蝙蝠葛碱和蝙蝠葛苏林碱对获得性长QT综合征的细胞和离子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:蝙蝠葛碱(dauricine,Dau)和蝙蝠葛苏林碱(daurisoline,DS)是从中药蝙蝠葛(Menisperum dauricum,DC)根茎中提取的双苄基异喹林类生物碱。近年来,研究发现Dau和DS均具显著的抗实验性心律失常作用。长QT综合征(Long QT syndrome,LQTs)的基础是心肌细胞复极延缓。正常心肌细胞的动作电位复极时程和形态受外向电流和内向电流的影响。外向电流主要为快速激活延迟整流钾电流(rapidly activated delayed recitifying potassium current,IKr)和缓慢激活延迟整流钾电流(slowly activated delayed rectifying potassium current,IKs).内向电流主要为钠电流(sodium current,INa).L型钙通道电流(L-type calciumcurrent,ICa-L)。本研究采用膜片钳和Western blotting技术,研究Dau和DS对与获得性LQTs相关离子通道的影响规律,并在离子通道和蛋白水平探讨Dau和DS抗心律失常的作用机制。
     方法:
     1.采用酶消化法分离家兔左心室单个心肌细胞,用膜片钳技术,在电压钳制模式下记录单个细胞IK1、IKr、IKs和Ito,研究Dau和DS对心室肌细胞IK1、IKr、IKs和Ito的影响。
     2.用膜片钳技术记录在人胚肾细胞(HEK293)表达的hERG通道电流,研究Dau和DS对hERG通道电生理特性的影响,并与Quin和AM相比较。
     3.用Western blotting方法研究Dau和DS对hERG通道蛋白的影响。
     结果:
     1.以家兔单个心室肌细胞为研究对象,研究Dau和DS对IK1、IKr、IKs和Ito通道电流的影响
     (1)Dau:与给药前相比,Dau1,3,10,30,100μmol·L-1对IK1具有一定抑制作用,但差异均无统计学意义(P>0.05),对翻转电位也无影响(-40mV)。在-100 mV测试电压下,Dau 10,30,100μmol·L-1对IK1的抑制率分别为(5.8±1.8)%、(16.5±2.7)%和(39.3±8.1)%。在+60mV测试电压下,Dau 1,3,10,30μmol·L-1对Iκr的抑制率分别为(12.2±8.6)%、(30.4±7.1)%、(37.1±3.7)%和(64.1±5.8)%,半数抑制浓度(IC50)为14.0μmol·L-1。Dau 10μmol·L-1, 30μmol·L-1使IKr半激活电压由(-16.4±2.8)mV变为(-14.8±2.2)、(-17.8±4.2)mV变为(-20.7±1.7),曲线斜率由6.2±0.1变为6.8±0.4、6.2±0.2变为6.5±0.2,差异均无统计学意义(P>0.05)。在+60mV测试电压下,Dau 10,30μmol·L-1对IKs的抑制率分别为(28.7±3.3)%和(40.3±5.2)%。Dau 10,30μmol·L-1使IKs半激活电压由(14.1±0.7)mV变为(12.8±1.6)mV、(15.0±1.9)mV变为(10.5±1.0)mV,曲线斜率由6.2±0.2变为6.5±0.2、14.7±0.7变为15.5±1.7,差异均无统计学意义(P>0.05)。Dau 10,30,100μmol·L-1的对Ito电流均有抑制作用。在+30 mV测试电压下,Dau 30,100μmol·L-1对Ito的抑制率分别为(26.5±3.6)%和(38.7±0.7)%。Dau 30,100μmol·L-1使Ito半激活电压由(-12.4±4.6)mV变为(17.1±1.9)mV、(-12.5±4.6)mV变为(-14.0±3.2)mV,曲线斜率由19.9±1.4变为20.4±0.2、19.9±1.4变为19.8±0.7,差异均无统计学意义(P>0.05)。
     (2)DS:与给药前相比,DS 10,30,100μmol·L-1对IK1具有一定抑制作用,差异均无统计学意义(P>0.05),对翻转电位也无影响(-40 mV)。在-100 mV测试电压下,DS 10,30,100μmol·L-1对IK1的抑制率分别为(8.0±2.8)%、(16.0±3.4)%和(26.1±8.5)%。在+60 mV测试电压下,DS 1,3,10,30μmol·L-1对IKr的抑制率分别为(6.7±1.9)%、(26.1±6.0)%、(31.1±5.0)%和(55.4±6.9)%,IC50为19.9μmol·L-1。DS 10,30μmol·L-1使IKr半激活电压由(-22.5±1.1)mV变为(-25.2±1.5)mV、(-21.5±1.6)mV变为(-26.5±3.2)mV,曲线斜率由6.6±0.2变为5.6±0.4、6.7±0.4变为4.7±1.1,差异均无统计学意义(P>0.05)。在+60mV测试电压下,DS 10,30μmol·L-1对IKs的抑制率分别为(25.7±3.8)%和(38.0±3.8)%。DS 10,30μmol·L-1使Iκs半激活电压由(12.0±3.8)mV变为(11.5±1.7)mV、(12.2±3.0)mV变为(7.3±3.3)mV,曲线斜率由13.5±0.8变为12.3±1.3、13.9±0.9变为13.9±1.9,差异均无统计学意义(P>0.05)。DS 10,30μmol·L-1对Ito尾电流均有抑制作用。在+30 mV测试电压下,DS 10,30μmol·L-1对Ito的抑制率分别为(6.1±9.2)%和(36.5±11.4)%。DS 10,30μmol·L-1使Ito半激活电压由(-10.9±4.8)mV变为(-9.0±4.3)mV、(-19.9±1.9)mV变为(-15.7±1.5)mV,曲线斜率由17.0±1.5变为18.0±1.5、18.4±1.5变为17.6±1.8,差异均无统计学意义(P>0.05)。
     2.以HEK293细胞上表达的hERG通道为研究对象,研究Dau和DS对hERG通道动力学的影响
     (1)Dau:在20 mV时,Dau 1,3,10,30μmol·L-1对hERG去极化末电流的抑制率(16.1±5.5)%、(28.4±6.7)%(P<0.05,n=8)、(59.7±8.9)%(P<0.05,n=10)、(79.7±4.7)%(P<0.05,n=7),IC50为6.9μmol·L-1;在60mV时,对hERG尾电流的抑制率分别是(6.1±5.2)%、(26.5±3.6)%(P<0.05,n=4)、(57.6±8.8)%(P<0.05,n=9)、(85.3±2.2)%(P<0.05,n=6),IC50为8.4μmol·L-1。Dau1,3,10,30μmol·L-1分别使hERG的半激活电压V1/2从(4.5±3.0)mV变为(3.3±3.3)mV、(5.1±2.9)mV变为(2.6±4.0)mV、(0.7±2.8)mV变为(-6.2±5.8)mV、(1.1±2.7)mV变为(3.7±4.1)mV,差异均无显著性;激活曲线斜率分别从10.6±0.6变为11.0±0.7、10.7±0.6变为11.2±0.8、9.9±0.4变为13.6±1.6、9.6±0.4变为17.1±1.9(P<0.05)。Dau 10μmol·L-1分别使hERG的半失活电压V1/2从(-52.7±3.7)mV变为(-57.8±3.5)mV(P<0.05,n=11);失活曲线斜率从-21.7±0.6变为-21.0±0.5(n=9,P>0.05)。单指数方程拟合稳态失活电流得到失活时间常数,在-120 mV和-110 mV电压下,Dau 10μmol·L-1使稳态失活时间常数明显下降,失活速率加快(P<0.05)。Dau对瞬时失活曲线和恢复时间常数无影响。Dau具有开放性阻断剂的特性。
