丹参酮ⅡA磺酸钠对稳定表达的人心肌细胞I_(Ks)电流的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验背景
     缓慢激活延迟整流钾电流(I_(Ks))是参与人心肌细胞动作电位复极,特别是平台期形成与维持的重要外向离子流。I_(Ks)通道由KCNQ1基因编码的α亚单位及KCNE1基因编码的β亚单位组成。hKCNQ1/hKCNE1基因突变或慢性心肌肥厚、慢性心力衰竭等病理过程均可导致I_(Ks)功能异常,引起遗传性或获得性长QT综合征,LQTS易引起尖端扭转型室性心动过速等心律失常,从而危及病人生命。深入研究I_(Ks)通道的药理特性将可能为此类心律失常的防治提供新线索。
     丹参酮ⅡA是丹参的脂溶性成分之一,主要分布于丹参根皮部,本质部有少量分布。其磺化产物丹参酮ⅡA磺酸钠易溶于水,在临床上被广泛用于冠心病、心肌梗死等疾病的辅助治疗。但是丹参酮ⅡA磺酸钠对于人心肌细胞I_(Ks)电流的作用目前尚不清楚。
     目的与方法
     第一部分:将分别编码I_(Ks)通道α亚单位及β亚单位的KCNQ1、KCNE1基因共转染HEK293细胞,潮霉素B筛选,电生理学及药理学方法鉴定,观察hKCNQ1/hKCNE1通道的电生理学特性和药理学特性与野生型人心肌细胞I_(Ks)通道是否相似。
     第二部分:主要运用膜片钳技术,探讨丹参酮ⅡA磺酸钠对于稳定表达的人心肌细胞I_(Ks)电流的作用、对I_(Ks)电流激活曲线的影响以及对其激活和去激活时间的影响。
     实验结果
     第一部分:
     1.稳定表达hKCNQ1/hKCNE1基因的细胞上可记录到缓慢激活、无明显失活、具有明显尾电流的外向电流,该电流激活电压大于?40mV,具有明显的电压依赖性;在未转染hKCNQ1/hKCNE1基因的HEK293细胞上只记录到很小的背景电流。
     2.细胞外钾离子浓度越大,反转电位负值越大,表明hKCNQ1/hKCNE1电流主要是通道对钾离子通透引起。
     3.选择性I_(Ks)通道阻断剂Chromanol293B对hKCNQ1/hKCNE1电流具有明显的、可逆的抑制作用,其IC50(+40mV)为9.1μmol/L。
     4.无钾细胞外液能显著增加hKCNQ1/hKCNE1电流,在去极化刺激为+40mV时增加幅度为(28.6±2.0)%(P<0.01,n=8)。
     第二部分:
     1.丹参酮ⅡA磺酸钠可以增加稳定表达的人心肌细胞I_(Ks)电流的幅度,其作用呈浓度依赖并且可逆,EC50(+40mV)为64.5μmol/L。
     2.30μmol/L的丹参酮ⅡA磺酸钠使I_(Ks)电流激活曲线左移而对斜率无影响,30μmol/L的丹参酮ⅡA磺酸钠和对照组的V0.5分别为(16.1±1.2)mV、(24.1±1.9)mV(P<0.05,n=7);S分别为19.1±2.3、17.6±2.4(P>0.05,n=7)。
     3.丹参酮ⅡA磺酸钠减小I_(Ks)电流的激活时间常数(-20mV至+40mV,n=7,P<0.05),增大I_(Ks)电流的去激活时间常数(-90mV至-40mV,n=7,P<0.05)。
     结论
     第一部分:已经成功构建稳定表达人心肌细胞I_(Ks)电流的细胞模型,其电生理学特性和药理学特性与野生型人心肌细胞I_(Ks)电流相似,可以作为研究人心肌细胞I_(Ks)电流功能的细胞模型。
     第二部分:丹参酮ⅡA磺酸钠能够可逆地增大稳定表达的人心肌细胞I_(Ks)电流,其作用呈浓度依赖,使I_(Ks)电流激活曲线左移而对斜率无影响,丹参酮ⅡA磺酸钠加快I_(Ks)电流激活过程,减慢I_(Ks)电流的去激活过程。
Background
     Slowly activating delayed rectifier potassium current(I_(Ks)) is important in therepolarization of human cardiomyocyte action potential,especially in forming andmaintaining plateau of action potential. I_(Ks) channel is combined byαandβsubunits,which are coded by KCNQ1 and KCNE1 respectively. Mutations ofhKCNQ1/hKCNE1 genes,chronic myocardial hypertrophy and chronic heartfailure will lead to dysfunction of I_(Ks) and ingenital or acquired LQTS which areimportant factor in hazardous ventricular arrhythmia such as Torsade depoints.Research into pharmacological properties of I_(Ks) channel may provide a newclue for protection and treatment of such arrhythmias.
