高产酒精酵母菌的分子改造及一步发酵菊粉或木薯淀粉生产酒精
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料乙醇作为生物能源的一种,具有悠久的历史,但一直以来燃料乙醇生产成本较高,无法与传统燃料形成竞争优势。据分析,以淀粉质为原料生产燃料乙醇,原料和能耗成本可占总成本的90%,因此采用更廉价的原料并降低能耗是降低燃料乙醇生产成本的主要途径。菊芋(Helianthus tuberosus Linn)和木薯(Manihot esculenta Crantz)作为生产燃料乙醇的原料作物,具有很好的发展潜力。目前,工业上发酵生产乙醇的主要微生物为酿酒酵母(Saccharomyces cerevisiae),但是酿酒酵母不能直接利用菊粉和淀粉,构建可分泌菊粉酶或淀粉酶的基因工程菌株,可以解决弥补这个缺陷。
     本论文首先利用基因敲除技术构建了二倍体高产酒精酿酒酵母WO菌株的尿嘧啶缺陷型菌株W12d,并构建了基于rDNA和6序列的并可以与W12d尿嘧啶缺陷互补的多位点整合型表达载体pMIRSC21、pMIRSC11和pMIDSC11。利用W12d和这些载体成功构建了可以直接利用菊粉或淀粉的酿酒酵母工程菌株,并成功用于糖化菊粉或木薯淀粉发酵生产酒精。
     从海洋藻类藻表面分离得到的季也蒙毕赤酵母(Pichia guilliermondii)菌株1可以向培养基分泌大量的菊粉酶。利用pMIRSC21,将海洋季也蒙毕赤酵母strain1菊粉酶基因INUl整合到酿酒酵母W12d染色体上表达后,重组子PguINU14S-04在YPI液体培养基中,28℃条件下,以180rpm振荡培养72h,菊粉酶活力可达34.5+0.3U/mL,且PguINU14S-04产酶能力稳定。在5-L发酵罐中,利用PguINU14S-04同步糖化30%(w/v)菊粉发酵生产酒精,经120h发酵,酒精浓度最终可以达到14.7±0.5%(v/v,20),乙醇转化率为1g菊粉可生产0.386g乙醇;同样条件下,发酵50%菊芋干粉提取物,可以得到12.6±0.4%(v/v,20℃)的酒精,总糖利用率91.9±0.5%,乙醇转化率为1g糖可生产0.331g酒精。通过对表达载体和INUl基因进行改造,得到了产菊粉酶能力更强的转化子PguINU14SM-R27,在同样培养条件下,菊粉酶酶活可以达到42.3±0.4U/mL比PguINU14S-04提高了22.6%。利用PguINU14SM-R27同步糖化30%(w/v)菊粉发酵生产酒精,最终可以得到浓度为14.8±0.2%(v/v,20℃)的酒精,乙醇转化率为1g菊粉可生产0.389g乙醇,发酵时间比PguINU14S-04缩短了12h。
     扣囊复膜孢酵母(Saccharomycopsis fibuligera) IFO0111糖化酶Glm可以催化水解生淀粉,而扣囊复膜孢酵母A11菌株α-淀粉酶Alp1可以加快淀粉的液化。本论文同时利用表达载体pMIRSC11、pMIDSC11实现了扣囊复膜孢酵母A11菌株α-淀粉酶基因ALP1和IFO0111菌株糖化酶基因GLM在酿酒酵母W12d中的共表达,筛选到一个淀粉酶活性较高的转化子AMY-39,经72h振荡培养,α-淀粉酶活性可达22.5±0.5U/mL,糖化酶活性可达14.3±0.4U/mL,淀粉酶总活性可达43.2±0.8U/mL。利用转化子AMY-39糖化20%木薯淀粉生产酒精,经120h发酵,酒精浓度可达10.4±0.2%(v/v,20℃),淀粉利用率89%,酒精转化效率为1g木薯淀粉可生产0.413g乙醇。
Fuel ethanol has become very important alternative fuel, however, due to thehigh production cost it could not compete with other available energy sources.Analyzing the cost of fuel ethanol production from starchy raw material, the materialcost and the energy consumption could represent90%. Therefore, adoption of cheaperraw materials and decrease of the energy consumption are the principal approaches inorder to reduce the cost of fuel ethanol production. Helianthus tuberosus Linn andManihot esculenta Crantz could be good candidates for ethanol production. Currently,Saccharomyces cerevisiae is the main producer of bioethanol as it is capable ofproducing high concentration of ethanol from glucose and sucrose and has highethanol tolerance. However, S. cerevisiae can not synthesize and secreteinulinase/amylase that hydrolyzes inulin/starch into fructose and/or glucose.Therefore, in order to overcome these drawbacks it is very important to clone andactively express the inulinase/amylase gene in S. cerevisiae.
     For the purpose of obtaining strains yielding high concentration ofamylase/inulinase in controlled fermentation from inulin or cassava starch, a uracilauxotroph strain W12d was constructed by the disruption URA3gene of S. cerevisiaestrain W0, and three multiple integration expression vectors based on rDNA orδ-element were constructed successfully and designated as pMIRSC21, pMIRSC11,pMIDSC11, respectively.
     Pichia guilliermondii strain1derived from the surface of marine alga can secrethigh concentration of inulinase into the medium. Inulinase gene INU1from P.guilliermondii strain1was expressed after integrating into chromosome of W12d withthe help of expression vector pMIRSC21. A transformant PguINU14S-04was obtained which could yield stable and high concentration of inulinase i.e.34.5±0.3U/mL in YPI medium after72hours culture at28°C. The transformant couldstably produce high activity of inulinase during long-term batch cultivations.Therefore, it could be used for simultaneous saccharification of inulin and ethanolfermentation. During5-L fermentation, ethanol concentration in the fermentationmedium containing30.0%inulin was14.7%(v/v) and the ethanol productivity wasover0.386g of ethanol per g of inulin. When the tuber meal of H. tuberosus Linn(50.0%) was fermented into ethanol by the transformant PguINU14S-04,12.6%(v/v)ethanol was produced within120h and the ethanol productivity was over0.331g ofethanol per g of sugar. By vector alteration and INU1gene modification, atransformant PguINU14SM-R27was obtained, which could yield22.6%(42.3±0.4U/mL) more inulinase than PguINU14S-04under the same cultureconditions. When PguINU14SM-R27was used for simultaneous saccharification ofinulin and ethanol fermentation, the ethanol concentration reached up to14.8±0.2%v/v20°C, the ethanol productivity was over0.389g of ethanol per g of inulin,and the fermentation time was108h,12h less compared with PguINU14S-04.