     (2)DS:在20mV时,DS 1,3,10,30μmol·L-1对hERG去极化末电流的抑制率分别是(32.2±4.2)%(n=6,P<0.05)、(41.6±2.6)%(n=4,P<0.05)、(62.1±5.9)%(n=12,P<0.05)、(74.8±9.8)%(n=5,P<0.05),IC50为9.1μmol·L-1;在60 mV时,对hERG尾电流的抑制率分别是(16.7±5.8)%(n=6)、(31.1±4.5)%(n=7,P<0.05)、(55.1±11.2)%(n=13,P<0.05)、(81.2±7.0)%,IC50为9.6μmol·L-1。DS 1,3,10,30μmol·L-1分别使hERG的半激活电压V1/2从(8.2±2.0)mV变为(7.6±3.2)mV、(4.7±3.4)mV变为(6.5±3.1)mV、(2.8±3.3)mV变为(-2.6±4.2)mV、(0.4±4.5)mV变为(2.5±4.9)mV;激活曲线斜率分别从10.0±0.6变为11.1±0.8、10.5±0.7变为11.1±1.1、10.5±0.7变为13.2±2.2、10.0±0.7变为12.7±1.6,差异均无显著性。DS 10μmol·L-1分别使hERG的半失活电压V1/2从(-48.7±7.6)mV变为(-64.6±5.2)mV(P<0.05);失活曲线斜率从-21.9±0.7变为-22.5±1.0,差异无显著性。在-120mV到-100mV电压下,DS 10μmol·L-1使稳态失活时间常数明显下降,失活速率加快(P<0.05)。DS 10μmol·L-1在-50 mV至+10 mV电压下对瞬时失活曲线有影响(左移),在-20 mV至+10 mV电压下瞬时失活时间常数缩短,差异有统计学意义。DS具有开放性阻断剂的特性。
     3.以HEK293细胞上表达的hERG通道为研究对象,采用Western blotting技术,研究Dau和DS对hERG通道蛋白表达水平的影响
     (1)Dau:HEK293-hERG细胞孵育24 h后,在大部分指令电压下Dau 10μmol·L-1可增加hERG尾电流(Itail),但无统计学差异。control组的膜电容为(32.4±4.4)pF(n=17),Dau 10μmol·L-1组膜电容为(35.9±4.7)pF(n=15),差异无统计学意义。分别用Dau 3,10,30μmol·L-1处理细胞24 h后进行Western blotting检测,结果发现Dau 30μmol·L-1可减少hERG通道蛋白的表达,统计学上有显著差异(P<0.05)。
     (2)DS:HEK293-hERG细胞孵育24 h后,DS 10μmol·L-1可抑制hERG去极化末电流(Istep),在-60 mV至0 mV差异有统计学意义(P<0.05)。在所有电压下对尾电流(Itail)均有抑制作用,差异有显著性(P<0.05)。control组的膜电容为(16.5±3.1)pF(n=12),DS 10μmol·L-1组膜电容为(45.7±9.4)pF(n=6),差异有统计学意义(P<0.05)。分别用DS 3,10,30μmol·L-1处理细胞24h后进行Western blotting检测,结果发现DS 30μmol·L-1可减少hERG通道蛋白的表达,统计学上有显著差异(P<0.05)。
     结论:
     1.Dau和DS对IK1和Ito均有一定抑制作用,但作用较弱,100μmol·L-1时抑制率均未达到50%。Dau对IKr尾电流半数抑制浓度为14.0μmol·L-1,DS对IKr尾电流半数抑制浓度为19.9μmol·L-1,对IKr的激活曲线、半激活电压和激活曲线斜率的影响,均无统计学意义。Dau和DS对IKs尾电流的抑制作用较IKr弱,30μmol·L-1时抑制率均未达到50%。
     2.Dau、DS对hERG通道具有抑制作用,该作用具有电压依赖性,随着膜电位的去极化,抑制作用逐渐增强。但Dau和DS对通道的激活曲线几乎无影响。Dau.DS均能使hERG通道的半失活电压下降,失活时间常数减小,失活速率加快。Dau对瞬时失活曲线和恢复时间常数无影响。DS瞬时失活曲线左移,-20 mV-+10 mV电压下瞬时失活时间常数缩短,不影响恢复时间常数。Dau和DS对hERG通道的抑制作用具有开放性阻断剂的特征。
     3.hERG细胞在Dau 10μmol·L-1孵育24 h后,去极化末电流和尾电流都有增加的趋势,hERG通道蛋白表达减少,但均无统计学差异,Dau 30μmol·L-1时可显著减少hERG蛋白的表达。DS 10μmol·L-1孵育24 h后,在所有指令电压下尾电流都减小,有统计学差异,但DS 10μmol·L-1对hERG表达无显著影响,在30μmol·L-1时可显著减少hERG蛋白的表达。
Objective:Daurincine(Dau) and daurinsoline(DS), the bisbenzyl isoquinoline alkaloids, are extracted from the root of Menispermum dauricum DC. Their antiarrhythmic effects have been demonstrated in various experimental models. The excessive prolonged repolarization of action potential duration (APD) is the electrophysiological basis of Long QT syndrome (LQTs).The APD and the morphology of action potential were controlled by the inward currents and outward currents. The main outward currents are the rapidly activated delayed rectifier potassium current(IKr) and the slowly activated delayed rectifier potassium current(IKs).The main outward currents are sodium current(INa) and L-type calcium current(ICa-L)。In this study, using patch-clamp technique and Western blotting, we studied the effects of Dau and DS on ion channels and their proteins which are related to the acquired LQTs, and explored their antiarrhythimic mechanisms.
     Methods:(1) Single left ventricular myocardial cells of rabbits were isolated by enzymic method. Using patch-clamp technique, we recorded the IK1, IKr, IKs and Ito of single cell and studied the effects of Dau and DS these potassium channels; (2) Using patch-clamp technique, we recorded the hERG current which stably expressed in HEK293 cells and studied the effects of Dau and DS on kinetics of hERG currents; (3) Using Western blotting techinique, we studied the effects of Dau and DS on hERG protein levels.
