360]O'Driscoll,P.;Lang,K.;Minogue,N.;Sodeau,J.J.Phys.Chem.A 2006,110,4615-4618.
    [361]Takenaka,N.;Tanaka,M.;Okitsu,K.;Bandow,H.J.Phys.Chem.A 2006,110,10628-10632.
    [362]Fermema,O.Water relations of foods;Academic Press:London,1975.
    [363]Cobb,A.W.;Gross G.W.J.Electrochem.Soc.1969,116,796-804.
    [364]Gross,G.W.;Wu,C.;Bryant,L.;McKee,C.J.Chem.Phys.1975,62,3085-3092.
    [365]Workman,E.J.;Reynolds,S.E.Phys.Rev.1950,78,254.
    [366]Pincock,R.E.Acc.Chem.Res.1969,2,97-103.
    [367]Takenaka N,Bandow H.Chemical Kinetics of Reactions in the Unfrozen Solution of Ice.J.Phys.Chem.A2007,111,8780-8786.
    [368]Hoffmann,M.R.,Possible chemical transformations in snow and ice induced by solar (UV photons) and cosmic irradiation (muons),in Chemical Exchange Between the Atmosphere and Polar Snow,NATO ASI Ser.,Ser.I,vol.43,edited by E.W.Wolffand R.C.Bales,pp.353-377,Springer-Verlag,1996.
    [369]Dubowski,Y.,and M.R.Hoffmann,Photochemical transformations in ice:Implications for the fate of chemical species,Geophys.Res.Lett.,27,3321-3324,2000.
    [370]KlAn P,Angsorgov(?) A,Del Favero D,Holoubek I.Photochemistry of chlorobenzene in ice[J].Tetrahedron Letters,2000,41,7785-7789.
    [371]Kl(?)n,P.,and I.Holoubek,Ice (photo)chemistry:Ice as a medium for long-term (photo)chemical transformations-Environmental implications,Chemosphere,46,1201- 1210,2002.
    [372]Kl(?)aov(?) J,Kl(?)n P,Nosek J,Holoubek I.Environmental ice photochemistry:Monochlorphenols[J].Environ.Sci.Technol.,2003,37:1568-1574.
    [373]#12
    [374]Shiu WY,Mackay D.A critical review of aqueous solubilities vapor pressures Henry's law constants and octanol-water partition coefficients of the polychlorinated biphenyls[J].J.Phys.Chem.Data,1986,15:911-929.
    [375]Porter G,Topp MR.Nanosecond flash photolysis and absorption spectra of excited singlet states[J].Nature,1968,220:1228-1229.
    [376]Porter G,Topp MR.Nanosecond flash photolysis[J].Proc.Roy.Soc.Lond.A.,1970,315:163-184.
    [377]Houten JV.A century of chemical dynamics traced through the Nobel Prizes[J].J.Chem.Edu.,2002,79:548-550.
    [378]Zhu CZ,Ouyang B,Wang J,Huang L,Dong W,Hou H.Photochemistry in the mixed aqueous solution of nitrobenzene and nitrous acid as initiated by the 355 nm UV light[J].Chemosphere 2007,67(5):855-861.
    [379]Nadtochenko V,Kiwi J.Primary photochemical reactions in the photo-fenton system with ferric chloride.1.A case study of xylidine oxidation as model compound[J].Environ.Sci.Technol.,1998,32:3273-3281.
    [380]Pignatello J J,Liu D,Huston P.Evidence for an additional oxidant in the photoassisted Fenton reaction[J].Environ.Sci.Technol.,1999,33:1832-1839.
    [381]Huang L,Dong W,Hou H.Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis[J].Chem.Phys.Letters,2007,436:124-128.
    [382]Huang L,Li L,Dong W,Liu Y,Hou H.Removal of ammonia by OH radical in aqueous phase[J].Environmental Science & Technology,2008,42(21):8070-8075.
    [383]Mack J,Bolton JR.Photochemistry of nitrite and nitrate in aqueous solution:a review[J].Journal of Photochemistry and Photobiology A:Chemistry,1999,128:1-13.
    [384]Zuo Y,Deng Y.The near-UV absorption constants for nitrite ion in aqueous solution[J].Chemosphere,1998,36:181-188.
    [385]Vione D,Maurino V,Minero C,Luddhiari M.Nitration and hydroxylation of benzene in the presence of nitrite/nitrous acid in aqueous solution[J].Chemosphere,2004,56:1049-1059.
    [386]Bilski P,Chignell CF,Szychlinski J,Borkowski A,Oleksy E,Reszka K.Photooxidation of organic and inorganic substrates during UV photolysis of nitrite anion in aqueous solution[J].J.Am.Chem.Soc.,1992,114:549-556.
    [387]Vione D,Maurino V,Minero C,Pelizzetti E.Phenol photonitration upon UV irradiation of nitrite in aqueous solution I:Effects of oxygen and 2-propanol[J].Chemosphere,2001,45:893-902.
    [388]Dzengel J,Theurich J,Bahnemann DW.Formation of nitroaromatic compounds in advanced oxidation processes:Photolysis versus photocatalysis[J].Environ.Sci.Technol.,1999,33:294-300.
