琼东南盆地构造动力学演化及油气成藏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
琼东南盆地是发育在南海西北部陆架上的新生代沉积盆地,面积约3万平方公里。在区域地质构造上,盆地位于太平洋构造域与特提斯构造域的构造转换地带,始新世-早渐新世期间经历了印支半岛顺时针旋转挤出强烈影响的裂陷阶段,晚渐新世-中中新世期间在南海海底扩张控制下发生了裂陷向坳陷转化的过程,晚中新世以来发生了与地幔活动有关的一期主动裂谷作用。受以上区域地质演化控制,盆地在纵向上形成了下断上坳的结构特征,其中裂陷构造样式包括了半地堑和地堑两种方式,而在平面上发育了南北分带和东西分段的结构特征。不同时期的可容纳空间与沉积物供给的平衡程度有关,盆地早第三纪先后经历了始新统的陆相湖盆、崖城组海陆交互环境和陵水组分割浅海环境等三个沉积充填演化阶段;晚第三纪主要受裂后沉降作用和海平面变化的强烈影响经历三亚-梅山组开阔浅海充填阶段和莺黄组至第四系的开阔浅海-半深海充填阶段。
     琼东南盆地裂陷期的岩石圈热状态直接制约了上地壳伸展方式,北部坳陷带在相对冷岩石圈环境下发生伸展裂解形成以半地堑构造为主的单断式裂陷带,而中央坳陷带在相对热岩石圈环境下发生伸展裂解形成由半地堑和地堑组成的复式裂陷带。盆地现今的温压场主要形成于晚期主动裂谷事件中,同时受到早期裂陷结构的控制,表现为复式裂陷带具有高温高压特征、单断式裂陷带则为常温常压区。裂陷带之间的崖城-松涛凸起区属温压过渡区,单井压力曲线具有“正常压实带+上部超压带+相对低压带或正常压力带+下部强超压带”的四段式结构。
     受烃源岩发育特征及盆地沉积结构限制,琼东南盆地发育了上、下两套含油气系统,其间在早中新世沉积层序之间发生交叉和串通。油气主要来自下含油气系统。受到下第三系构造-沉积结构控制,盆地北部坳陷带诸凹陷及中央坳陷带的乐东、陵水和宝岛凹陷发育具生油能力的主力烃源岩、其它凹陷和低凸起区则主要发育生气型主力烃源岩。而现今有机质热演化程度则决定了北部坳陷带以生油为主、中央坳陷带的诸凹陷以生气为主。资源量评价表明,富生烃凹陷包括崖南、陵水、松南和宝岛凹陷。
     区域性盖层及温压场特征共同控制了琼东南盆地水动力系统的发育和演化。成熟油气初次运移以微裂隙为主。北部坳陷带主要发育较低能量的压实流,油气二次运移在浮力和水动力驱动下向斜坡带优势运移;中央坳陷带发育具有较高的能量的温压流,油气二次运移受到压力梯度控制从超压区向相对低压的压力过渡带和常压带发生垂向和侧向运移。油气二次运移的主要侧向输导体系包括斜坡带不整合-岩性输导体系和古构造脊、断坡区利裂谷偏移区发育的构造-岩性输导体系,其中,扇三角洲相高孔渗性砂岩是油气侧向运移的良好输导层。下第三系的小断距同向断层的侧向输导能力强,而大断距同向断层和反向断层的侧向封堵能力较强。晚明活动断层的下部开启性受到深层欠压实超压泥质岩的发育与否的明显影响,在欠压实超压体系不发育的地区开启性较强。
     侧向运聚是琼东南盆地的主要运聚成藏模式,在生排烃高峰期存在断裂活动的地区则发育沿断裂带的垂向运聚成藏模式,而在强超压区存在盖层破裂式运聚成藏模式。盆地东区的幔源非烃类气存在两种不同成因类型运聚模式。油气系统和成藏系统受到盆地地质演化过程
    
    明显的控制,其中,大中型气藏形成的关键地质条件包括:1)现今仍然具有丰富的烃源供
    给;2)晚期的构造活动有利于油气运聚成藏;3)缓坡型扇三角洲砂体是高温高压凹陷油气
    侧向运移的“高速公路”;4)富生烃凹陷周围的凸起和低凸起区圈闭带是寻找大中型气田的
    主要勘探区带。
     琼东南盆地可以划分16个天然气勘探区带,其中,下构造层9个、上构造层7个。通
    过对各区带的石油地质特征研究,提出盆地勘探的地质风险因素包括未钻凹陷的烃源风险、
    coZ组份风险、储层风险、异常超压风险、深水勘探风险等5大风险;认为上第三系圈闭带
    从优到次排队顺序:一号断裂聚集带一二号断裂聚集带一宝岛北聚集带一五号断裂聚集带,而
    下第三系圈闭带从优到次排队顺序为:一号断裂聚集带一二号断裂东聚集带一二号断裂西聚集
    带一三号断裂聚集带一宝岛北聚集带一陵水低凸起聚集带。在介绍和应用Metalink吸收分析技
    术、MDI多属性综合分析技术、弹性波反演技术和Geoview AVO反演技术对重点勘探目标
    评价基础上,优选一号断裂聚集带崖城26一3、崖城26一2、崖城19一1一束目标、二号断裂带
    东段聚集带宝岛19一ZN(即宝岛20一1)、二号断裂带西段聚集带陵水1一3、陵3构造以及三号
    断裂聚集带下降盘的崖城15一2等7个目标作为近期大然气勘探的首选目标。
Qiongdongnan basin is a Tertiary basin developed on the NW continental margin of the South China Sea with an area of 30,000 km2. In regional tectonics, it located at the transition area of the Pacific realm and Tethys realm. The Qiongongnan basin has experienced complex deformation history in Mesozoic and Cenozoic. From Eocene to early Oligocene, the rifting of the Qiongdongnan basin was strongly