     Saccharomycopsis fibuligera IFO0111glucoamylase (Glm) could catalyticallyhydroyze raw starch into glucose,while α-amylase (Alp1) from S. fibuligera A11could accelerate the liquation of starch. GLM and ALP1were co-expressed in W12dsuccessfully by using two expression vectors i.e. pMIRSC11and pMIDSC11together.A high amylase yielding transformant AMY-39was obtained, which yielded22.5+0.5U/ml α-amylase,14.3±0.4U/mL glucoamylase and43.2±0.8U/ml totalamylase in YPS medium after72hours culture at28°C. AMY-39was used to produceethanol from fermentation medium containing20%(w/v) cassava starch bysimultaneous saccharification. On completion of fermentation, the concentration ofethanol in the medium was10.4±0.2%(v/v,20°C), the utilization ratio of starch was89%, and the ethanol productivity was0.413g ethanol per g of cassava starch.
引文
陈海昌.连续发酵及其新型发酵装置.食品与发酵工业,1984,15(5):85-90
    陈蕾.扣囊复膜酵母A11菌株淀粉酶的生产和酒精发酵的研究:[硕士学位论文].青岛:中国海洋大学,2010
    池振明,刘自镕.利用低温蒸煮工艺进行高浓度酒精发酵.食品与发酵工业,1993,4:29-32
    池振明,刘自镕.生淀粉高浓度酒精发酵的研究.生物工程学报,1994,10(2):130-134
    江宁.生物液体燃料——燃料酒精.自然杂志,2007,29(1):30-33
    李楠楠,袁文杰,王娜,辛程勋,葛旭萌,白凤武.菊粉酶基因在酿酒酵母中的表达及乙醇发酵.生物工程学报,2011,27(7):1032-1039
    李中兵,魏转,杨晓军,王亚坤,孙文敬.连续发酵研究及其应用进展.食品科学,2007,28(11):624-627
    刘振,王金鹏,张立峰.木薯干原料同步糖化发酵生产乙醇.过程工程学报,2005,5(3):353-356
    林晨,顾宪红,何瑞国.菊粉酶研究进展及应用.中国饲料,2003,(13):10-12
    罗进贤,李文清.枯草杆菌启动子—信号肽序列的克隆及序列分析.遗传学报,1994,21(1):74-80
    马丽娜,陈喜文,甘睿,陈洁,陈德富.葡萄糖淀粉酶的结构和功能研究进展.生物技术通讯,2005,16(6):677-680
    覃晓琳,刘朝奇,郑兰英.信号肽对酵母外源蛋白质分泌效率的影响.生物技术,2010,20(3):95-97
    汤茜.菊粉酶的研究进展及应用.中国食品工业,2011,(5):49-50
    张平武,李育阳.新型酵母表达系统的研究.生物技术通讯,1999,10(4):306-309
    张瞳.海洋季也蒙毕赤酵母重组菊粉酶及其在产乙醇中的应用:[博士学位论文].青岛:中国海洋大学,2010
    钟月华.新型硅橡胶膜生物反应器制造乙醇连续发酵动力学研究:[博士学位论文].成都:四川大学,2003
    邹东恢,梁敏,马翠翠.生料酿酒技术的应用与开发.酿酒科技,2005(6):61-64
    Alberghina L, Porro D, Martegani E, Ranzi B M. Efficient production of recombinant DNA proteins in Saccharomyces cerevisiae by controlled high-cell-density fermentation. Biotechnol Appl Biochem,1991,14:82-92
    Allison D S, Young E T. Single amino-acid substitutions within the signal sequence of yeastprepro--factor affect membrane translocation. Mol Cell Biol,1988,8:1915-1922
    Arima K, Oshima T, Kubota I, Nakamura N, Mizunaga T. Toh-e A. The nucleotide sequence ofthe yeast PHO5gene: a putative precursor of repressible acid phosphatase contains a signalpeptide. Nucleic Acids Res,1983,11:1657-1672
    Armstrong K A, Som T, Volkert F C, Rose A, Broach J R. Propagation and expression of genes inyeast using2-micron circle vectors. In: Barr P J, Brake A J, Valenzuela P (Eds), Yeast GeneticEngineering. Butterworths,1989.165-192
    Baim S B, Pietras D F, Eustice D C, Sherman F. A mutation allowing an mRNA secondarystructure diminishes translation of Saccharomyces cerevisiae iso-I-cytochrome c. Mol Cell Biol,1985,5:1839-1846
    Baker S M, Okkema P G, Jaehning J A. Expression of the Saccharomyces cerevisiae GAL7geneon autonomously replicating plasmids. Mol Cell Biol,1984,4:2062-2071
    Barnes D A, Thorner J. Genetic manipulation of Saccharomyces cerevisiae by use of the LYS2gene. Mol Cell Biol,1985,6:2828-2838
    Barr P J, Steimer K S, Sabin E A, Parkes D, George-Nascimento C, Stephans J C, Powers M A,Gyenes A, Van Nest G A, Miller E T, Higgins K W, Luciw P A. Antigenicity andimmunogenicity of domains of the human immunodeficiency virus (HIV) envelope proteinexpressed in the yeast Saccharomyces cerevisiae. Vaccine,1987,5:90-101
    Beesley K M, Francis M J, Clarke B E, Beesley J E, Dopping-Hepenstal P J C, Clare J J, Brown F,Romanos M A. Expression in yeast of amino-terminal peptide fusions to hepatitis B coreantigen and their immunological properties. Biotechnology,1990,8:64-649
    Beggs J D. Transformation of yeast by a replicating hybrid plasmid. Nature,1978,275:104-109.