     Results:
     1. The effects of Dau and DS on IK1, IKr, IKs and Ito potassium current
     (1) Dau:Compared with control, Dau at 1,3,10,30,100μmol·L-1 could inhibit the IK1, but there were no statistical difference and Dau did not affect the reversal potetntials. The inhibiton rates of Dau at 10,30,100μmol·L-1 on IK1 were (5.8±1.8)%、(16.5±2.7)%v and (39.3±8.1)% at-100mV, respectively. The inhibiton rates of Dau at 1,3,10,30μmol·L-1 on IKr were (12.2±8.6)%, (30.4±7.1)%, (37.1±3.7)% and (64.1±5.8)% respectively at-60 mV and the IC50 was 14.0μmol·L-1。Dau 10,30μmol·L-1 made the half activation voltages of IKr change from(-16.4±2.8)mV to (-14.8±2.2) mV, from(-17.8±4.2) mV to(-20.7±1.7) mV, respectively and the slope of the activation curve change from 6.2±0.1 to 6.8±0.4, from 6.2±0.2 to 6.5±0.2, but there were all no statistical differences. The inhibition rates of Dau at 10,30μmol·L-1 on IKs at+60 mV were (28.7±3.3)% and (40.3±5.2)%, respectively。Dau at 10,30μmol·L-1 changed the half activation voltages from (14.1±0.7)mV to (12.8±1.6), from (15.0±1.9) mV to (10.5±1.0) mV, respectively and the slope of activation curve changed from 6.2±0.2 to 6.5±0.2, form 14.7±0.7 to 15.5±1.7, but there were all no statistical differences. Dau at 10,30,100μmol·L-1 inhibted the Ito current. The inhibition rate of Dau 30,100μmol·L-1 on Ito at+30 mV were (26.5±3.6)% and (38.7±0.7)%, respectively. Dau 30,100μmol·L-1 changed the half activation voltages of Ito from (-12.4±4.6) mV to (17.1±1.9) mV, from(-12.5±4.6) mV to (-14.0±3.2) mV, respectively and the activation slope changed from 19.9±1.4 to 20.4±0.2, from 19.9±1.4 to 19.8±0.7, but there were all no statistical differences.
     (2) DS:Compared with control, DS 10,30,100μmol·L-1 could inhibit the IK1, but there was no statistical difference and DS did not affect the reversal potetntials. The inhibiton rates of DS at 10,30,100μmol·L-1 on IK1 were (8.0±2.8)%、(16.0±3.4)% and (26.1±8.5)% at-100 mV, respectively. The inhibiton rate of DS at 1,3,10, 30μmol·L-1 on IKr were (6.7±1.9)%、(26.1±6.0)%、(31.1±5.0)% and (55.4±6.9)% at-60 mV and the IC50 was 19.9μmol·L-1. DS 10,30μmol·L-1 made the half activation voltages of IKr-change from(-22.5±1.1) mV to (-25.2±1.5) mV, from(-21.5±1.6) mV to (-26.5±3.2) mV, respectively and the slope of the activation curve change from 6.6±0.2 to 5.6±0.4, from 6.7±0.4 to 4.7±1.1, but there were all no statistical difference. The inhibition rates of DS at 10, 30μmol·L-1 on IKs at +60mV were (25.7±3.8)% and (38.0±3.8) %, respectively。DS at 10μmol·L-1, 30μmol·L-1changed the half activation voltages from (12.0±3.8) mV to (11.5±1.7) mV, from (12:2±3.0)mV to (7.3±3.3) mV, respectively and the slope of activation curve changed from 13.5±0.8 to 12.3±1.3, form 13.9±0.9 to 13.9±1.9, but there were all no statistical difference. DS 10, 30μmol·L-1 inhibted the Ito current. The inhibition rate of DS at 10, 30μmol·L-1 on Ito at +30 mV were (6.1±9.2)% and (36.5±11.4)%, respectively. DS 10, 30μmol·L-1 changed the half activation voltages of Ito from (-10.9±4.8) mV to (-9.0±4.3) mV, from(-19.9±1.9) mV to (-15.7±1.5) mV, respectively and the activation slope changed from 17.0±1.5 to 18.0±1.5, from 18.4±1.5 to 17.6±1.8, but there were all no statistical difference.
     2. The effects of Dau and DS on kinetics of hERG current, which stably expressed in HEK293 cells
     (1) Dau: At +20mV, the inhibition rates of Dau at 1, 3, 10, 30μmol·L-1 on hERG step current were (16.1±5.5)%, (28.4±6.7)% (P<0.05,n=8), (59.7±8.9)% (P<0.05,n=10), (79.7±4.7)% (P<0.05,n=7), respectively and the IC50 was 6.9μmol·L-1; At +60mV, the inhibition rates of Dau 1, 3, 10, 30μmol·L-1 on hERG tail current were (6.1±5.2)%, (26.5±3.6)% (P<0.05,n=4), (57.6±8.8)%(P<0.05,n=9), (85.3±2.2)% (P<0.05,n=6), respectively, and the IC50 was 8.4μmol·L-1. Dau 1,3, 10, 30μmol·L-1 changed the half activation voltages from (4.5±3.0)mV to (3.3±3.3) mV, from (5.1±2.9) mV to (2.6±4.0) mV, from (0.7±2.8) mV to (-6.2±5.8)mV, from (1.1±2.7) mV to (3.7±4.1) mV, respectively, but there were no statistical differences. The slopes of activation curve were changed from 10.6±0.6 to 11.0±0.7, from 10.7±0.6 to 11.2±0.8, from 9.9±0.4 to 13.6±1.6, from 9.6±0.4 to 17.1±1.9 (p<0.05) . Dau 10μmol·L-1 decreased the half inactivation voltage from -52.7±3.7 to -57.8±3.5 (P<0.05, n=11) and changed the slope of inactivation curve from -21.7±0.6 to -21.0+0.5(n=9)( P>0.05). Dau had no effects on steady-state inactivation curve, the onset of inactivation curve and the recovery time constant. Dau exerted the characteristics of an open channel blocker of hERG current.
     (2) DS:At+20 mV, the inhibition rates of DS at 1,3,10,30μmol·L-1 on hERG step current were (32.2±4.2)%(n=6, P<0.05), (41.6±2.6)%(n=4, P<0.05), (62.1±5.9)%(n=12,P<0.05), (74.8±9.8)%(n=5, P<0.05), respectively and the IC50 was 9.1μmol·L-1; At+60 mV, the inhibition rates of DS 1,3,10,30μmol·L-1 on hERG tail current were(16.7±5.8)%(n=6), (31.1±4.5)%(n=7, P<0.05), (55.1±11.2)% (n=13,P<0.05), (81.2±7.0) (P<0.05,n=6), respectively, and the IC50 was 9.6μmol·L-1. DS 1,3,10,30μmol·L-1 changed the half activation voltages of hERG current from (8.2±2.0) mV to (7.6±3.2) mV, from (4.7±3.4) mV to (6.5±3.1) mV, from (2.8±3.3) mV to (-2.6±4.2) mV, from (0.4±4.5) mV to (2.5±4.9) mV, respectively, but there were no statisitical differences. The slopes of activation curve were changed from 10.0±0.6 to 11.1±0.8, from 10.5±0.7 to 11.1±1.1, from 10.5±0.7 to 13.2±2.2, from 10.0±0.7 to 12.7±1.6, respectively, and there were no statistical differences. DS 10μmol·L-1 decreased the half inactivation voltages from (-48.7±7.6) mV to (-64.6±5.2) mV(P<0.05) and changed the slope of inactivation curve from-21.9±0.7 to-22.5±1.0 (P>0.05). DS 10μmol·L-1 increased the inactivation at the test potential from-120mV to-100 mV(P<0.05), shifted the onset of inactivation curve at the test potential from-50 mV to+10 mV(P<0.05), and decreased the time constant of the onset of inactivation at test potential from-20 mV to+10 mV(P<0.05).DS had no effect on the recovery time constant. DS exerted the characteristics of an open channel blocker of hERG current.
     3. The effects of Dau and DS on protein levels of hERG current, which stably expressed in HEK293 cells
     (1)Dau:After the HEK293-hERG cells were incubated for 24 hours with 10μmol·L-1 Dau, the step and tail hERG currents were increased(P>0.05). The capacitance of control and Dau were (32.4±4.4) pF(n=17) and (32.4±4.4) pF(n=17), respectively(P>0.05).The HEK293-hERG cells were incubated with Dau at 3,10,30μmol·L-1 for 24 hours and the protein were tested by using Western blotting technique. Dau 30μmol·L-1 could decrease the hERG protein expression(P<0.05).