     TanshinoneⅡA is a lipophilic form of salvia miltiorrhiza. SodiumtanshinoneⅡA sulfonate is soluble in water and is widely used to treat coronaryartery disease and myocardial infarction in clinic.However, Effects of sodium tanshinoneⅡA sulfonate on human cardiomyocyte slowly activating delayedrectifier potassium current are not known.
     ObjectiveObjectivesandMethods
     PART I: Human cardiac KCNQ1 and KCNE1 genes, which encodeαandβsubunit of I_(Ks) respectively, were cotransfected into HEK 293 cells.Hygromycin Bwas used to screen the transfected cells.Electrophysiological and pharmacologicalmethods were used to identify whether properties of stably expressedhKCNQ1/hKCNE1 channels are similar to native human cardiac I_(Ks) channel.PARTⅡ:To investigate the effects of sodium tanshinoneⅡA sulfonate on I_(Ks)current by patch clamp. To make clear whether tanshinoneⅡA sulfonate can affectactivation curve of I_(Ks) current and activation and deactivation time constants ofI_(Ks).
     Results
     PART I:
     1. Slowly activating current was recorded in HEK 293 cells stablely expressinghKCNQ1/hKCNE1 genes.The current was voltage-dependent obviously and itsactivation voltage was higher than ?40 mV. We could only record smallbackground current in HEK 293 cells without gene transfection.
     2.Its reverse potential linearly correlates with the extracellular potassiumconcentration,indicating that hKCNQ1/hKCNE1 current is a kind of potassiumcurrent.
     3.The current was significantly and reversibly inhibited by Chromanol 293B,aspecific I_(Ks) blocker, with an IC50 (+40mV)of 9.1μmol/L.
     4.Extacellular fluid without potassium ions significantly increased the magnitudeof I_(Ks). At + 40 mV, the increased level was (28.6±2.0)% (P<0.01, n = 8).
     PARTⅡ:
     1.Sodium tanshinoneⅡA sulfonate reversibly enhanced I_(Ks) in a concentrationdependent way,EC50(+40mV)is 64.5μmol/L.
     2.Sodium tanshinoneⅡA sulfonate at 30μmol/L produced a significant leftwardshift in the voltage-dependence of I_(Ks) activation without effect on slope factor. V0.5of sodium tanshinoneⅡA sulfonate at 30μmol/L and control groupwere(16.1±1.2)mV and(24.1±1.9)mV (P<0.05,n= 7), S of these two groupswere 19.1±2.3 and 17.6±2.4 (P>0.05,n=7).
     3.The activation time constants of I_(Ks) were reduced by tanshinoneⅡA sulfonate at-20 to +40mV(n=7,P<0.05); however, the deactivation time constants wereincreased by sodium tanshinoneⅡA at potentials of -90 to -40 mV (n=7,P<0.05).ConclusiConclusion
     PART I:Cell model stably expressing human cardiac slowly activating delayedrectifier potassium current has been successfully established, which has similarcharacteristics of native human cardiac I_(Ks). The established cell model is a idealcell model of human cardiac I_(Ks).