affected by Indochina Peninsula clockwise extrusion; from Late Oligocene to Middle Miocene, the Qiongdongnan basin shifted from rifting to depressing stage controlled by South China Sea opening. Since Late Miocene, the Qiongdongnan basin has changed into active rifting stage associated with mantle activity. Controlled by above geological events, the basin shows a double-layer vertical structure with faulting structures in the lower and depressing structure in the upper sector. The rifting structures in Qiongdongnan basin include both grabens and half-grabens. From plan view, the basin includes three zones from north
     to south and three blocks from west to east. The change of accommodate space in Paleogene was controlled by block activity, regional background subsidence and global sea level change, while the supply of sediments is mainly affected by pre-rifting water depth, boundary highs near the basin and tectonic morphology. Controlled by balance degree between accommodate space and sediment supply, the Qiongdongnan basin deposited lacustrine sediments in Eocene, an alternate continental-marine sequence in Yacheng group and separated neritic facies in Lingshui group. Mainly controlled by thermal subsidence and sea level change, the basin has experienced open neritic filling period from Sanya to Meishan group and open neritic to half abysmal filling period from Ying-huang group to Quaternary.
    The thermal status of the lithosphere during rifting stage directly controlled the deformation pattern of the upper crust. The northern depression stretched with relative colder lithosphere and was characterized by half grabens with all the faults dipping toward south, while the central depression stretched with relative hotter lithosphere and was characterized by complex rifting composed of half grabens and grabens. The present PT field formed mainly during active rifting period, but was controlled by early rifting architecture. The complex rifting zone was characterized by high PT, while the rifting zone with faults dipping toward the same direction was characterize by normal PT. Yacheng- Songtao uplift developed between above two rifting zones belongs to transition area of PT field, the pressure curvature of single well here is featured by four segments: the normal compacted area + upper over-pressured zone +relative low or normal pressure zone + lower strongly over-pressured zone.