    Beggs J D, van den Berg J, Van Ooyen A, Weissman C. Abnormal expression of chromosomalrabbit-globin genein Saccharomyces cerevisiae. Nature,1980,283:835-840
    Beier D R, Sledziewski A, Young E T. Deletion analysis identifies a region, upstream of theADH2gene of Saccharomyces cerevisiae, which is required for ADR1-mediated derepression.Mol Cell Biol,1985,5:1743-1749
    Bennetzen J L, Hall B D. Codon selection in yeast. J Biol Chem,1982,257:3026-3031
    Berndes G, Hoogwijk M, van den Broek R. The contribution of biomass in the future globalenergy supply: a review of17studies. Biomass Bioenergy,2003,25:1-28
    Bitter G A, Chang K K H, Egan K M. A multi-component upstream activation sequence of theSaccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter. Mol GenGenet,1991,231:22-32
    Bitter G A, Chen K K, Banks A R, Lai P H. Secretion of foreign proteins from Saccharomycescerevisiae direct-factor gene fusions. Proc Natl Acad Sci USA,1984,81:5330-5334
    Blachly-Dyson E, Stevens T H. Yeast carboxypeptidase Y can be translocated and glycosylatedwithout its amino-terminal signal sequence. J Cell Biol,1987,104:1183-1191
    Blochlinger K, Diggerlmann H. Hygromycin B phosphotransferase as a selectable marker forDNA transfer experiments with higher eucaryotic cells. Mol Cell Biol,1984,4:2929-2931
    Boeke J D, Lacroute F, Fink G R. A positive selection for mutants lacking orotidine-5’-phosphatedecarboxylase activity in yeast:5-fluoroorotic acid resistance. Mol Gen Genet,1984,197:345-346
    Boeke J D. Transposable elements in Saccharomyces cerevisiae. in Berg D E, Howe M M.(Eds)Mobile DNA. American Society for Microbiology, Washington D C,1989.335-374
    Boeke J D, Sandmeyer S B. Yeast transposable elements. In: Broach J, Jones E, Pringle J.(Eds)The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, proteinsynthesis, and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York,1991.193-261
    Botstein D, Fink G R. Yeast: an experimental organism for modern biology. Science,1988,240:1439-1443
    Brake A J, Merryweather J P, Coit D G, Heberlein U A, Masiarz F R, Mullenbach G T, Urdea MS, Valenzuela P, Barr P J-factor-directed synthesis and secretion of mature foreign proteins inSaccharomyces cerevisiae. Proc Natl Acad Sci USA,1984,81:4642-4646
    Brake A J. Secretion of heterologous proteins directed by the ye-factor leader. In: Barr P J,Brake A J, Valenzuela P.(Eds), Yeast Genetic Engineering, Butterworths,1989.269-280
    Broach J R MethEnzymol,1983,101:307-325
    Brown A J P, Purvis I J, Santiago T C, Bettany A J E, Loughlin L, Moore J. Messenger RNAdegradation in Saccharomyces cerevisiae. Gene,1988,72:151-160
    . Factors enhancing genetic transformation of intact yeast cells modify cellwall porosity. J Gen Microbiol,1986,132:3089-3093
    Bussey H, Meaden P. Selection and stability of yeast transformants expressing cDNA of an M1killer toxin-immunity gene. Curr Genet,1985,9:285-291
    Baldari C, Murray J A H, Ghiara P, Cesareni G, Galeotti C L. A novel leader peptide whichallows Saccharomyces cerevisiae.EMBO J,1987,6:229-234
    Chang C N, Matteucci M, Perry L J, Wulf J J, Chen C Y, Hitzeman R A. Saccharomycescerevisiae secretes and correctly processes human interferon hybrid proteins containing yeastinvertase signal peptides. Mol Cell Biol,1986,6:1812-1819
    Chattoo B B, Sherman F, Azubalis D A, Fjellstadt T A, Mehvert D, Oghur M. Selection of lys2mutants of the yeast Saccharomyces cerevisiae-aminoadipate. Genetics,1979,93:51-65
    Chen C Y, Oppermann H, Hitzeman R A. Homologous versus heterologous gene expression in theyeast, Saccharomyces cerevisiae. Nucleic Acids Res,1984,12:8951-8970
    Chen L, Chi Z M, Chi Z, Li M. Amylase production by Saccharomycopsis fibuligera A11insolid-state fermentation for hydrolysis of cassava starch. Appl Biochem Biotechnol,2010,62:252-263
    Chi Z M, Liu J, Zhang W. Trehalose accumulation from soluble starch by Saccharomycopsisfibuligera sdu. Enzyme Microb Technol,2001,28:240-246
    Chi Z M, Chi Z, Liu G L, Wang F, Ju L, Zhang T. Saccharomycopsis fibuligera and itsapplications in biotechnology. Biotechnol Adv,2009,27:423-431
    Chi Z M, Chi Z, Zhang T, Liu G L, Yue L X. Inulinase-expressing microorganisms andapplications of inulinases. Appl Microbiol Biotechnol,2009,82:211-220
    Chung B H, Nam S W, Kim B M, Park Y H. Highly efficient secretion of heterologous proteinsfrom Saccharomyces cerevisiae using inulinase signal peptides. Biotechnol Bioeng,1996,49:473-479
    Cigan A M, Pabich E K, Donahue T F. Mutational analysis of the HIS4translational initiatorregion in Saccharomyces cerevisiae. Mol Cell Biol,1988,8:2964-2975
    Clancy S, Mann C, Davis R W, Calos M P. Deletion of plasmid sequences during Saccharomycescerevisiae transformation. J Bacteriol,1984,159:1065-1067
    Clarke L, Carbon J. Isolation of a yeast centromere and construction of functional small circularchromosomes. Nature,1980,257:504-509