     (1)DS:After the HEK293-hERG cells were incubated for 24 hours with 10 μmol·L-1 DS, the step and tail hERG currents were decreased at the test potential from-60 mV to 0 mV(P<0.05). The capacitance of control and DS were (16.5±3.1) pF(n=12) and (45.7±9.4)(n=6), respectively(P<0.05).The HEK293-hERG cells were incubated with DS at 3,10,30μmol·L-1 for 24 hours and the protein were tested by using Western blotting technique. DS 30μmol·L-1 could decrease the hERG protein expression(P<0.05).
     Conclusion:
     1. Dau and DS could inhibit IK1 and Ito, but the inhibiton rate did not reach 50% at 100μmol·L-1.The IC50 of Dau and DS on IKr tail current were 14.0μmol·L-1 and 19.9μmol·L-1, respectively. Dau and DS had no effects on the activation curves of IKr.The inhibitory effects of Dau and DS on IKs were weaker than their effects on IKr, the inhibiton rate did not reach 50% at 30μmol·L-1.
     2. Dau and DS had inhibitory effects on hERG currents and it was voltage-dependent. As the depolarization of membrane potential, the inhibitory effects became more and more strong. But Dau and DS had no effects on activaton curves of hERG current. Dau and DS could decrease the half inactivation voltage and the inactivation time constant of hERG current and could speed up the inactivaton. Dau did not affect the onset of inactivaton and the recovery time constant of hERG current. DS shifted the onset of inactivaton curve to left and markedly decreased the time constant of the onset of inactivation at test potential from-20mV to+10mV and had no effects on recovery time constant.
     3. After the HEK293-hERG cells were incubated with Dau 10μmol·L-1 for 24 hours, the step hERG currents were decreased, the tail hERG currents were increased and the hERG protein expression were decreased, but there were no significant difference. Dau 30μmol·L-1 couled markedly decreased the hERG protein expression. After the HEK293-hERG cells were incubated with DS 10μmol·L-1 for 24 hours, the step and tail hERG currents were significantly decreased, but DS 10μmol·L-1 had no effects on hERG protein expression. DS 30μmol·L-1 could markedly decrease the hERG protein expression.
引文
1.单其俊,沈建华。获得性长QT综合征。中国心脏起搏与电生理杂志[J],2008,22(2):103-110.
    2. Selzer A, Wray HW. Quinidine syncope. Paroxysmal ventricular fibrillation occurring during treatment of chronic atrial arrhythmias[J]. Circulation,1964,30: 17-26.
    3. De Ponti F, Poluzzi E, Montanaro N, et al. QTc and psychotropic drugs[J]. Lancet, 2000,356(9223):75-76.
    4. Roden DM. Cellular basis of drug-induced torsades de pointes[J]. Br J Pharmacol, 2008,154(7):1502-1507.
    5. Katchman AN, Koerner J, Tosaka T, et al. Comparative evaluation of HERG currents and QT intervals following challenge with suspected torsadogenic and nontorsadogenic drugs[J]. J Pharmacol Exp Ther,2006,316(3):1098-1106.
    6. Ficker E, Kuryshev YA, Dennis AT, et al. Mechanisms of arsenic-induced prolongation of cardiac repolarization[J]. Mol Pharmacol,2004,66(1):33-44.
    7. Dennis A, Wang L, Wan X, et al. hERG channel trafficking:novel targets in drug-induced long QT syndrome[J]. Biochem Soc Trans,2007,35(Pt 5): 1060-1063.
    8. Cordes JS, Sun Z, Lloyd DB, et al. Pentamidine reduces hERG expression to prolong the QT interval[J]. Br J Pharmacol,2005,145(1):15-23.
    9. Kuryshev YA, Ficker E, Wang L, et al. Pentamidine-induced long QT syndrome and block of hERG trafficking[J]. J Pharmacol Exp Ther,2005,312(1):316-323.
    10. Wang Lu, Wible BA, Wan Xiao-Ping, et al. Cardiac glycosides as novel inhibitors of human ether-a-go-go-related gene channel trafficking[J]. J Pharmacol Exp Ther, 2007,320(2):525-534.
    11. Hancox JC, Mitcheson JS. Combined hERG channel inhibition and disruption of trafficking in drug-induced long QT syndrome by fluoxetine:a case-study in cardiac safety pharmacology[J]. Br J Pharmacol,2006,149(5):457-459.
    12. Rajamani S, Eckhardt LL, Valdivia CR, et al. Drug-induced long QT syndrome: hERG K channel block and disruption of protein trafficking by fluoxetine and norfluoxetine[J]. Br J Pharmacol,2006,149(5):481-489.
    13. Guo Jun, Massaeli H, Li Wen-Tao, et al. Identification of IKr and its trafficking disruption induced by probucol in cultured neonatal rat cardiomyocytes. J Pharmacol Exp Ther,2007,321(3):911-920.
    14. van der Heyden MA, Smits ME, Vos MA. Drugs and trafficking of ion channels:a new pro-arrhythmic threat on the horizon[J]? Br J Pharmacol,2008; 153(3):406-409.
    15. Takemasa H, Nagatomo T, Abe H, et al. Coexistence of hERG current block and disruption of protein trafficking in ketoconazole-induced long QT syndrome[J]. Br J Pharmocol,2008,153(3):439-447.
    16. Kuhlkamp V, Mewis C, Bosch R, et al.Delayed sodium channel inactivation mimics long QT syndrome 3[J]. J Cardiovasc Pharmacol,2003,42(1):113-117.
    17. Lee KS, Lee EW. Ionic mechanism of ibutilide in human atrium:evidence for a drug-induced Na+ current through a nifedipine:inhibited inward channel[J]. J Pharmacol Exp Ther,1998,286(1):9-22.
    18. Yang T, Snyders DJ, Roden DM. Ibutilide, a methane-sulfonanilide antiarrhythmic, is a potent blocker of the rapidly-activating delayed rectifier K+ current (IKr) in AT-1 cells:concentration-, time-, voltage-, and use-dependent effects [J]. Circulation,1995,91(6):1799-1806.
    19. Raschi E, Ceccarini L, De Ponti F, et al. hERG-related drug toxicity and models for pedicting hERG liability and QT prolongation[J]. Expert Opin Drug Metab Toxicol,2009,5(9):1005-1021.
    20. Kiehn J, Thomas D, Karle CA, et al. Inhibitory effects of the classⅢ antiarrhythmic drug amiodarone on cloned HERG potassium channels[J]. Naunyn Schmiedebergs Arch Pharmacol,1999,359(3):212-219.
    21.胡崇家,曾繁典.蝙蝠葛碱的药理作用和临床应用[M].周金黄主编,中药药理与临床研究进展,中国科学出版社,1992,P26-38.
    22. Xia Jing-Sheng, Tu Hong, Li Zhen, et al. Dauricine suppressed CsCl-induced early afterdepolarizations and triggered arrhythmias in rabbits heart in vivo[J]. Acta Pharmacologica Sinica.1999,20(6):515-516.