    Confined by source rock and basin sedimentary architectures, the Qiongdongnan basin developed two series of hydrocarbon bearing systems in vertical. They crosscut and link through early Miocene sedimentary sequences. Oil and gas mainly came from lower hydrocarbon bearing system. Controlled by Paleogene structures and sedimentary architectures, the sags in the northern
    -3-
    
    
    depression and Ledong, Lingshui, Baodao sags in the central depression developed main source rocks, which has oil generation potential; other sags and low uplifts mainly beared gas generation source rock. The maturation degree of the organic materials determined that the northern depressions mainly generate oil and the sags in the central depression mainly produce gas. Resource evaluation shows that hydrocarbon-rich sags include Ya'nan, Lingshui, Songnan and Baodao sags.
    Regional cover and PT condition controlled the formation and .evolution of hydrodynamic system in Qiongdongnan basin. Initial migration of oil and gas is mainly through micro-fractures. The northern depression mainly developed low-energy compact flow, the secondary migration of oil and gas are driven by buoyancy and hydrodynamics toward prevailing slope. The central depression mainly developed high-energy PT flow,
引文
1.查明、张一伟、邱楠生等,2003,油气成藏条件及主要控制因素,北京:石油工业出版社。
    2.陈长民、施利生、许仕策等,2003,珠江口盆地(东部)第三系油气藏形成条件,北京:科学出版社。
    3.陈发景、田世澄,1989,压实与油气运移,武汉:中国地质大学出版社。
    4.陈荣书,1989,天然气地质学,武汉:中国地质大学出版社。
    5.戴金星、斐锡古、戚厚发,1992,中国天然气地质学(卷一),北京:石油工业出版社。
    6.董伟良,南海西部莺—琼盆地天然气勘探领域分析,天然气工业,1999,19(1):7-11。
    7.杜栩,郑洪印,焦秀琼,异常压力与油气分布,地学前缘,1995,2(3~4):137-138.
    8.冯晓杰、蔡东升、王春修、高乐,2003,东海陆架盆地中新生代构造演化特征,中国海上油气(地质),17(1):33-37;
    9.龚再升,李思田等,1997,南海北部大陆边缘盆地分析与油气聚集,科学出版社。
    10.龚再升等,1997,中国近海大油气田。石油工业出版社。
    11.郭令智、钟志洪、王良书等,莺歌海盆地区域构造演化,高校地质学报,7(1):1-12
    12.胡朝元、廖曦,成油系统概念在中国的提出及应用.石油学报。1996,17(1).
    13.金庆焕,1989,南海地质与油气资源。北京:地质出版社。
    14.李明诚,1994,石油与天然气运移,北京:石油工业出版社。
    15.李思田,林畅松,张启明等,1998,南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件。科学通报,43(8):797-810
    16.李绪宣,莺歌海盆地浅层气藏的地震识别技术研究。天然气工业,1999,Vol.19,No1。
    17.李绪宣、张树林,多波地震勘探技术在海上气田构造成像中的应用。中国海上油气(地质),1999,Vol13.No5。
    18.刘福宁,异常超压区的古沉积厚度和古地层压力恢复方法探讨。石油与天然气地质,1994,15(2):180~185。
    19.刘光华,1999,煤沉积学研究现状与动态,地学前缘,6:101-110。
    20.吕延防、付广等,2002,断层封堵性研究,石油工业出版社。
    21.罗群、白新华等,1998,断裂控烃理论与实践,武汉:中国地质大学出版社。
    22.马启富、陈斯忠、张启明等,2000,超压盆地与油气分布,地质出版社。
    23.邱中建、龚再升等,1999,中国油气勘探(第四卷 近海油气区),地质出版社、石油工业出版社。
    24.茹克,1988,南海北部边缘叠合式盆地的发育及其大地构造意义。石油与天然气地质,Vol.9,No.1.
    25.汪啸风,马大铨,蒋大海,1991,海南岛地质(三):构造地质。地质出版社。
    26.王燮培,费琪,张家骅.1990.石油勘探构造分析.武汉:中国地质大学出版社.