    Cousens L S, Shuster J R, Gallegos C, Ku L, Stempien M M, Urdea M S, Sanchez-Pescador R,Taylor A, Tekamp-Olson P. High level expression of proinsulin in the yeast, Saccharomycescerevisiae. Gene,1987,61:265-275
    Dale E C, Ow D W. Intra-and intermolecular site-specific recombination in plant cellsmediatedby bacteriophage P1recombinase. Gene,1990,91:79-85
    Danhash N, Gardner D C J, Oliver S G. Heritable damage to yeast caused by transformation.BioTechnology,1991,9:179-182
    DeDeken R H. The Crabtree effect: a regulatory system in yeast. J Gen Microbiol,1966,44:149-156
    Derycke D G, Vandamme E J. Production and properties of Aspergillus niger inulinase. J chemtechnol biotechnol,1984,34:45-51
    Dice F. Molecular determinants of protein half-lives in eukaryotic cells. FASEB J,1987,1:349-357
    Dobson M J, Futcher A B, Cox B S Saccharomyces cerevisiaetransformed with the chimaeric plasmid pJDB219. Curr Genet,1980,2:201-205
    Dujon B. The yeast genome project: what did we learn? Trends Genet,1996,12:263-270
    Demolder J, Fiers W, Contreras R. Efficient synthesis of secreted murine interleukin-2bySaccharomyces cerevisiae: influence of3’-untranslated regions and codon usage. Gene,1992,111:207-213
    Ecker D J, Stadel J M, Butt T R, Marsh J A, Monia B P, Powers D A, Gorman J A, Clark P E,Warren F, Shatzman A, Crooke S T. Increasing gene expression in yeast by fusion to ubiquitin.J Biol Chem,1989,264:7715-7719
    Ejiofor A O, Chisti Y, Moo-Young M. Culture of Saccharomyces cerevisiae on hydrolyzed wastecassava starch for production of baking-quality yeast. Enzyme Microb Technol,1996,18:519-525
    Eksteen J M, Rensburg P V, Otero R R C, Pretorius I S. Starch fermentation by recombinantSaccharomyces cerevisiae-amylase and glucoamylase genes fromLipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol Bioeng,2003,84:639-646
    Erhart E, Hollenberg C P. The presence of a defective LEU2plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. JBacteriol,1983,156:625-635
    Etcheverry T. Induced expression using yeast copper metallothionein promoter. Meth Enzymol,1990,185:319-329
    Ettalibi M, Baratti J C. Molecular and kinetic propert ies of Aspergillus ficuum inulinases. AgricBiol Chem,1990,54:61-68
    Ferro-Novick S, Hansen W, Schauer I, Schekman R. Genes required for completion of import ofproteins into the endoplasmic reticulum in yeast. J Cell Biol,1984,98:44-53
    Fiechter A, Fuhrmann G F, Kappeli C. Regulation of glucose metabolism in growing yeast cells.Adv Microbial Physiol,1981,22:123-183
    Fieschko J C, Egan K M, Ritch T, Koski R A, Jones M, Bitter G A. Controlled expression andpurification of human immune interferon from high-cell-density fermentations ofSaccharomyces cerevisiae. Biotechnol Bioeng,1987,29:113-121
    Fleig U N, Pridmore R D, Philippsen P. Construction of LYS2cartridges for use in geneticmanipulation of Saccharomyces cerevisiae. Gene,1986,46:237-245
    Fogel S, Welch J W. Tandem gene amplification mediates copper resistance in yeast. Proc NatlAcad Sci USA,1982,79:5342-5346
    Frankel A, Schlossman D, Welsh P, Hertler A, Withers D, Johnston S. Selection andcharacterisation of rich toxin A-chain mutations in Saccharomyces cerevisiae. Mol Cell Biol,1989,9:415-420
    Futatsugi M, Ogawa T, Fukuda H. Purification and properties of two forms of glucoamylase fromSaccharomycopsis fibuligera. J Ferment Bioeng,1993,76:521-523
    Gabrielsen O S, Reppe S, Saether O, Blingsmo O R, Sletten K, Gordeladze J O, Hsgs t A,Gautvik V T, Alestrrm P, yen T B, Gautvik K M. Efficient secretion of human parathyroidhormone by Saccharomyces cerevisiae. Gene,1990,90:255-262
    Gallili G, Lampen J O. Large and small invertase and the yeast cell cycle: pattern of synthesis andsensitivity to tunicamycin. Biochem Biophys Acta,1977,475:113-122
    Gellissen G, Melber K, Janowicz Z A, Dahlems U M, Weydemann U, Piontek M, Strasser A W,Hollenberg C P. Heterologous protein production in yeast. Antonie Van Leeuwenhoek,1992,62:79-93
    Gething M J, Sambrook J. Protein folding in the cell. Nature,1992,355:33-45
    Gietz R D, Robert H, Schiestl R H, Andrew R, Willems H A, Woods R A. Studies on thetransformation of intact yeast cells by the LiAc/ss-DNA/PEG procedure. Yeast,1995,11:355-360
    Gietz R D, Woods R A. Yeast transformation by the LiAc/SS Carrier DNA/PEG method. MethodsMol Biol,2006,313:107-120
    Goff C G, Moir D T, Kohno T, Gravius T C, Smith R A, Yamasaki E, Taunton-Rigby A. Theexpression of calf prochymosin in Saccharomyces cerevisiae. Gene,1984,21:35-46
    Gong F, Sheng J, Chi Z M, Li J. Inulinase production by a marine yeast Pichia guilliermondii andinulin hydrolysis by the crude inulinase. J Indu Microbiol Biotechnol,2007,34:179-185
    Gong F, Chi Z M, Sheng J, Li J, Wang X H. Purification and characterization of extracellularinulinase from a marine yeast Pichia guilliermondii and inulin hydrolysis by the purifiedinulinase. Biotechnol Bioproc Eng,2008,13:533-539
    Gritz L, Davies J. Plasmid encoded hygromycin B resistance: the sequence of hygromycin Bphosphotransferase and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene,1983,25:179-188.