     PARTⅡ:Sodium tanshinoneⅡA sulfonate reversibly enhanced I_(Ks) in aconcentration dependent way. Sodium tanshinoneⅡA sulfonate at 30μmol/Lproduced a significant leftward shift in the voltage-dependence of I_(Ks) activationwithout effect on slope factor.Sodium tanshinoneⅡA sulfonate reduced activationtime constants of I_(Ks) ,but increased deactivation time constants of I_(Ks).
引文
[1]Li GR,Feng J,Yue L,et al.Evidence for two components of delayed rectifier K+current in human ventricular myocytes[J].Circ Res, 1996, 78(5): 689-696.
    [2]Sanguinetti MC, Curran ME, Zou A,et al. Coassembly of K(V)LQT1 and minK(IsK) proteins to form cardiac I(Ks) potassium channel[J]. Nature, 1996,384(6604): 80-83.
    [3]Chen H, Kim LA, Rajan S,et al. Charybdotoxin binding in the I(Ks) poredemonstrates two MinK subunits in each channel complex[J]. Neuron, 2003, 40(1):15-23.
    [4]Sanguinetti MC. Dysfunction of delayed rectifier potassiumm channels in aninherited cardiac arrhythmia[J].Ann N Y Acad Sci,1999,868:406-413.
    [5] Li GR,Lau CP,Anique Ducharme,et al. Transmural action potential and ioniccurrent remodeling in ventricles of failing canine hearts[J].Am J Physilo HeartCirc Physiol,2002,283(3): H1031-H1041.
    [6]Li GR,Lau CP,Leung TK,et al.Ionic current abnormalities associated withprolonged action potentials in cardiomyocytes from diseased human rightventricles[J].Heart Rhythm,2004,1(4): 460-468.
    [7]Xu X,Rials SJ,Wu Y,et al. Left ventricular hypertrophy decreases slowly but notrapidly activating delayed rectifier potassium currents of epicardial andendocardial myocytes in rabbits[J]. Circulation, 2001,103(11):1585-1590.
    [8] Noble D, Tsien RW. Outward membrane currents activated in the plateaurange of potentials in cardiac Purkinje fibers[J]. J Physiol. 1969;200:205-231.
    [9]M.Sanguinetti and N.Jurkiewicz.Two components of cardiac delayed rectifierK+ current. Differential sensitivity to block by class III antiarrhythmic agents[J]. J.Gen. Physiol. 96 (1990):195–215.
    [10]W.Coetzee, Y.Amarillo, J.Chiu et al.Molecular diversity of K+ channels.Ann[J]. N. Y. Acad. Sci. 868 (1999):233–285.
    [11]J.M. Nerbonne. Molecular basis of functional voltage-gated K+ channeldiversity in the mamalian myocardium[J]. J. Physiol. 525 (2000):285–298.
    [12]D.M.Roden, J.R.Balser, A.L.George, Jr.et al. Cardiac ion channels[J]. Annu.Rev. Physiol. 64 (2002):431–475.
    [13]D.J.Snyders. Structure and function of cardiac potassium channels[J].Cardiovasc. Res. 42 (1999):377–390.
    [14]S. Nattel, L. Yue and Z. Wang. Cardiac ultrarapid delayed rectifiers. A novelpotassium current family of functional similarity and molecular diversity[J]. CellPhysiol. Biochem. 9 (1999):217–226.
    [15]G.-N. Tseng. IKr: the hERG channel[J].J. Mol. Cell. Cardiol. 33 (2001):835–849.
    [16]M.Tristani-Firouzi and M.C.Sanguinetti. Structural determinants andbiophysical properties of HERG and KCNQ1 channel gating[J]. J. Mol. Cell.Cardiol. 35 (2003):27–35.
    [17]G.R.Li, J.Feng, L.Yue et al. Delayed rectifier K+ current in human ventricularmyocytes[J]. Circ. Res. 78 (1996):689–696.