    27.王振峰、何家雄,2003,琼东南盆地中新统油气运聚成藏条件及成藏组合分析,天然气
    
    地球科学,第14卷,第2期,107-115。
    28.夏勘原,黄慈流,南海中生代特提斯沉积盆地的发现与寻找中生代含油气盆地的前景,地学前缘,2000,7:227-238。
    29.张启明、郝芳,1997,莺—琼盆地演化与含油气系统。中国科学(D辑),27(2):149-154。
    30.张树林、李绪宣,海上多波多分量地震技术新进展与发展方向。物探化探计算技术,2000,Vol22,No2。
    31.张树林、李绪宣,海上多波多分量地震烃类直接检测方法研究及应用。物探化探计算技术,2000,Vol.22,No3。
    32.真柄钦次,1991,石油圈闭的地质模型,童晓光、贾承造译,武汉:中国地质大学出版社。
    33.钟志洪、王良书、夏斌等,2004,莺歌海盆地成因及其大地构造意义,地质学报,78(1):1-7。
    34.赵文智、何登发、池英柳等,2001,中国复合含油气系统的基本特征与勘探技术,石油学报,22(1):6-13。
    35.黄第藩等译,1987,油气运移(第1集)。北京:石油工业出版社。
    36.陈何立等译,1987,油气运移(第2集)。北京:石油工业出版社。
    37.Beaumont E.A.,Foster N.H.,2002,油气圈闭勘探,刘德来等译,北京:石油工业出版社。
    38.C.K.威尔格斯等编,徐怀大等译,1993,层序地层学原理。北京:石油工业出版社。
    39.Payton,C.E.,牛毓荃、徐怀大等译.1980(1977),地震地层学,石油工业出版社。
    40.Pratsch J.G,1997,根据油气运移路径确定勘探策略,宋明雁译,国外油气勘探,9(1):63~68
    41.勒奇,1996,盆地分析的定量方法(第一卷)。魏增璞等译,北京:石油工业出版社。
    42.P.A.艾伦和J.R.艾伦,1995,盆地分析-原理与应用。陈全茂等译,北京:石油工业出版社。
    43. Baker, B.H., Morgan, P., 1981. Continental rifting: progress and outlook. Eos, Transactions of the American Geophysical Union 62, 585-586.
    44. Bradley, J, S., 1975, Abnormal formation pressure, AAPG Bull., V.59, P. 957-973.
    45. Bradley, J. S., Powley, D. E., 1994, Pressure compartments in sedimentary basins: A review, in Basin Compartments and Seals, AAPG Memgir 61.3-26.
    46. Braile, L.W., Keller, G.R., Wendlandt, R.F., Morgan, P., Khan, M.A,., 1995. The East African Rift System. In: Olsen, K.H. (Ed.), Continental Rifts: Evolution, Structure, Tectonics. Developments in Geotectonics, vol. 25, pp. 213-231.
    47. Braun J, Beaumont C. A physical explanation of the relation between the flank uplifts and the break up unconformity at rifted continental margins. Geology,1989,17:760~764.
    48. Briais, A., Patriat, P. And Tapponnier, P., 1993, Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea, implications for the Tertiary tectonics
    
    of SE Asia, J.G.R., 98:6299-6328.
    49. Buck, W.R., 1988, Flexural rotation of normal faults. Tectonics, 7: 959-973.
    50. Burke, K., Dewey, J.F., 1973. Plume-generated triple junctions: key indicators in applying plate tectonics of old rocks. Journal of Geology 81,406-433.
    51. Carr, A. D., 1999. A vitrinite reflectance kinetic model incorporating overpressure retardation. Marine and Petroleum Geology, Vol. 16, p. 355-377.
    52. Catwright J.A. Episodic basin-wide hydrofraturing of overpressured Early Cenozoic mud rock sequences in the North Sea basin. Marine and Petroleum Geology. 1994. 11(5): 587-607.