    Gu M B, Park M H, Kim D I. Growth rate control in fed-batch cultures of recombinantSaccharomyces cerevisiae producing hepatitis B surface antigen (HBsAg). Appl MicrobiolBiotechnol,1991,35:46-50.
    Guisez Y, Tison B, Vandekerckhove J, Demolder J, Bauw G, Haegeman G, Fiers W, Contreras R.Production and purification of recombinant human interleukin-6secreted by the yeastSaccharomyces cerevisiae. Eur J Biochem,1991,198:217-222
    Guo N, Gong F, Chi Z M, Sheng J, Li J. Enhanced inulinase production in solid state fermentationby a mutant of the marine yeast Pichia guilliermondii using surface response methodology andinulin hydrolysis. J Ind Microbiol Biotechnol,2009,36:499-507
    Gupta R, Gigras P, Mohapatra H, Goswami V K, Chauhan B-amylases: abiotechnological perspective. Proc Biochem,2003,38:1599-1616
    Green R, Schaber M D, Shields D, Kramer R. Secretion of somatostatin by Saccharomycescerevisiae-factor-somatostatin hybrid. J Biol Chem,1986,261:7558-7565
    Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann J H. A new efficient gene disruptioncassette for repeated use in budding yeast. Nucleic Acids Res,1996,24:2519-2524
    Güldener U., Heinisch J, K hler GJ, Voss D, Hegemann J H. A second set of loxP markercassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res,2002,30: e23
    Hadfield C, Cashmore A M Meacock P A. An efficient chloramphenicol-resistance marker forSaccharomyces cerevisiae and Escherichia coli. Gene,1986,45:149-158
    Haguenauer-Tsapis R, Hinne A. A deletion that includes the signal peptidase cleavage site impairsprocessing, glycosylation and secretion of cell surface yeast acid phosphatase. Mol Cell Biol,1984,4:2668-2675
    Hallewell R A, Mills R, Tekamp-Olson P, Blacher R, Rosenber S, Otting F, Masiarz F R,Scandella C J. Amino terminal acetylation of authentic human Cu, Zn superoxide dismutaseproduced in yeast. BioTechnology,1987,5:363-366
    Hamilton R, Watanabe C K, de Boer H A. Compilation and comparison of the sequence contextaround the AUG start codons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res.,1987,15:3581-3593
    Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol,1983,166:557-580
    Hashida-Okado T, Ogawa A, Endo M, Yasumoto R, Takesako K, Kato I. AUR1, a novel geneconferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defectivemorphologies in Aur1p-depleted cells. Mol Gen Genet,1996,251:236-244
    Heidler S A, Radding J A. The AUR1gene in Saccharomyces cerevisiae encodes dominantresistance to the antifungal agent aureobasidin A (LY295337). Antimicrob Agents Chemother,1995,39:2765-2769
    Heim J, Takabayashi K, Meyhack B, Marki W, Pohlig G. C-terminal proteolytic degradation ofrecombinant desulfato-hirudin and its mutants in the yeast Saccharomyces cerevisiae. Eur JBiochem,1994,226:341-353
    Henderson R C A, Cox B S, Tubb R. The transformation of brewing yeasts with a plasmidcontaining the gene for copper resistance. Curr Genet,1985,9:133-138
    Henikoff S, Furlong C. Sequence of a Drosophila DNA segment that functions in Saccharomycescerevisiae and its regulation by a yeast promoter. Nucleic Acids Res,1983,11:789-800
    Hill J, Donald K A I G, Griffiths D E. DMSO-enhanced whole-cell yeast transformation. NucleicAcids Res,1991,19:5791.
    Hinnen A, Hicks J B, Fink G R. Transformation of yeast. Proc Natl Acad Sci USA,1978,75:1929-1933.
    Hinnen A, Meyhack B, Heim J. Heterologous gene expression in yeast. In: Barr P J, Brake A J,Valenzuela P.(Eds), Yeast Genetic Engineering, Butterworths,1989.193-213
    Hitzeman R A, Hagie F F, Levine H L, Goeddel D W, Ammerer G, Hall B D. Expression ofhuman gene for interferon in yeast. Nature,1981,293:717-723
    Hitzeman R A, Leung D W, Perry L J, Kohr W J, Levine H L, Goeddel D V. Secretion of humaninterferons by yeast. Science,1983,219:620-625
    Hoekema A., Kastelstein R. A., Vasser M., de Boer H. A.. Codon replacement in the PGK1geneof Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage ingene expression. Mol Cell Biol,1987,7:2914-2924
    Hoess R H, Abremski K, Sternberg N. The nature of the interaction of the P1recombinase Crewith the recombining site loxP. Cold Spring Harb Symp Quant Biol,1984,49:761-768
    Hoess R H, Abremski K. Mechanism of strand cleavge and exchange in the Cre-lox site-specificrecombination system. J Mol Biol,1985,181:351-362
    Holland J P, Holland M J. Structural comparison of two nontandemly repeated yeastglyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem,1980,255:2596-2605
    Horwitz A H, Chang C P, Better M, Hellstrom K E, Robinson R R. Secretion of functionalantibody and Fab fragment from yeast cells. Proc Natl Acad Sci USA,1988,85:8678-8682
    Hostinová E. Amylolytic enzymes produced by the yeast Saccharomycopsis fibuligera. BiologiaBratislava,2002,57:247-251
    Hostinová E, Solovicová A, Dvorsky R, Gasperík J. Molecular cloning and3D structureprediction of the first raw-starch-degrading glucoamylase without a separate starch-bindingdomain. Arch Biochem Biophys,2003,411:189-195
    Hsieh J H, Shih K Y, Kung H F, Shiang M, Lee L Y, Meng M H, Chang C C, Lin H M, Shih S C,Lee S Y, Chow T Y, Feng T Y, Kuo T T, Choo K B. Controlled fed-batch fermentation ofrecombinant Saccharomyces cerevisiae to produce hepatitis B surface antigen. BiotechnolBioeng,1988,32:334-340
    Huang S, Elliott R C, Liu P-S, Koduri R K, Weickmann J L, Lee J H, Blair L C, Ghosh-Dastida P,Bradshaw R A, Bryan K M, Einarson B, Kendall R L, Kolacz K H, Saito K. Specificity ofcotranslational amino-terminal processing of proteins in yeast. Biochemistry,1987,26:
    8242-8246
    Innis M A, Holland M J, McCabe P C, Cole G E, Wittman V P, Tal R, Watt K W K, Gelfand D H,
    Holland J P, Meade J H. Expression, glycosylation and secretion of an Aspergillus
    glucoamylase by Saccharomyces cerevisiae. Science,1985,228:21-26
    Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali
    cations. J Bacteriol,1983,153:163-168
    Jabbar M A, Sivasubramanian N, Nayak D P. Influenza viral (A/WSN/33) hemagglutinin is
    expressed and glycosylated in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA,
    1985,82:2019-2023
    Jimenez A, Davies J. Expression of a transposable antibiotic resistance element in Saccharomyces.