    [18]S.M.Bryant, X.Wan, S.J.Shipsey et al.Regional differences in the delayedrectifier current (IKr and IKs) contribute to the differences in action potentialduration in basal left ventricular myocytes in guinea-pig[J]. Cardiovasc. Res. 40(1998):322–331.
    [19]J.Cheng, K.Kamiya, W.Liu et al.Heterogeneous distribution of the twocomponents of delayed rectifier K+ current: a potential mechanism of theproarrhtyhmic effects of methanesulfonanilide class III agents[J]. Cardiovasc. Res.43 (1999):135–147.
    [20]lwata H , Kodama I ,Suzuki R ,et al. Effects of long term oral administrationof amiodarone on the ventricular repolarization of rabbit hearts [J]. Jpn CircJ,1996,60 :662-672.
    [21]J.Feng, L.Yue,Z.Wang and S.Nattel, Ionic mechanisms of regional actionpotential heterogeneity in the canine right atrium[J]. Circ. Res. 83 (1998): 541–551.
    [22]D.W.Liu and C.Antzelevitch. Characteristics of the delayed rectifier current(IKr and IKs) in canine ventricular epicardial, mid-myocardial, and endocardialmyocytes[J]. Circ. Res. 76 (1995): 351–365.
    [23]P.G. Volders, K.R. Sipido, E. Carmeliet et al., Repolarizing K+ currents Ito1and IKs are larger in right than left canine ventricular midmyocardium. Circulation99 (1999):206–210.
    [24]Li GR ,Feng J ,Yue L ,et al. Evidence for two components of delayed rectifierK+ current in human ventricular myocytes [J]. Circ Res,1996,78 :689-696.
    [25]Zeng J ,Laurita KR. Two components of cardiac delayed rectifier K+ currentin ventricular cyocytes of the guinea pig type:theoretical formulation and theirrole in repolarization [J]Circ Res ,1995 ,77:140-152.
    [26]Sicouri S, Antzelevitch C. Drug-induced afterdepolarizations and triggeredactivity occur in a discrete subpopulation of ventricular muscle cells (M cells) inthe canine heart: quinidine and digitalis[J]. J Cardiovasc Electrophysiol. 1993,4:48–58.
    [27]R.S. Kass and L.C. Freeman. Potassium channels in the heart: cellular,molecular and clinical implications[J]. Trends Cardiovasc Med 3(1993):149–159.
    [28]S.A.N. Goldstein and C. Miller. Site-specific mutations in a minimal voltagedependentK+ channel alter ion selectivity and open-channel block[J]. Neuron 7(1991):403–408.
    [29]M.D. Varnum, A.E. Busch, C.T. Bond, et al. The min K channel underlies thecardiac potassium current IKs and mediates species-specific responses to proteinkinase C[J]. Proc Natl Acad Sci USA 90 (1993):11528–11532.
    [30]B. Attali, E. Guillemare, F. Lesage et al.The protein IsK is a dual activator ofK+ and Cl? channels[J]. Nature 365 (1993):850–852.
    [31]Splawski I,Shen j,Timothy KW,et al.Genomic structure of three long QTsyndrome genes:KVLQT1,HERG,and KCNE1[J].Genomics,1998,51(1):86-97.
    [32]Cooper EC,Jan LY.Ion channel genes and human neurological disease:recentprogress,prospects,and challenges[J].Proc Natl Sci USA,1999,96(9):4759-4766.
    [33] M.C.Sanguinetti, M.E. Curran, A. Zou et al.Coassembly of K(v)LQT1 andminK (IsK) proteins to form cardiac IKs potassium channel[J]. Nature 384 (1996):80–83.
    [34]J. Barhanin, F. Lesage, E. Guillemare, et al. K(v)LQT1 and IsK (minK)proteins associate to form the IKs cardiac potassium current[J]. Nature 384 (1996):78–80.
    [35]M. Tristani-Firouzi and M.C.Sanguinetti. Structural determinants andbiophysical properties of HERG and KCNQ1 channel gating[J]. J. Mol. Cell.Cardiol. 35 (2003):27–35.