    53. Chong K.P., Hoyt P.M., Smith J.W., and Paulsen B.Y., 1980, Effects of strain rate on oil shale fracturing: International Journal of Rock Mechanies,71(1):35-43.
    54. Chung, SL, Lee, TY, Lo, CH, et al, 1997, Intraplate extension prior, to continental extension along the Ailao Shah-Red River shear zone, Geology, 25:311-314.
    55. Corbett K., Friedman M., and Spang J.,1987, Fracture development and mechanical stratigraphy of Austin Chalk,Texas: AAPG Bulletin 71(1): 17-28.
    56. Corti G, Bonini M, Conticelli S, Innocenti F, Manetti P, Sokoutis D. 2003, Analogue modelling of continental extension: a review focused on the relations between the patterns of deformation and the presence of magma. Earth-Science Reviews 63:169-247
    57. Cross, T.A. 1994, Stratigraphic architecture, correlation concepts, volumetric partitioning, facies differentiation, and reservoir conpartmentalization from the perspective of high resolution sequence stratigraphy. Genetic stratigraphy research group Colorado School of Mines, annual reprot, p.28-41
    58. Demaison G, Huizinga BJ. Genetic classification of petroleum system. AAPG, 1991, 75(10):1626-1643.
    59. Dow, W. G., 1974, Application of oil correlation and source rock data to exploration in Willistion basin: AAPG Bulletin. 58(7): 1253-1262.
    60. Downey M.W., 1984, Evaluating seals for hydrocarbon accumulations: AAPG Bulletin, 68(11): 1752-1763
    61. Levorsen A.I., 1954, Geology of Petroleum: San Francisco, W.H. Freeman.
    62. Magara K., 1978, Compaction and Fluid Migration-Practical Petroleum Geology: Elsevier Amsterdam.
    63. Ebinger CJ, Yemene T, Harding DJ, et al, 2000, Rift deflection, migration, and propagation-Linkage of the Ethiopian and Eastern rifts, Africa. Geological Society of America Bulletin. 112(2): 163-176.
    64. England and Mickenzie et al. 1987, The movement and entrapment of petroleum fluids in the subsurface. Journal of the Geological Society, London, 144,327~327
    65. Fernandez M, Ranalli G. The role of rheology in extensional basin formation modeling. Tectonophysics, 1997, 282:129~145.
    66. Friedmann S.T. et al, 1995, Rift basin and supradetachment basin: intracontinental
    
    extensional end-menbers. Basin Research, 7(2): 109-127.
    67. Galloway W.E. 1989a, Genetic stratigraphic Sequences in basin analysis Ⅰ: architecture and genesis of flooding-surface bounded depositional units, AAPG Bulletin 73: P125-142.
    68. Galloway W.E. 1989b, Genetic stratigraphic sequences in basin analysis Ⅱ: application to northwest Gulf of Mexico Cenozoic basin, AAPG Bulletin 73: P143-154.
    69. Haq, B.U., Hardenbol, J., and Vail, P.R.,1987, Chronology of Fluctuating Sea Levels Since the Triassic, Science, v.235, p. 1156-1167.
    70. Hayward NJ, Ebinger CJ. 1996. Variations in the along-axis segmentation of the Afar Rift system. Tectonics. 15(2):244-257.
    71. Hao Fang, Li Sitian, Sun Yongchuan, and Zhang Qiming,, 1995, Overpressure retardation of organic-matter maturation and hydrocarbon generation: A case study from the Yinggehai and Qiongdongnan basins, offshore South China Sea: AAPG Bulletin, v. 79, p. 551-562.
    72. Hunt J M. 1990, Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bull. 74, 1~2.
    73. Jervey M.T., 1988, Quantitative geological modelling of siliciclastic rock sequences and their seismic expressions, In: Wilgus et al(ed.), Sea level changes: an intergrated approach. Soc. Econ. Paleon. Spec. Pub. 42:47-69.
    74. Kooi H, Cloetingh S, Burrus J. Lithospheric necking and regional isostasy at extensional basins, 1: Subsidence and gravity modeling with an application to the Gulf of Lions Margins (SE France). J Geophys Res, 1992, 97:17553~19572.