    23. Zeng Fan-dian, et al. Antiarrnhythmic effect and electrophysiological properties of daurisoline, Programme and Abstracts. The 3rd China-Japan Joint Meeting on Pharmacology, Beijing, China,1993.
    24. Guo Dong-Lin, Zeng Fan-Dian, Hu Chong-Jia. Effect of dauricine, quinidine, and sotalol on action potential duration of papillary muscle in vitro[J]. Acta Pharmacologica Sinica.1997,18(4):348-350.
    25.王镇辛,朱接全,曾繁典,等.蝙蝠葛苏林碱的抗致心律失常性迟后除极[J].药学学报,1994,9:647-651。
    26. Guo Dong-Lin, Xia Jing-Sheng, Gu Shi-Fen, et al. Effect of dauricine on early afterdepolarizations and triggered activity induced by quinidine in guinea pig papillary muscle[J]. Chin J Pharmacol and Toxicol.1998,12(4):253-255.
    27. Li Zhen, Lin Xian-Ming, Xia Jing-Sheng, et al. Daurinsoline suppressed CsCl-induced early afterdepolarizations and triggered arrhythmias in rabbits heart in vivo. Chinese Pharmacological Bulletin,2000 Annals of CPB Series Research Articles.38-40.
    28. Xia Jing-Sheng, Guo Dong-Lin, Zhang Yi, et al. Inhibitory effect of dauricine on potassium current in guinea pig ventricular myocytes[J]. Acta Pharmacologica Sinica.2000; 21(1):60-64.
    29. Guo Dong-Lin, Zhou Zhao-Nian, Zeng Fan-Dian, et al. Dauricine inhibited L-type calcium current in simple cardiomyocyte of guinea pig[J]. Acta Pharmacologica Sinica.1997,18(5):419-421.
    30.冯克燕等.蝙蝠葛碱治疗心律失常的临床观察[J].中华心血管病杂志,1984,12(4):265-267.
    31. Liu Qiang-Ni, Zhang Li, Gong Pei-Li, et al. Inhibitory effects of dauricine on early afterdepolarizations and L-type calcium current[J]. Can J of Physiol and Pharm,2009,87:954-962.
    32. Liu Qiang-Ni, Zhang Li, Gong Pei-Li, et al. Daurisoline Suppressed Early Afterdepolarizations and Inhibited L-Type Calcium Current[J]. Am J Chin Med, 2010,38(1):37-49.
    1. Qian Jia-Qing. Cardiovascular pharmacological effects of bisbenzylisoquinoline alkaloid derivatives[J]. Acta Pharmacologica Sinica.2002,23(12):1086-1092.
    2. Guo Dong-Lin, Zeng Fan-Dian, Hu Chong-Jia. Effects of dauricine, quinidine and sotalol on action potential duration of papillary muscles in vitro[J]. Zhongguo Yao Li Xue Bao,1997,18(4):348-350.
    3. Guo Dong-Lin, Xia Jing-Sheng, Gu Shi-Fen, et al. Effects of dauricine on early aferdepolarizations and triggered activity induced by quinidine in guinea pig papillary muscle[J]. Chin J Pharmacol Toxicol,1998,12(4):253-255.
    4. Guo Dong-Lin, Zhou Zhao-Nian, Zeng Fan-Dian, et al. Dauricine inhibited L-type calcium current in single cardiomyocyte of guinea pig. Zhongguo Yao Li Xue Bao. 1997,18(5):419-421.
    5. Li Zhen, Lin Xian-Min, Xia Jing-Sheng, et al. Effects of daurisoline on monophasic action potential of rabbit hearts in vivo. Chin J Pharmacol Toxicol. 2001,15(2):116-120.
    6.冯克燕。蝙蝠葛碱治疗心律失常的临床观察。中华心血管病杂志,1984,12(4):265-267。
    7.杨宝峰主编。离子通道药理学[M]。人民卫生出版社,2005,4:235-261.
    8. Ravens U, Cerbai E. Role of potassium currents in cardiac arrhythmia. Europace, 2008,10(10):1133-1137.
    9.肖剑锋,王勇,沈建新。心肌钾通道的研究进展。医学综述,2008,14(4):512-515。
    10.单其俊,沈建华。获得性长QT综合征[J]。中国心脏起搏与心电生理杂志。2008;22(2): 103-110。
    11. Liu Qiang-Ni, Zhang Li, Gong Pei-Li, et al. Inhibitory effects of dauricine on early afterdepolarizations and L-type calcium current[J]. Can J of Physiol and Pharm,2009,87:954-962.
    12. Liu Qiang-Ni, Zhang Li, Gong Pei-Li, et al. Daurisoline Suppressed Early Afterdepolarizations and Inhibited L-Type Calcium Current[J]. Am J Chin Med, 2010,38(1):37-49.
    13. Zhang She-tuan. Isolation and characterization of IKr in cardiac myocytes by Cs+ permeation[J]. Am J Physiol Heart Circ Physiol,2006,290:H1038-H1049.
    14.刘泰槰。心肌细胞电生理学[M]。人民卫生出版社,2003:92-94。
    15. Eckardt L, Haverkamp W, Borggrefe M, et al. Experimental models of torsade de pointes[J]. Cardiovasc Res,1998,39(1):178-193.
    16. Fish FA, Prakash C, Roden DM. Suppression of repolarization related arrhythmias in vitro and in vivo by low-dose potassium channel activators[J]. Circulation, 1990,82(4):1362-1369.
    17. Boutijdir M, Restivo M, Wei Y, et al. Early afterdepolarization formation in cardiac myocytes:analysis of phase plane patterns, action potential, and membrane currents[J]. J Cardiovasc Electrophysiol,1994,5(7):609-620.
    18. Tamargo J, Caballero R, Gomez R et al. Pharmacology of cardiac potassium channel[J]. Cardiovasc Res,2004,62(1):9-33.
    19. Nattel S. Experimental evidence for proarrhythmic mechanisms of antiarrhythmic drugs[J]. Cardiovasc Res,1998,37(3):567-577.
    20. Valenzuela C, Sanchez CJ, Delpon E, et al. Imipramine blocks rapidly activating and delays slowly activating K+ current activation in guinea pig ventricular myocytes. Circ Res,1994,74(4):687-699.
    21. Turgeon J, Daleau P, Bannett PB, et al. Block of IKs, the slow component of the delayed rectifier K+ current, by the diuretic agent indapamide in guinea pig myocyets[J]. Circ Res,1994; 75(5):879-886.
    22. Pennefather P, Oliva C, Mulrine N. Origin of the potassium and voltage-dependent of the cardiac inwardly rectifying K+ current(IK1)[J]. Biophys J,1992,61(2): 448-462.
    23. Waller GM. Developmental increase in the inwardly potassium current of rat ventricular myocytes[J]. Am J Physiol,1992,262(5 Pt 1):C1266-C1272.
    24. Chen F, Wetzel GT, Friedman, et al. Single channel recording of inwardly rectifying potassium current in developing myocardium[J]. J Mol Cell Cardiol, 1991,23(3):259-267.
    1. International Conference on Harmonisation:guidance on S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT Interval Prolongation) by human pharmaceutical availability. Notice. Fed Regist,2005; 70: 61133-61134.
    2. International Conference on Harmonisation:guidance on E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic drugs; availability. Notice. Fed Regist,2005,70:61134-61135.
    3. Warmke JW, Ganetzky B. A family of potassium genes related to eag in Drosophila and mammals [J]. Proc Natl Acad Sci USA,1994,91(8):3438-3442.