    Nature,1980,287:869-871
    Johnston M, Hillier L, Riles L, Albermann K, Andre B, Ansorge W, Benes V, Brückner M, Delius
    H, Dubois E. The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature,
    1997,387:87-90
    Johnston J R, Hilger F, Mortimer R. Variation in frequency of transformation by plasmid YRp7in
    Saccharomyces cerevisiae. Gene,1981,16:325-329
    Johnston M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces
    cerevisiae. Microbiol Rev,1987,51:458-476
    Julius D, Brake A, Blair L, Kunisawa R, Thorner J. Isolation of the putative structural gene forthe
    lysine-arginine-cleaving endopeptidase required for processing of yeast prepro--factor. Cell,
    1984,37:1075-1089
    Kaiser C A, Preuss D, Grisafi P, Botstein D. Many random sequences functionally replace the
    secretion signal of yeast invertase. Science,1987,235:312-317
    Kaster K R, Burgett S G, Rao R N, Ingolia T D, Analysis of a bacterial hygromycin B resistance
    gene by transcriptional and translational fusions and by DNA sequencing., Nucleic Acids Res,
    1983,11:6895-6911
    Kawasaki G. Eur Patent Application,017114,1986
    Kendall R L, Yamada R, Bradshaw R A. Cotranslational amino-terminal processing. Meth
    Enzymol,1990,185:398-407
    Kim H-A, Im Y-K, Ko H-M, Chin J-E, Kim I-C, Lee H B, Bai S. Raw starch fermentation to
    ethanol by an industrial distiller’s yeast strain of Saccharomyces cerevisiae expressing
    -amylase genes. Biotehnol Lett,2011,33:1643~1648
    Kim K, Park C S, Mattoon J R. High-efficiency, one-step starch utilization by transformed
    Saccharomyces cells which secrete both yeast glucoamylase and mouse alpha-amylase. Appl
    Environ Microbiol,1988,54:966-971
    King D J, Walton E F, Yarranton G T. The production of proteins and peptides fromSaccharomyces cerevisiae. In: Walton E F, Yarranton G T.(Eds), Molecular and Cell Biologyof Yeasts, Blackie and Van Nostrand Reinhold,1989.107-133
    Kingsman S M, Cousens D, Stanway C A, Chambers A, Wilson M, Kingsman A J.High-efficiency yeast expression vectors based on the promoter of the phosphoglycerate kinasegene. Meth Enzymol,1990,185:329-341
    Kiss G B, Pearlman R E, Cornish K V, Friesen J D, Chan V L. The Herpes simplex virusthymidine kinase is not transcribed in Saccharomyces cerevisiae. J Bacteriol,1982,149:542-547
    Kniskern P J, Hagopian A, Montgomery D L, Burke P, Dunn N R, Hofmann K J, Miller W J, EllisR. W. Unusually high-level expression of a foreign gene (hepatitis B virus core antigen) inSaccharomyces cerevisiae. Gene,1986,46:135-141
    Kobayashi F, Nakamura Y, Mathematical model of direct ethanol production from starch inimmobilized recombinant yeast culture. Biochem Eng J,2004,21:93-101
    Kozak M. The scanning model for translation: an update. J Cell Biol,1989,108:229-241
    Kiefhaber T, Rudolph R, Kohler H H, Buchner J. Protein aggregation in vitro and in vivo: aquantitative model of the kinetic competition between folding and aggregation. BioTechnology,1991,9:825-829
    Kramer R A, DeChiara T M, Schaber M D, Hilliker S. Regulated expression of a human interferongene in yeast: control by phosphate concentration or temperature. Proc Natl Acad Sci USA,1984,81:367-370
    Kotula L, Curtis P J. Evaluation of foreign gene codon optimisation in yeast: expression of amouse Ig kappa chain. BioTechnology,1991,9:1386-1389
    Kumar S, Kumar P, Satyanarayana T. Production of raw starch-saccharifying thermostable andneutral glucoamylase by the thermophilic mold Thermomucor indicae-seudaticae in submergedfermentation. Appl Biochem Biotech,2007,142:221-230
    Kurland C G. Strategies for efficiency and accuracy in gene expression1. The major codonpreference: a growth optimization strategy. Trends Biochem Sci,1987,12:126-128
    Laloux O, Cassart J P, Delcour J, Van Beeumen J, Vandenhaute J. Cloning and sequencing of theinulinase gene of Kluyveromyces marxianus var. marxianus ATCC12424. FEBS Lett,1991,289:64-68
    Laluce C, Mattoon J R. Development of rapidly fermenting strains of Saccharomyces diastaticusfor direct conversion of starch and dextrins to ethanol. Appl Environ Microbiol,1984,48:17-25
    Langridge R, Eibel H, Brown J W S, Feix G. Transcription from maize storage protein genepromoters in yeast. EMBO J,1984,3:2467-2471
    Lee F W F, Da Silva N A. Improved efficeiency and stability of multiple cloned gene insertions atSaccharomyces cerevisiae. Appl Microbiol Biotechnol,1997,48:339-345
    Li M, Liu G L, Chi Z, Chi Z M. Single cell oil production from hydrolysate of cassava starch bymarine-derived yeast Rhodotorula mucilaginosa TJY15a. Bioma Bioenerg,2010,34:101-107