    75. Kusznir NJ, Ziegler PA. 1992, The mechanics of continental extension and sedimentary basin formation: A simple-shear/puer-shear flexureal cantilever model. Tectonophysics, 215:117~ 131.
    76. Lacassin R., Maluski H. and Leloup P.H. et al. 1997. Tertiary diachronic extrusion and deformation of western Indochina: structural and ~(40)Ar/~(39)Ar evidence from NW Thailand. J. G. R. 102(B5):10013-10037.
    77. Larsen, P.H., 1988, Relay structures in Lower Permian basement-invovlved extensional system, East Greenland. J. Struct. Geol., 10:3-8.
    78. Law B E, W W Dickinson. 1985, Conceptual model for origin of abnormally Pressured gas accumulation in low permeability reservoirs, AAPG, 69(8): 1295~1304.
    79. Leloup, P.H., Lacassin, R., Tapponnier, P., et al, 1995, The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina; Tectonophysics, 251:3-84.
    80. Liou, J.G. and Maruyama, S., 1986, Post-Permian evolution of Asian, and some implications for Taiwan, ACTA, Geological Taiwanica, 24:5-49.
    81. Lister G.S. and Davis G.A.,1989, The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extesion in the northern Coldrado River region. USA. J. Struct. Geol. 11:65-94.
    82. Lovatt Smith, P. F. And Stokes, R. B., 1997, Geology and petroleum potential of the Khorat Plateau Basin in the Vietnam area of Lao P. D. R., J. Petro. Geol., 20:27-50.
    
    
    83. Magnavita LP, da Silva HTF. Rift border system: the interplay between tectonics and sedimentation in the Reconcavo Basin, Notheastern Brazil[J]. AAPGB., 1995,79(11): 1590-1607
    84. Magoon L.B. and Dow W.G. 1994, The Petroleum system from source to trap, AAPG Memoir 60:3-22.
    85. Maruyama, S. and Seno, T., 1986, Orogeny and relative plate tnotion: example of the Japanese island, Tectonophysics, 127:
    86. McClay K.R. and White M.J., 1995. Analogue Modelling of orthogonal and oblique rifting. Marine and Petroleum Geology, 12:137-151.
    87. Metcalfe, I., 1996, Pre-Cretaceous evolution of SE Asian terranes: data, interpretation and speculation, Geol. Soc. Lond. Spec. Publ:, 106:97-123.
    88. Miall, A.D. 1986, Eustatic sea-level change interpreted from seismic stratigraphy: a critique of the methodology with particular reference to the North Sea Jurassic record. AAPG Bulletin 70: P131-137.
    89. Mitchum R.M.Jr, Vail P.E. and Thompson S.I., 1977, The depositional sequence as a basic unit for stratigraphic analysis. In: Payton C.E.(ed.), Seismic Stratigraphy-Applications to Hydrocarbon Exploration. AAPG. Mem.26:53-62.
    90. Morley, C.K., Nelson, R.A., Ptton, T.L. and Munn, S.G. 1990, Transfer zones in the east African rift system and their relavance to hydrocarbon exploration in rifts. A.A.P.G. Bull. 74: 1234-1253.
    91. Morley C.K., 2002, A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia; Tectonophysics, 347,189-215
    92. Moustafa A.R., 1997. Controls on the development and evolution of transfer zone: the influence of basement structure and sedimentary thickness in the Suez rift and Red Sea. J. of Struc. Geol., 19(6):755-768.
    93. Nelson R.A. Patton T.L. and Morlry C.K., 1992, Rift-segment interaction and its relation to hydrocarbon exploration in continental rift systems. AAPG Bull. 76:1153-1169.
    94. Nguyen H. et al., 1996, Trace element and isotopic compositions of Vietnamese baslts: implication for mantle dynamics in the sourtheast Asia region. Bull. Soc. Geol. France. 167:785-795.