    4. Tseng GN.IKr:The hERG Channel[J]. J Mol Cell Cardiol,2001,33(5):835-849.
    5. Tang Qiang, Jin Man-Wen, Xiang Ji-Zhou, et al. The membrane permeable calcium chelator BAPTA-AM directly blocks human ether a-go-go-related gene potassium channels stably expressed in HEK293 cells. BiochemPharmacol, 2007,74(11):1596-1607.
    6. Trudeau MC, Warmke JW, Ganetzky B, et al. HERG, a human inward rectifier in the voltage-gated potassium channel family[J]. Science,1995,269(5220):92-95.
    7.关凤英,杨世杰。抗心律失常药物作用的靶点-hERG K+通道[J]。药学学报,2007,42(7):687-691.
    8. Raschi E, Vasina V, Poluzzi E, et al. The hERG K+ channel:target and antitarget strategies in drug development. Pharmacol res,2008,57(3):181-195.
    9. Kiehn J, Thomas D, Karle CA, et al. Inibitory effects of the class Ⅲ antiarrhythmic drug amiodarone on cloned hERG potassium channels. Naunyn Schmiedeberg's Arch Pharmacol,1999,359(3):212-219.
    10. Hohnloser SH, Klingenheben T, Singh BN. Amiodarone-associated proarrhythmic effects. A review with special reference to torsade de pointes tachycardia. Ann Intern Med,1994,121(7):529-535.
    11. Tsujimae K, Suzuki S, Yamada M, et al. Comparison of kinetic properties of quinidine and dofetilide block of HERG channels. Euro J Pharmacol, 2004,493(1-3):29-40.
    12. Kang Jie-Sheng, Chen Xiao-Liang, Wang Lin, et al. Interaction of the antimalarial drug mafloquine with the human cardiac poatassium channels KvLQTl/mink and HERG. J Pharmacol Exp Ther,2001,299(1):290-296.
    13. Yao Jian-An, Trybulski EJ, Tseng GN. Quinidine preferentially blocks the slow delayed rectifier potassium channel in the rested state. J Pharmacol Exp,1996, 279():856-864.
    14. Rashi E, Vasina V, Poluzzi E, et al. The hERG K+ channel:target and antitarget strategies in drug development. Pharmacol Res,2008,57(3):181-195.
    15. Hondeghem LM. Carlsson L, Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation,2001; 103(15):2004-2013.
    16. Shah RR, Hondeghem LM. Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Heart Rhythm,2005,2(7):758-772.
    17. Guo Dong-Lin, Zeng Fan-Dian, Hu Chong-Jia. Effect of dauricine, quinidine, and sotalol on action potential duration of papillary muscle in vitro. Acta Pharmacologica Sinica.1997,18(4):348-350.
    18. Liu Qiang-Ni, Zhang Li, Gong Pei-Li, et al. Inhibitory effects of dauricine on early afterdepolarizations and L-type calcium current. Can J of Physiol and Pharm, 2009,87(11):954-962.
    19. Liu Qiang-Ni, Zhang Li, Gong Pei-Li, et al. Daurisoline Suppressed Early Afterdepolarizations and Inhibited L-Type Calcium Current. Am J Chin Med, 2010,38(1):37-49.
    20. Carvero I, Crumb W. Native and cloned ion channels from human heart: Laboratory models for evaluationg the cardiac safety of new drugs[J]. Eur Heart J, 2001,3(supplement K):K53-K56.
    1. Staudacher I, Schweizer PA, Katus HA, et al. hERG:protein trafficking and potential for therapy and drug side effects[J]. Curr Opin Discov Devel,2010, 13(1):23-30.
    2. Eckhardt LL, Rajamani S, January CT. Protein trafficking abnormalities:a new mechanism in drug-induced long QT syndrome. Br J Pharmacol,2005,145(1): 3-4.
    3. Kuryshev YA, Ficker E, Wang L, et al. Pentamidine-induced long QT syndrome and block of hERG trafficking. J Pharmacol Exp Ther,2005; 312:316-323.
    4. Katchman AN, Koerner J, Tosaka T, et al. Comparative evaluation of HERG currents and QT intervals following challenge with suspected torsadogenic and nontorsadogenic drugs. J Pharmacol Exp Ther,2006; 316:1098-1106.
    5. Drolet B, Simard C, Roden DM. Unusual effects of a QT-prolonging drug, arsenic trioxide, on cardiac potassium currents. Circulation,2004; 109:26-29.
    6. Ficker E, Kuryshev YA, Dennis AT, et al. Mechanisms of arsenic-induced prolongation of cardiac repolarization. Mol Pharmacol,2004; 66:33-44.
    7. Wang L, Wible BA, Wan X, et al. Cardiac glycosides as novel inhibitors of human ether-a-go-go-related gene channel trafficking. J Pharmacol Exp Ther,2007; 320:525-534.
    8. Hancox JC, Mitcheson JS. Combined hERG channel inhibition and disruption of trafficking in drug-induced long QT syndrome by fluoxetine:a case-study in cardiac safety pharmacology. Br J Pharmacol,2006; 149:457-459.
    9. Rajamani S, Eckhardt LL, Valdivia CR, et al. Drug-induced long QT syndrome: hERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine. Br J Pharmacol,2006; 149:481-489.
    10. Guo J, Massaeli H, Li W, et al. Identification of IKr and its trafficking disruption induced by probucol in cultured neonatal rat cardiomyocytes. J Pharmacol Exp Ther,2007; 321:911-920.
    11. van der Heyden MA, Smits ME, Vos MA. Drugs and trafficking of ion channels:a new pro-arrhythmic threat on the horizon? Br J Pharmacol,.2008; 153:406-409.
    12. Takemasa H, Nagatomo T, Abe H, et al. Coexistence of hERG current block and disruption of protein trafficking in ketoconazole-induced long QT syndrome. Br J Pharmocol,2008,153:439-447.
    13. Eckhardt LL, Rajamani S, January CT. Protein trafficking abnormalities:a new mechanism in drug-induced long QT syndrome. Brit J Pharmacol,2005,145:3-4.
    14.关凤英,杨世杰。抗心律失常药物作用的靶点-HERG K+通道[J]。药学学报,2007,42:687-691.
    15. Zhou J, Meng R, Li XX, et al. The effect of arsenic trioxide on QT interval prolongation during APL therapy. Chin Med J,2003,116:1764-1766.
    16. Ficker E, Kuryshev YA, Dennis AT, et al. Mechanisms of arsenic-induced prolongation of cardiac repolarization. Mol Pharmacol,2004,66:33-44.
    17. Gong Q, Anderson CL, January CT, et al. Role of glycolsylation in cell surface expression and stability of HERG potassium channels. Am J Physiol,2002,283: H77-H84.
    18. David F, Steele JE, David F. Mechanisms of cardiac potassium channel trafficking. J Physiol,2007,582:17-26.
    19. Rajamani S, Anderson CL, Anson BD, et al. Pharmacological rescue of human K+ channel long QT2 mutations:human ether a-go-go-related gene recue without block [J]. Circulation,2002,105:2830-2835.
    1. Gupta A, Lawrence AT, Krishnan K, et al. Current concepts in the mechanisms and management of drug-induced QT prolongation and torsade de pointes[J]. Am Heart J,2007; 153(6):891-899.