    [36]H. Suessbrich and A.E. Busch.The IKs channel: coassembly of IsK (minK) andKvLQT1 proteins[J]. Rev. Physiol. Biochem. Pharmacol. 137 (1999): 191–226.
    [37]Tristani-Firouzi M,Sanguinetti MC.Structural determinants and biophysicalproperties of HERG and KCNQ1 channel gating[J].J Mol Cell Cardiol,2003,35(1):27-35.
    [38]Tapper AR,George AL.Location and orientation of minK within the I(Ks)potassium channel complex[J].J Biol Chem,2001,276(41):38249-38254.
    [39]Melman YF,Um SY,Krumerman A,et al.KCNE1 binds to the KCNQ1 pore toregulate potassium channel activity[J].Neuron,2004,42(6):927-937.
    [40]M. Tristani-Firouzi and M.C. Sanguinetti. Structural determinants andbiophysical properties of HERG and KCNQ1 channel gating[J]. J. Mol. Cell.Cardiol. 35(2003):27–35.
    [41]J. Kurokawa, H. Abriel and R.S. Kass.Molecular basis of the delayed rectifiercurrent I(ks) in heart[J]. J. Mol. Cell. Cardiol. 33 (2001):873–882.
    [42]E. Delpon, C. Valenzuela, O. Pérez et al. Propafenone preferentially blocksthe rapidly activating component of delayed rectifier K+ current in guinea pigventricular myocytes. Voltage-independent and time-dependent block of theslowly activating component[J]. Circ. Res. 76 (1995):223–235.
    [43]N.K. Jurkiewicz and M.C. Sanguinetti. Rate-dependent prolongation ofcardiac action potentials by a metanosulfonanilide class III antiarrhythmic agent.Specific block of rapidly activating delayed rectifier K+ current by dofetilide[J].Circ. Res. 72 (1993):75–83.
    [44]M.T. Keating and M.C. Sanguinetti. Pathophysiology of ion channelmutations[J]. Curr Opin Genet Dev (1996):326–333.
    [45]Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novelpotassium channel gene: KVLQT1 mutations cause cardiac arrhythmias[J]. NatGenet.1996,12:17–23.
    [46]Splawski I, Tristani-Firouzi M, Lehmann MH, et al. Mutations in the hminKgene cause long QT syndrome and suppress IKs function[J]. Nat Genet.1997, 17:338–340.
    [47]Tyson J,Tranebjaerg L,McEntagart M,et al.Mutational spectrum in thecardioauditory syndrome of Jervell and Lange-Nielsen[J].Hum Genet,2000,107(5):499-503.
    [48]Splawski I,Shen J,Timothy KW,et al.Spectrum of mutations in long-QTsyndrome genes.KvLQT1,HERG,SCN5A,KCNE1,and KCNE2[J].Circulation,2000,102(10):1178-1185.
    [49]Murray A,Donger C,Fenske C,et al.Splicing mutations in KCNQ1:a mutationhot spot at codon 344 that produces in frame transcripts[J].Circulation,1999,100(10):1077-1084.
    [50]Franqueza L,Lin M,Shen J,et al.Long QT syndrome-associated mutations inthe S4-S5 linker of KvLQT1 potassium channels modify gating and interactionwith minK subunits[J].J Biol Chem,1999,274(30):21063-21070.
    [51]Donger C,Denjoy I,Berthet M,et al. KvLQT1 C-terminal missense mutationcauses a forme frust long-QT syndrome[J].Circulation,1997,96(9):2778-2781.
    [52]Chouabe C,Neyroud N,Richard P,et al.Novel mutations in KvLQT1 thataffect Iks activation through interactions with Isk[J].Cardiovasc Res,2000, 45(4):971-980.
    [53]Chen YH,Xu SJ,Bendahhou S,et al. KCNQ1 gain-of-function mutation infamilial atrial fibrillation[J].Science,2003,299(5604):251-254.