    95. Nicol A., Walsh J.J. and Watterson J. et al. 1995. Three dimensional geometry and growth of conjugate normal faults. J. Struc. Geol., 17:847-862.
    96. Northrup, C. J., Royden, L. H. And Burchfiel, B. C., 1995, Motion of the Pacific plate relation to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia, Geology, 23:719-722.
    97. Olsen, K.H., Morgan, P., 1995. Introduction: progress in understanding continental rifts. In: Olsen, K.H. (Ed.), Continental Rifts: Evolution, Structure, Tectonics. Developments in Geotectonics, vol. 25, pp. 3-26.
    98. Osborne MJ, Swarbrick RE. Mechanisms for generation gover pressure in sedimentary basins:
    
    A reevaluation. AAPG Bull. 1997. 81(6): 1023~1041.
    99. Perrodon A, Masse E Subsidence, sedimentation and petroleum systems. Journal of Petroleum Geology, 1984,7(1):5-26.
    100. Posamentier, H.W. & Vail, P.R. 1988, Eustatic controls on clastic deposition Ⅱ-sequence and systems tract models. In: Sea level changes-an integrated approach (ed. by Wilgus, C.K. et al), SEPM Special Publication No. 42, Societty of Economic Paleontologists and Mineralogists, P125-154, Tulsa.
    101. Price, K. L., and McDowell, 1993, Illite/smectite geothermometry of the Proterozoic Oronto Group, midcontinent rift system: Clays and Clay Minerals, v. 41, p. 134-147.
    102. Price, L. C., 1994, Basin richness and source rock disruption: A fundamental relationship?: Journal of Petroleum Geology, v. 17, p. 5-38.
    103. Rangin, C., Klein, M., Roqoes, D., et al 1995, The Red River fault system in the Tonkin Gulf, Vietnam, Tectonophysics, 243:209-222.
    104. Ravnas R, Steel RJ. Architecture of Marine Rift-basin Successions[J]. AAPGB., 1998, 82(1): 110-146
    105. Rowley D.B. and Sahagian D., 1986, Depth-dependent stretching:a different approach. Geology, 14:32-35.
    106. Ruppel, C., 1995. Extensional processes in continental lithosphere. Journal of Geophysical Research 100, 24187-24215.
    107. Sengor, A.M.C., Burke, K., 1978. Relative timing of rifting and volcanism on Earth and its tectonic implications. Geophysical Research Letters 5, 419-421.
    108. Tapponnier P., Peltzer, G. And Armijo, E, 1986, On the mechanics of the collision between India and Asia, Geol. Soc. Lond. Spec. Publ., 19:115-157.
    109. Tapponnier, P., Lacassin, R., Leloup, P. H., et al., 1990, The Ailao Shan-Red River metamorphic belt: Tertiary leftlateral shear between Indochina and South China, Nature, 243: 431-437.
    110. Taylor B. and Hayes D. E., 1980, The tectonic evlution of the South, China Sea, In Hay, D. E. (Eds): The tectonics and geological evolution of Southeast Asia Seas and islands, America Geophysical Union Monograph, 23: 89-104.
    111. Taylor B. and Hayes D. E., 1983, Origin and history of the South China Sea, In Hay, D. E. (Eds): The tectonics and geological evolution of Southeast Asia Seas and islands, Part 2. America Geophysical Union Monograph, 27: 23-56.
    112. Teng LS, 1992, Geotectonic evolution of Tertiary continental margin basin of Taiwan. Petroleum Geology of Taiwan, 27:1~19.
    113. Tissot, B. P., and D. H. Welte, 1984, Petroleum formation and occurrence (2d ed.): Berlin, Springer-Verlag, 699p.
    114. Tron V. and Brun J.P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics, 188: 71-84.
    
    
    115. Tu K. et al., 1991. Sr, Nd, and Pb isotopic compositions of Hainan basalts(South China):Implications for a subcontinental lithosphere Dupal source. Geology, 19: 567-569.