    2. De Ponti F, Poluzzi E, Cavalli A, et al. Safety of non-antiarrhythmic drugs that prolong the QT interval or induce torsades de pointes:an overview[J]. Drug Saf, 2002; 25(4):263-286.
    3. Haverkamp W, Breithardt G, Camm AJ, et al. The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs:clinical and regulatory implications. Report on a policy conference of the European Society of Cardiology. Eur Heart J,2000; 21(15):1216-1231.
    4. De Ponti F, Poluzzi E, Montanaro N. QT-interval prolongation by non-cardiac drugs:lessons to be learned from recent experience[J]. Eur J Clin Pharmacol, 2000; 56(1):1-18.
    5. Sanguinetti MC, Jiang C, Curran ME, et al. A mechanistic link between an inherited and an acquired cardiac arrhythmia:HERG encodes the IKr potassium channel[J]. Cell,1995,81(2):299-307.
    6. Trudeau MC, Warmke JW, Ganetzky B, et al. HERG, a human inward rectifier in the voltage-gated potassium channel family[J]. Science,1995,269(5220):92-95.
    7. Snyders DJ, Chaudhary A. High affinity open channel block by dofetilide of HERG expressed in a human cell line[J]. Mol Pharmacol,1996,49(6):949-955.
    8.关凤英,杨世杰。抗心律失常药物作用的靶点-HERG K+通道[J]。药学学报,2007,42(7):687-691.
    9. Eckardt L, Haverkamp W, Borggrefe M, et al. Experimental models of torsade de pointes[J]. Cardiovasc Res,1998,39(1):178-193.
    10. Volders PG, Sipido KR, Vos MA, et al. Cellular basis of biventricular hypertrophy and arrhythmogenesis in dogs with chronic complete atrioventricular block and acquired torsade de pointes[J]. Circulation,1998,98(11):1136-1147.
    11. Vos MA, de Groot SH, Verduyn SC, et al. Enhanced susceptiblility for acquired torsade de pointes arrhythmias in the dog with chronic, complete AV block is related to cardiac hypertrophy and electrical remodeling[J]. Circulaton,1998, 98(11):1125-1135.
    12. Sugiyama A, Ishida Y, Satoh Y, et al. Electrophysiological, anatomical and histological remodeling of the heart to AV block enhances susceptibility to arrhythomogenic effects of QT prolonging drugs[J]. Jpn J Pharmacol,2002,88(3): 341-350.
    13. Satoh Y, Sugiyama A, Takahara A, et al. A novel monkey proarrhythmia model that can predict the drug-induced torsade de pointes in clinical practice[J].2006, J Pharmacol Sci,100(Suppl I):223P.
    14. Weissenburger J, Davy JM, Chezalviel F, Ertzbischoff O, et al. Arrhythmogenic activities of antiarrhythmic drugs in consious hypokekaemia dogs with atrioventricular block:comparison between qunidine, lidocaine, flecainide, propranolol and sotalol [J]. J Pharmocol Exp Ther,1991; 259(2):871-883.
    15. Timmermans C, Rodriguez LM, Van Suylen RJ, et al. Catheter-based cryoablation produces permanent bidirectional cavotricuspid isthmus conduction block in dogs[J]. J Interv Card Electrophysiol,2002,7(2):149-155.
    16. Oros A, Beekman JD, Vos MA. The canine model with chronic, complete atrio-ventricular block[J]. Pharmacology and Therapeutics,2008,119(2):168-178.
    17. Fossa A A. Assessing QT prolongation in conscious dogs:Validation of a beat-to-beat method [J]. Pharmacol Ther,2008,119(2):133-140.
    18. Roden DM. Proarrhythmia as a pharmacogenomic entity:a critical review and formulation of a unifying hypothesis[J]. Cardiovasc Res,2005,67(3):419-425.
    19. Roden DM. Drug-induced prolongation of the QT interval[J]. N Engl J Med,2004, 350(10):1013-1022.
    20. Makita N, Horie M, Nakamura T, et al. Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation[J]. Circulation,2002,106(10): 1269-1274.
    21. Sugiyama A. Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodeled hearts[J].Br J Pharmacol,2008,154(7):1528-1537.
    22. Hamlin RL, Kijtawornrat A. Use of the rabbit with a failing heart to test for torsadogenicity[J]. Pharmacol Ther,2008; 119(2):179-185.
    23. Raschi E, Ceccarini L, De Ponti F, et al. hERG-related drug toxicity and models for predicting hERG liability and QT prolongation[J]. Drug Metab Toxicol,2009, 5(9):1005-1021.
    24. Joshi A, Dimino T, Vohra Y, et al. Preclinical strategies to assess QT liability and torsadogenic potential of new drugs:the role of experimental models[J]. J Electrocardiol,2004,37 (Suppl):7-14.
    25. Joshi A, Dimino T, Vohra Y, et al. Preclinical strategies to assess QT liability and torsadogenic potential of new drugs:the role of experimental models[J]. J Electrocardiol,2004,37(Suppl):7-14.
    26. Lawrence CL, Pollard CE, Hammond TG, et al. In vitro models of proarrhythmia[J]. Br J Pharmacol,2008,154(7):1516-1522.
    27. Gintant GA. Preclinical torsade de pointes screens:advantages and limitations of surrogate and direct approaches in evaluating proarrhythmic risk[J]. Pharmacol Ther,2008,119(2):199-209.
    28. Hondeghem LM. QT prolongation is an unreliable predictor of ventricular arrhythmia[J]. Heart Rhythm,2008,5(8):1210-1212.
    29. Hondeghem LM. Use and abuse of QT and TRIaD in cardiac safety research: importance of study design and conduct[J]. Eur J Pharmacol,2008,584(1):1-9.
    30. Hondeghem LM. Relative contributions of TRIaD and QT to proarrhythmia[J]. J Cardiovasc Electrophysiol,2007,18(6):655-657.
    31. Shah RR, Hondeghem LM. Refining detection of drug-induced proarrhythmia: QT interval and TRIaD[J]. Heart Rhythm,2005,2(7):758-772.
    32. Hondeghem LM. TRIad:foundation for proarrhythmia (triangulation, reverse use dependence and instability) [J]. Novartis Found Symp.2005,266:235-244.
    33. Hondeghem LM. QT and TdP. QT:an unreliable predictor of proarrhythmia[J]. Acta Cardiol,2008,63(1):1-7.
    34. Rashi E, Vasina V, Poluzzi E, et al. The hERG K+ channel:target and antitarget strategies in drug development[J]. Pharmacol Res,2008; 57(3):181-195.
    35. Hondeghem LM. Carlsson L, Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic[J]. Circulation,2001; 103(15):2004-2013.
    36. Shah RR, Hondeghem LM. Refining detection of drug-induced proarrhythmia: QT interval and TRIaD[J]. Heart Rhythm,2005; 2(7):758-772.
    37. Hondeghem LM. Thorough QT/QTc not so thorough:removes torsadogenic predictors from the T-wave, incriminates safe drugs, and misses profibrillatory drugs[J]. J Cardiovasc Electrophysiol,2006; 17(3):337-340.
    38. Milberg P, Hilker E, Ramtin S, et al. Proarrhythmia as a class effect of quinolines: increased dispersion of repolarization and triangulation of action potential predict torsades de pointes[J]. J Cardiovasc Electrophysiol,2007; 18(6):647-654.