    Li S Z, Chan-Halbrendt C. Ethanol production in (the) People's Republic of China: Potential andtechnologies. Appl Energ,2009,86: S162-S169
    Liao X B, Clare J J, Farabaugh P J. The upstream activation site of a Ty2element of yeast isnecessary but not sufficient to promote maximal transcription of the element. Proc Natl AcadSci USA,1987,84:8520-8524
    Lin H Y, Lin S E, Chien S F, Chern M K. Electroporation for three commonly used yeast strainsfor two-hybrid screening experiments. Anal Biochem,2011,416:117-119
    Liu X D, Xu Y.-amylase from a newly isolated Bacillus sp. YX-1:Purification and characterization. Bioresour Technol,2008,99:4315-4320
    Loetscher P, Pratt G, Rechsteiner M. The C terminus of mouse ornithine decarboxylase confersrapid degradation on dihydrofolate reductase. J Biol Chem,1991,266:11213-11220
    Loison G, Nguyen-Juilleret M, Alouani F, Marquet M. Plasmid-transformed ura3fur1double-mutants of S. cerevisiae: an autoselection system applicable to the production of foreignproteins. BioTechnology,1986,4:433-437
    Loison G, Vidal A, Findeli A, Roitsch C, Ballou J M, Lemoine Y. High level of expression of aprotective antigen of schistosomes in Saccharomyces cerevisiae. Yeast,1989,5:497-507
    Lopes T S, Klootwijk J, Veenstra A E, van der Aar P C, van Heerikhuizen H, Raúe H A, Planta RJ. High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a newvector for high-level expression. Gene,1989,179:199-206
    Lopes T S, Hakkaart G J, Koerts B L, Raué H A, Planta R J. Mechanism of high-copy-numberintegration of pMIRY-type vectors into the ribosomal DNA of Saccharomyces cerevisiae. Gene,1991,105:83-90
    Lopes T S, de Wijs I J, Steenhauer S I, Verbakel J, Planta R J. Factors affecting the mitoticstability of high-copy-number intergration into the ribosomal DNA of Saccharomycescerevisiae. Yeast,1996,12:467-477
    Losson R, Windsor B, Lacroute F. mRNA stability in S. cerevisiae. Yeast,1988,4: S2
    Manivasakam P, Schiest R H, High efficiency transformation of Saccharomyces cerevisiae byelectroporation. Nucleic Acids Res,1993,21:4414-4415
    Marczynski G T, Jaehning J A. A transcription map of a yeast centromere plasmid: unexpectedtranscripts and altered gene expression. Nucleic Acids Res,1985,13:8487-8506
    Marston F A O. The purification of eukaryotic polypeptides synthesised in Escherichia coli.Biochem J,1986,240:1-12
    Mellor J, Dobson M J, Roberts N A, Kingsman A J, Kingsman S M. Factors affectingheterologous gene expression in Saccharomyces cerevisiae. Gene,1985,33:215-226
    Mellor J, Dobson M, Kingsman A J, Kingsman S M. A transcriptional activator is located in thecoding region of the yeast PGK gene. Nucleic Acids Res,1987,15:6243-6259
    Melnick L M, Turner B G, Puma P, Price-Tillotson B, Salvato K A, Dumais D R, Moir D T,Broeze R J, Avgerinos G C. Characterisation of a nonglycosylated single chain urinaryplasminogen activator secreted from yeast. J Biol Chem,1990,265:801-807
    Meyer H A, Hartmann E. The yeast SPC22/23homolog Spc3p is essential for signal peptidaseactivity. J Biol Chem,1997,272:13159-13164
    Miller G L. Use of dinitrosalycilic acid reagent for determination of reducing sugars. Anal Chem1959,31:315-371
    Miyamoto C, Chizzomte R, Crowl R, Rupprecht K, Kramer R, Schaber M, Kumar G, Pronian M,Ju G. Molecular cloning and regulated expression of the human c-myc gene in Escherichia coliand Saccharomyces cerevisiae: comparison of the protein products. Proc Natl Acad Sci USA,1985,82:7232-7236
    Miyajima A, Miyajima I, Arai K, Arai N. Expression of plasmid R388-encoded type IIdihydrofolate reductase as a dominant selectable marker in Saccharomyces cerevisiae. Mol CellBiol,1984,4:407-414
    Mizunaga T, Izawa M, Ikeda K, Maruyama Y. Secretion of an active nonglycosylated form of therepressible acid phosphatase of Saccharomyces cerevisiae in the presence of tunicamycin at lowtemperatures. J Biochem,1988,103:321-326
    Moerschell R P, Hosokawa Y, Tsunasawa S, Sherman F. The specificities of yeast methionineaminopeptidase and acetylation of amino-terminal methionine in vivo. J Biol Chem,1990,265:19638-19643
    Moir D T, Dumais D R.-l-antitrypsin by yeast. Gene,1987,56:209-217
    Moses S B G, Otero R R C, Grange D C L, van Rensburg P, Pretorius I S. Different geneticbackgrounds influence the secretory expression of the LKA1-encoded Lipomyces kononenkoae-amylase in industrial strains of Saccharomyces cerevisiae. Biotechnol Let,2002,24:651-656
    Murray A W, Szostak J W. Pedigree analysis of plasmid segregation in yeast. Cell,1983,34:911-970
    Nacken V, Achstetter T, Degryse E. Probing the limits of expression levels by varying promoterstrength and plasmid copy number in Saccharomyces cerevisiae. Gene,1996,175:253-260