    [54]Chouabe C,Neyroud N,Guicheney P,et al.Properties of KvLQT1 K+ channelmutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiacarrhythmias[J].EMBO J,1997,16(17):5472-5479.
    [55]Bianchi L,Priori SG,Napolitano C,et al.Mechanisms of I(Ks) suppression inLQT1 mutants[J].Am J Physiol Heart Circ Physiol,2000,279(6):H3003-H3011.
    [56]D.E. Vetter, J.R. Mann, P. Wangemann et al.Inner ear defects induced by nullmutation of the IKs gene[J]. Neuron 17 (1996):1251–1264.
    [57]Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart diseasewith prolongation of the QT interval, and sudden death[J]. Am Heart J.1957,54:59–68.
    [58]Romano C, Gemme G, Pongiglione R. Aritmiecardiache rare dell’etapediatrica, II: accessi sincopali per fibrillazione ventricolare parossitica[J]. ClinPediatr. 1963,45:656–683.
    [59]Ward OC. A new familial cardiac syndrome in children[J]. J Ir Med Assoc.1964;54:103–106.
    [60]VISKIN S. Torsades de pointes [J].Curr Treat Options Cardiovasc Med ,1999,1:187-195.
    [61]SEPP R ,CSANADY M. Molecular genetics of the long QT syndrome :clinical aspects[J].Orv Hetil,1999,140:2633-2638.
    [62]Volders PG,Sipedo KR ,Vos MA ,et al. Downregulation of delayed rectifierK( + ) currents in dogs with chronic complete atrioventricular block and acquiredtorsades de pointes[J] .Circulation, 1999,100:2455-2461.
    [63]Xu X,Risls SJ ,Wu Y,et al. Left ventricular hypertrophy decreases slowly butnot rapidly activating delayed rectifier potassium currents of epicardial andendocardial myocytes in rabbits[J].Circulation,2001,103:1585-1590.
    [64]Kleiman RB ,Houser SR. Outward currents in normal and hypertrophiedfeline ventricular myocytes[J] . Am J Physiol ,1989 ,256 : 1450-1461.
    [65] M. Jiang, C. Cabo, J.-A. Yao et al. Delayed rectifier K currents have reducedamplitudes and altered kinetics in myocytes from infarcted canine ventricle[J].Cardiovasc. Res. 48 (2000):34–43.
    [66]F. Yuan, J.M.B. Pinto, Z. Hong, R. Myerburg and A.L. Bassett, Abnormaldelayed rectifier potassium current (IK) in feline left ventricular myocytes adjacentto healed myocardial infarct area[J]. Circulation 92 (1995),150–158.
    [67]R.B. Kleiman and S.R. Houser.Outward currents in normal and hypertrophiedfeline ventricular myocytes. Am J Physiol 256 (1989):H1450–H1461.
    [68] T. Furukawa, R.J. Myerburg, N. Furukawa, et al.Metabolic inhibition of ICa,Land IK differs in feline left ventricular hypertrophy. Am J Physiol 266(1994):H1121–H1131.
    [69]Yuan F, Pinto JMB, Li Q, Wasserlauf BJ, Bassett AL, Myerburg RJ.Characteristics of IK and its response to quinidine in myocytes from sites ofregional hypertrophy in experimental healed infarction. J CardiovascElectrophysiol, 1999,10(6):855-859.
    [70]Guo W, Kamiya K,Toyama J. Differential effects of chronic membranedepolarization on the K+ channel activities in cultured rat ventricularcells[J].Cardiovasc Res,1997,33:139O146.
    [71]Bauer A ,Becker R ,Freigang KD ,et al. Electrophysiologic effects of the newI(Ks)blocking agent chromanol 293B in the postinfarction canine heart. Preservedpositive use dependence and preferential prolongation of refractoriness in theinfarct zone [J].Basic Res Cardiol,2000,95:324-332.