    [389]Machado F,Boule P.Photonitration and photonitrosation of phenolic derivatives induced in aqueous solution by excitation of nitrite and nitrate ions[J].Journal of Photochemistry and Photobiology A:Chemistry,1995,86:73-80.
    [390]Vione D,Maurino V,Minero C,Pelizzetti E.Nitration and photonitration of naphthalene in aqueous systems[J].Environ.Sci.Technol.,2005,39:1101-1110.
    [391]Sehested K,Hart EJ.Formation and decay of the biphenyl cation radical in aqueous acidic solution[J].J Phys Chem,1975,79(16):1639-1642.
    [392]Chen X,Schuler RH.Directing effects of phenyl substitution in the reaction of OH radical with aromatics:the radiolytic hydroxylation ofbiphenyl[J].J Phys Chem,1993,97(2):421-425.
    [393]Zevos N,Sehested K.Pulse radiolysis of aqeous naphthalene solutions[J].The Journal of Physical Chemistry,1978,82:138-141.
    [394]Mohan H,Mittal JP.Pulse radiolysis investigations on acidic aqueous solutions of benzene:Formation of radical cations[J].J Phys Chem A,1999,103:379-383.
    [395]欧阳彬.355 nm紫外光照射下亚硝酸+萘水溶液的微观反应机理研究[D].上海:复旦大学,2004:58-62.
    [396]Qin Y,Huang L,Dong W,Fang H,Hou H.Cross-Reaction Mechanism between HNO_2 and C_6H_5Br in Aqueous Solution under Irradiation at 355 nm[J].Acta Physico-Chimica Sinica,2007,23(11):1677-1682.
    [397]Dean JA.Lange's handbook of chemistry (15th Edition)[M].New York:McGraw-Hill,1999:5.6.
    [398]Roder M,Wojn(?)rovits L,F(o|¨)ldi(?)k G.Pulse-radiolysis of aqueous-solutions of aromatic-hydrocarbons in the presence of oxygen[J].Radiat.Phys.Chem.,1990,36:175-176.
    [399]董文博.联苯和4-氯联苯与NO3自由基反应机理研究[D].上海:复旦大学,2005.
    [400]Maier JP,Turner DW.Steric inhibition of resonance studied by molecular photoelectron spectroscopy Part 1 - Biphenyls[J].Faraday Discuss.Chem.Soc.1972,54:149 - 167.
    [401]Arulmozhiraja S,Fujii T.Torsional barrier,ionization potential,and electron affinity of biphenyl - A theoretical study[J].Journal of Chemical Physics 2001,115:10589-10594.
    [402]Kl(?)ov(?),J.;Kl(?)n,P.;Heger,D.;Holoubek,I.Comparison of the effects of UV,H_2O_2/UV and gamma-irradiation processes on frozen and liquid water solutions of monochlorophenols[J].Photochem.Photobiol.Sci.2003,2,1023-1031.
    [403]#12
    [404]Sumner,A.L.;Shepson,P.B.Snowpack production of formaldehyde and its effect on the Arctic troposphere[J].Nature 1999,398,230-233.
    [405]Grannas A.M.;Shepson,P.B.;Filley,T.R.Photochemistry and nature of organic matter in Arctic and Antarctic snow [J].Global Biogeochem.Cycles 2004,18.
    [406]Guimbaud,C.;Grannas,A.M.;Shepson,P.B.;Fuentes,J.D.;Boudries,H.;Bottenheim,J.W.;Domine,F.;Houdier,S.;Perrier,S.;Biesenthal,T.B.;Splawn,B.G.Snowpack processing of acetaldehyde and acetone in the Arctic atmospheric boundary layer [J].Atmos.Environ.2002,36,2743-2752.
    [407]Zhou XL,Beine H J,Honrath RE,Fuentes JD,Simpson W,Shepson PB,Bottenheim JW,Geophysical Research Letters 2001,28,4087.
    [408]Conklin,M.H.;Sigg,A.;Neftel,A.;Bales,R.C.Atmosphere-snow transfer-function for H_2O_2-Microphysical considerations.J.Geophys.Res.,[Atmos.]1993,98,18367-18376.
    [409]Maruyama M,Bienfait M,Dash JG,Coddens G,J Crystal Growth 1992,118:33-40.
    [410]Gay JM,Suzanne J,Dash JG,Fu HY,J Crystal Growth 1992,125:33-41.
    [411]Fu HY,Dash JG,J Colloid Interface Sci 1993,159,343-348.
    [412]Hutterli MA,McConnell JR,Chen G,Bales RC,Davis DD,Lenschow DH.Formaldehyde and hydrogen peroxide in air,snow and interstitial air at South Pole [J].Atmospheric Environment 2004,38,5439-5450.
    [413]R.L.Kepner Jr.,R.A.Wharton Jr.,R.D.Collier,C.S.Cockell,W.H.Jeffrey,UV radiation and potential biological effects beneath the perennial ice cover of an antarctic lake[J],Hydrobiologia 427:155-165,2000.
    [414]Perovich DK.A theoretical-model of ultraviolet-light transmission through Antarctic sea-ice[J].J.Geophys.Res.,[Oceans],1993,98:22579-22587.
    [415]Quickenden T,Hanlon A.The colours of water and ice [J].Chem.Br.,2000,36:37-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700