    39. Quan XQ, Bai R, Liu N, et al. Increasing gap junction coupling reduces transmural dispersion of repolarization and prevents torsade de pointes in rabbit LQTs model[J]. J Cardiovasc Electrophysiol.2007,18(11):1184-1189.
    40. Yan GX, WU Y, Liu T, et al. Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-QT syndrome:Direct evidence from intracellular recordings in the intact left ventricular wall[J]. Circulation,2001,103(23):2851-2856.
    41. Yan GX, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome[J]. Circulation,1998, 98(18):1928-1936.
    42. Antzelevitch C, Sun ZQ, Zhang ZQ, et al. Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes[J]. J Am Coll Cardiol,1996,28(7):1836-1848.
    43. Yan GX, Shimizu W, Antzelevitch C. Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations[J]. Circulation,1998, 98(18):1921-1927.
    44. Liu T, Brown BS, Wu Y, et al. Blinded validation of the isolated arterially perfused rabbit ventricular wedge in preclinical assessment of drug-induced proarrhythmias[J]. Heart Rhythm,2006,3(8):948-956.
    45. Antzelevitch C, Shimizu W. Cellular mechanisms underlying the long QT syndrome[J]. Curr Opin Cardiol,2002,17(1):43-51.
    46. Lu HR, Vlaminckx E, Van de Water A, et al. In-vitro experimental models for the risk assessment of antibiotics-induced QT prolongation[J]. Eur J Pharmacol,2006, 553(1-3):229-239.
    47. International Conference on Harmonisation; guidance on S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT Interval Prolongation) by human pharmaceuticals; availability. Notice. Fed Regist,2005, 70:61133-61134.
    48. Wible BA, Hawryluk P, Ficker E, et al. HERG-Lite:a novel comprehensive high-throughput screen for drug-induced hERG risk[J]. J Pharmacol Toxicol Methods,2005,52(1):136-145.
    49. Staudacher I, Schweizer PA, Katus HA, et al. hERG:protein trafficking and potential for therapy and drug side effects[J]. Curr Opin Discov Devel,2010, 13(1):23-30.
    50. Eckhardt LL, Rajamani S, January CT. Protein trafficking abnormalities:a new mechanism in drug-induced long QT syndrome. Br J Pharmacol,2005,145(1): 3-4.
    51. Kuryshev YA, Ficker E, Wang L, et al. Pentamidine-induced long QT syndrome and block of hERG trafficking[J]. J Pharmacol Exp Ther,2005,312(1):316-323.
    52. Katchman AN, Koerner J, Tosaka T, et al. Comparative evaluation of HERG currents and QT intervals following challenge with suspected torsadogenic and nontorsadogenic drugs[J]. J Pharmacol Exp Ther,2006,316(3):1098-1106.
    53. Drolet B, Simard C, Roden DM. Unusual effects of a QT-prolonging drug, arsenic trioxide, on cardiac potassium currents[J]. Circulation,2004,109(1):26-29.
    54. Ficker E, Kuryshev YA, Dennis AT, et al. Mechanisms of arsenic-induced prolongation of cardiac repolarization[J]. Mol Pharmacol,2004,66(1):33-44.
    55. Wang L, Wible BA, Wan X, et al. Cardiac glycosides as novel inhibitors of human ether-a-go-go-related gene channel trafficking[J]. J Pharmacol Exp Ther,2007, 320(2):525-534.
    56. Hancox JC, Mitcheson JS. Combined hERG channel inhibition and disruption of trafficking in drug-induced long QT syndrome by fluoxetine:a case-study in cardiac safety pharmacology[J]. Br J Pharmacol,2006,149(5):457-459.
    57. Rajamani S, Eckhardt LL, Valdivia CR, et al. Drug-induced long QT syndrome: hERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine[J]. Br J Pharmacol,2006,149(5):481-489.
    58. Guo J, Massaeli H, Li W, et al. Identification of IKr and its trafficking disruption induced by probucol in cultured neonatal rat cardiomyocytes[J]. J Pharmacol Exp Ther,2007,321(3):911-920.
    59. van der Heyden MA, Smits ME, Vos MA. Drugs and trafficking of ion channels:a new pro-arrhythmic threat on the horizon[J]? Br J Pharmacol,2008,153(3): 406-409.
    60. Takemasa H, Nagatomo T, Abe H, et al. Coexistence of hERG current block and disruption of protein trafficking in ketoconazole-induced long QT syndrome[J]. Br J Pharmocol,2008,153(3):439-447.
    61. Tomaselli GF, Marban E. Eletrophysiological remodeling in hypertrophy and heart failure[J]. Cardiovasc Res,1999,42(2):270-283.
    62. Janse MJ. Electrophysiological changes in heart failiure and their relationship to arrhythmogenesis[J]. Cardiovasc Res,2004,61(2):208-217.
    63. Gwathmey JK, Tsaioun K, Hajjar RJ. Cardionomics:a new intergrative approach for screening cardiotoxicity of drug candidates [J]. Exp Opin Drug Metab Toxicol, 2009,5(6),647-660.
    64. Solem LE, Henry TR, Wallace KB. Disruption of mitochondrial calcium homeostasis following chronic doxorubicin administration[J]. Toxicol Appl Pharmacol,1994,129(2):214-222.
    65. Takahashi S, Denvir MA, Harder L, et al. Effects of in vitro and in vivo exposure to doxorubicin(adriamycin) on caffeine-induced Ca2+ release from sarcoplasmic reticulum and contractile protein function in'chemically-skinned'rabbit ventricular trabeculae[J]. Jpn J Pharmacol,1998,76(4),405-413.
    66. Choi BR, Burton F, Salama G. Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome[J]. J Physiol,2002,543(Pt 2):615-631.
    67. Balasubramaniam R, Chawla S, Grace AA, et al. Caffeine-induced arrhythmias in murine hearts parallel changes in cellular Ca2+ homeostasis[J]. Am J Physiol Heart Circ Physiol,2005,289:H1584-H1593.
    68. Olson RD, Gambliel HA, Vestal RE, et al. Doxorubicin cardiac dysfunction: effects on calcium regulatory proteins, sarcoplasmic reticulum, and triiodothyronine[J]. Cardiovasc Toxicol,2005,5(3),269-283.
    69. Hove-Madsen L, LIach A, Molina CE, et al. The proarrhythmic antihistamine drug terfenadine increases spontaneous calcium release in human atrial myocytes[J]. Eur J Pharmacol,2006,5539(1-3):215-221.
    70. Qian JY, Guo L. Altered cytosolic Ca2+ dynamics in cultured Guinea pig cardiomyocytes as an in vitro model to identify potential cardiotoxicants[J]. Toxicol in Vitro,2010,24(3):960-972.
    71.Cavelli A, Poluzzi E, De Ponti F, et al. Toward a pharmacophore for drugs inducing the long QT syndrome:insights from a CoMFA study of HERG K+ channel blockers[J]. J Med Chem,2002,45(18):3844-3853.
    72. Lawrence CL, Pollard CE, Hammond TG, et al. In vitro models of proarrhythmia[J]. Br J Pharmacol,2008,154(7):1516-1522.
    73. Hund TJ, Rudy Y. Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model[J]. Circulation,2004,110(20): 3168-3174.
    74. Lee N, Authier S, Pugsley MK, et al. The continuing evolution of torsades de pointes liability testing methods:is there an end in sight [J]? Toxicol Appl Pharmacol,2010,243(2):146-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700