    [72]Jiang M,Cabo C,Yao J,et al. Delayed rectifier K currents have reducedamplitudes and altered kinetics in myocytes from infarcted canine ventricle[J].Cardiovasc Res,2000, Oct;48(1):34-43.
    [73]Yang T, Kanki H, Roden DM.Phosphorylation of the IKs channel complexinhibits drug block: novel mechanism underlying variable antiarrhythmic drugactions[J].Circulation,2003,15;108(2):132-134.
    [74]Er Peretz,Alexander Sobko,Bernard Attali.Tyrosine kinases modulate K+channel gating in mouse Schwann cells.Jouurnal of Physiology 1999, 519(2):373-384.
    [75]Kathofer S, Rockl K, Zhang W, et al.Human beta(3)- adrenoreceptorscouple to KvLQT1/MinK potassium channels in Xenopus oocytes via proteinkinase C phosphorylation of the KvLQT1 protein.Naunyn Schmiedebergs Arch[J].Pharmacol,2003 ,368(2):119-126.
    [76]C.Frederick Lo,Randal Numann.Independent and Exclusive Modulation ofCardiac Delayed Rectifying K+ Current by Protein Kinase C and Protein KinaseA[J]. Circulation Research,1998,83:995-1002.
    [77] Marx SO, Kurokawa J, Reiken S, et al.Requirement of a macromolecularsignaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel[J]. Science,2002, 295(5554):496-499.
    [78]Junko Kruokawa, Lei Chen, Robert S.Kass.Requirement of subunit ezpressionfor cAMP-mediated regulation of a heart potassium channel[J].PNAS,2003,100(4):2122-2127.
    [79]中华人民共和国药典委员会.中华人民共和国药典(一部)[M].北京:化学工业出版社,2005,82.
    [80]康廷国.中药鉴定学[M].北京:中国中医药出版社,2003,172.
    [81]苗明三,李振国.现代实用中药质量控制技术[M].北京:人民卫生出版社,2000,247-257.
    [82]曾令杰, 梁晖,陈悦,梁惠瑜,潘永存.丹参酮ⅡA与丹酚酸B在丹参药材中的分布研究[J].现代中药研究与实践,2006,20(2):7-9.
    [83]黄熙,臧益民.丹参酮ⅡA磺酸钠心血管药理[J].国外医学·中医中药分册,1995,17(1):9-12.
    [84]于海波,徐长庆,单宏丽,等.丹参酮ⅡA 对大鼠心室肌细胞膜钾电流的影响[J].哈尔滨医科大学学报,2002,36(2):112-114.
    [85]徐长庆,王孝铭,范进松,等.丹参酮ⅡA 对豚鼠心室肌细胞跨膜电位及L-型钙电流的影响[J].中国病理生理杂志,1997,13(1):43.
    [86]朱利民,冯义柏,曾秋棠.丹参酮ⅡA 磺酸钠对家兔心房动作电位及快速起搏所致心房电重构的影响[J].中国药理学通报,2005, 21(11): 1381―1384.
    [87]张洁,曾晓荣,杨艳, 等.丹参酮ⅡA 磺酸钠和丹参素对猪冠状动脉平滑肌细胞钙激活钾通道的激活机制[J].中国药理学与毒理学杂志,2005,19(4):270~273.
    [88]孙学刚,贾玉华,张丽华. 丹参酮ⅡA 对大鼠缺氧及正常心肌细胞内钙、膜电位和线粒体膜电位的影响[J].中国中医药信息杂志, 2002,9(9): 21-23.
    [89]Chien KR ,Knowlton KU ,Zhu H ,et al. Regulation of cardiac gene expressionduring myocardial growth and hypertrophy:mo1ecular studies of an adaptivephysiologic response[J].SAFEB,1991,5(15):3037.