    116. Turcotte D.L. and Schubert E.R., 1982, Geodynamics: Appications of continuum mechanics to Geological problems. Wiley, New York.
    117. Turcotte, D.L., Emermen, S.H., 1983. Mechanisms of active and passive rifting. Tectonophysics 94, 39-50.
    118. Vail P.E., Mitchum R.M.Jr., and Thompson S.Ⅲ, 1977, Seismic straigraphy and global changes of sea level, Part4: Global cycles of relative changes of sea level. In: Payton C.E.(ed.), Seismic Stratigraphy-Applications to Hydrocarbon Exploration. AAPG. Mem. 26:83-97.
    119. Watterson J. Nicol A. and Walsh J.J., 1998. Strains at the intersection of synchronous conjugate normal faults, 20(4): 363-370.
    120. Weber K.J., Mandl W.F., Pilaar W.F., Lehner F.and Precious R.G., 1978, The role of Faults in hydrocarbon migration and trapping Nigerian growth fault structures: Proceedings Offshore Technonlogy Conference, Housten, p.2643-2652.
    121. Wernicke,B. and Burchfiel, B.C., 1982, Models of extensional tectonics. J. Struct. Geol. 4: 105-115.
    123. Yang Z. and Besse J., 1993, Paleomagnetic study of Permian and Mesozoic sedimentary rocks from northern Thailand supports the extrusion model for Indiachina. Earth Planet. Sci. Lett., 117:525-552.
    124. Zhen Sun, Di Zhoua, Zhihong Zhong et al, 2003, Experimental evidence for the dynamics of the formation of the Yinggehai basin, NW South China Sea. Tectonophysics, 72:41-58
    125. 胡忠良,李娟娟,李健周等,1995,莺—琼盆地天然气富集条件及寻找大中型气田勘探目标选择,中国海洋石油南海西部公司。
    126. 李绪宣等,2000,莺琼盆地天然气有利区带与勘探目标研究,中海石油有限公司湛江分公司
    127. 茹克,1989,南海北部大陆架主要盆地的成因类型和构造区划,中国海洋石油公司南海西部石油公司。
    128. 王良书、钟志洪等,2000,琼东南盆地结构与构造动力学,南京大学、中国海洋石油有限公司南海西部公司。
    129. 王振峰、李绪宣等,1998,莺—琼盆地勘探目标评价研究。中国海洋石油南海西部公司。
    130. 肖贤明、刘德汉等,琼东南盆地储层包裹体特征及油气运移研究,中科院广州地球化学研究所与中海油研究中心南海西部研究院
    131. 谢玉洪,1988,琼东南盆地主要断裂发育特征及其沉积、构造发育和油气聚集关系,南海西部石油公司研究院勘探室。
    132. 晏鸿,1987,莺歌海—琼东南盆地阿科物探协议区断层发育特征与油气聚集规律的研究,南海西部公司勘探开发研究院。
    133. 杨计海等,2000,莺琼盆地中深层高温超压天然气成藏条件研究,中海石油有限公司湛江分公司
    
    
    134.张启明,1995,南海北部莺—琼盆地类型演化史及构造热体制,中国海洋石油南海西部公司。
    135.张敏强等,2000,琼东南盆地结构与生烃凹陷的比较性研究,中海石油有限公司湛江分公司。
    136.钟志洪,2000,南海西部莺琼盆地构造形成机制与油气聚集研究,南京大学博士论文。
    137.茹克,1989,南海北部大陆架主要盆地的成因类型和构造区划,中国海洋石油公司南海西部石油公司。
    138.朱光辉等,2001,琼东南盆地2001年勘探成果总结及下步勘探方向,中海石油研究中心南海西部研究院。
    139.胡代圣,1999,琼东南盆地的基本石油地质条件与油气前景,中海石油研究中心南海西部研究院。
    140.李思田等,2000,莺-琼盆地高温超压条件下天然气成藏输导系统研究,中国地质大学与中海石油研究中心南海西部研究院。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700