    [90]Takahashi K, Ouyang X, Komatsu K,et al. Sodium tanshinone IIA sulfonatederived from Danshen (Salvia miltiorrhiza) attenuates hypertrophy induced byangiotensin II in cultured neonatal rat cardiac cells[J]. Biochem Pharmacol,2002,64(4): 745-749
    [91]杨乐,邹晓静,冯俊,梁黔生,李树生,郑智.丹参酮IIA 磺酸钠对血管紧张素Ⅱ诱导的心肌肥大及p-ERK表达的影响[J]. 中国医院药学杂志, 2006, 26(10): 1191-1194.
    [92]杨乐,冯俊,严丽,梁黔生,李树生.郑智.丹参酮IIA磺酸钠影响血管紧张素Ⅱ诱导心肌肥大及p-JNK和丝裂原活化蛋白激酶磷酸酶1的表达[J].中国临床康复,2006,10(23):84-86.
    [93]Zhou G, Jiang W, Zhao Y, et al. Sodium tanshinone IIA sulfonate mediateselectron transfer reaction in rat heart mitochondria[J]. Biochem Pharmacol, 2003,65(1): 51-57.
    [94]李祖纯,夏祯芸.丹参酮ⅡA 磺酸钠注射液对急性心肌梗死再灌注治疗后左心功能的影响[J].药物与临床,2006,3(24):88-89.
    [95]祈宏,赵雪,李艳芳. 丹参酮ⅡA 磺酸钠注射液在急性心肌梗死中的应用[J].中国医药导报,2006,3(23):22-24.
    [96]Wu TW, Zeng LH, Fung KP, et al.Effect of sodium tanshinoneⅡA sulfonatein the rabbit myocardium and on human cardio myocytes and vascular endothelialcells.Biochem Pharmacol,1993,46(12): 2327-2332.
    [97]Seebohm G, Lerche C, Pusch M,et al.A kinetic study on the stereospecificinhibition of KCNQ1 and I(Ks) by the chromanol 293B[J].Br J Pharmacol,2001,134(8):1647-54.
    [98]Bosch RF, Gaspo R, Busch AE,et al. Effects of the chromanol 293B, aselective blocker of the slow, component of the delayed rectifier K+ current, onrepolarization in human and guinea pig ventricular myocytes[J].CardiovascRes,1998,38(2):441-450.
    [99]Volders PG, Stengl M, van Opstal JM,et al. Probing the contribution of IKs tocanine ventricular repolarization: key role for beta-adrenergic receptorstimulation[J].Circulation,2003, 107(21):2753-2760.
    [100]Seebohm G, Lerche C, Busch AE, et al.Dependence of I(Ks) biophysicalproperties on the expression system[J]. Pflugers Arch, 2001, 442(6): 891-895.
    [101]Sanguinetti MC, Jurkiewicz NK.Role of external Ca2+ and K+ in gating ofcardiac delayed rectifier K+ currents[J].Pflugers Arch, 1992, 420(2): 180-186.
    [102]R.F. Bosch, R. Gaspo, A.E. Busch,et al. Effects of the chromanol 293B, aselective blocker of the slow, component of the delayed rectifier K+ current, onrepolarization in human and guinea pig ventricular myocytes[J]. Cardiovasc. Res.38 (1998):441–450.
    [103]H. G?gelein, A. Bruggemann, U. Gerlach et al. Inhibition of IKs channels byHMR 1556[J]. Naunyn Schmiedeberg's Arch. Pharmacol. 362 (2000):480–488.
    [104]A.E. Busch, H. Suessbrich, S. Waldegger et al.Inhibition of IKs in guinea pigcardiac myocytes and guinea pig IsK channels by the chromanol 293B[J]. PflügersArch. 432 (1996):1094–1096.
    [105]B. Heath and D. Terrar.Separation of the components of the delayed rectifierpotassium current using selective blockers of IKr and IKs in guinea-pig isolatedventricular myocytes[J]. Exp. Physiol. 81 (1996):587–603.
    [106]Zankov DP,Omatsu-Kanbe M,Isono T,et al. Angiotensin Ⅱpotentiates theslow component of delayed rectifier K+ current via the AT1 receptor in guinea pigatrial myocytes[J].Circulation, 2006,113(10):1278-1286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700