    Nagem R A P, Rojas A L, Golubev A M, Korneeva O S, Eneyskaya E V, Kulminskaya A A.Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structuraldeterminants of substrate recognition. J Mol Biol,2004,344:471-480
    Nagiec M M Nagiec E E Baltisberger J A, Wells G B, Lester R L, Dickson R C. Sphingolipidsynthesis as a target for antifungal drugs Complementation of the inositol phosphorylceramidesynthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1gene. J Biol Chem,1997,272:9809-9817
    Nakamura S, Takasaki H, Kobayashi K, Kato A. Hyperglycosylation of hen egg white lysozymein yeast. J Biol Chem,1993,268:12706-12712
    Nakamura T, Ogata Y, Hamada S. Ethanol production from Jerusalem artichoke tubers byAspergillus niger and Saccharomy cescerevisiae. J Ferment Bioeng,1996,81:564-566
    Negro M J, Ballesteros I, Manzanares P, Oliva J M, Sáez F, Ballesteros M. Inulin-containingbiomass for ethanol production: carbohydrate extraction and ethanol fermentation. ApplBiochem Biotechnol,2006,129-132:922-932
    Ngsee J K, Hansen W, Walter P, Smith M. Cassette mutagenic analysis of the yeast invertasesignal peptide: Effects on protein translocation. Mol Cell Biol,1989,9:3400-3410
    Ngsee J K, Smith M. Changes in a mammalian signal sequence required for efficient proteinsecretion by yeast. Gene,1990,86:251-255
    Orr-Weaver T L, Szostak J W, Rothstein R J. Genetic applications of yeast transformations withlinear and gapped plasmids. Meth Enzymol,1983,101:228-245
    Parent S A, Fenimore C M, Bostian K A. Vector systems for the expression, analysis and cloningof DNA sequences in Saccharomyces cerevisiae. Yeast,1985,1:83-138
    Park S, Jeong H Y, Kim H S, Yang M S, Chae K S. Enhanced production of Aspergillus ficuumendoinulinase in Saccharomyces cerevisiae by using the SUC2-deletion mutation. EnzymeMicrob Tech,2001,29:107-110
    Pelsy F, Lacroute F. Effect of ochre nonsense mutations on yeast URA1mRNA stability. Curr.Genet,1984,8:277-282
    Pentill M E, André L, Lehtovaara P, Bailey M, Teeri T T, Knowles J K C. Efficient secretion oftwo fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene,1988,63:103-112
    Petes T D, Botstein D. Simple Mendelian inheritance of the reiterated ribosomal DNA of yeast.Pro Natl Acad Sci USA,1977,74:5091-5095
    Pettinger R C, Wolfe R N, Hoehn M M, Marks P N, Dailey W A, McGuire J.M. Hygromycin. I.Preliminarystudies on the production and biological activity of a new antibiotic. AntibiotChemother,1953,3:1268-1278
    Pichuantes S, Babé L M, Barr P J, Craik C S. Recombinant HIVl protease secreted bySaccharomyces cerevisiae correctly processes myristylated gag polyprotein. Proteins: StructFunct Genet,1989,6:324-337
    Price V L, Taylor W E, Clevenger W, Worthington M, Young E T. Expression of heterologousproteins in Saccharomyces cerevisiae using ADH2promoter. Meth Enzymol,1990,185:308-318
    Purvis I J, Bettany A J E, Loughlin L, Brown A J P. Translation and stability of an Escherichiacoli-galactosidase mRNA expressed under the control of pyruvate kinase sequences inSaccharornyces cerevisiae. Nucleic Acids Res.,1987,15:7963-7974
    Quirk A V, Geisow M J, Woodrow J R, Burton S J, Wood P C, Sutton A D, Johnson R A,Dodsworth N. Production of recombinant human serum albumin from Saccharomycescerevisiae. Biotechnol Appl Biochem,1989,11:273-287.
    Rademacher T W, Parekh R B, Dwek R A. Glycobiology. Ann Rev Biochem,1988,57:785-838
    Reppe S, Gabrielsen O S, Olstad O, Morrison N, Szther O, Blingsmo O R, Gautvik V T,Gordeladze J, Haflan A K, Voelkel E F, yen T B, Tashjian A H Jr, Gautvik K M.Characterisation of a K26Q site-directed mutant of human parathyroid hormone expressed inyeast. J Biol Chem,1991,266:14198-14201
    Rocha J R, Catana R, Ferreira B S, Cabral J M S, Fernandes P. Design and characterisation of anenzyme system for inulin hydrolysis. Food Chem,2006,95:77-82
    Rouwenhorst R J, Visser L E, Van Der Baan A A, Scheffers W A,Van Dijken J P. Production,distribution, and kinetic properties of inulinase in continuous cultures of Kluyveromycesmarxianus CBS6556. Appl Environ Microbiol,1988,54:1131-1137
    Rickard P A D, Hogan C B J. Effects of glucose on the activity and synthesis of fermentative andrespiratory pathways of Saccharomyces sp. Biotechnol Bioeng,1978,20:1105-1110
    Riederer M A, Hinnen A. Removal of N-glycosylation sites of the yeast acid phosphatase severelyaffects protein folding. J Bact,1991,173:3539-3546
    Rinas U, Rise B, Jaenicke R, Broker M, Karges H E, Kupper H A, Zettlmeissi G. Characterisationof recombinant factor XIIIa produced in Saccharomyces cerevisiae. BioTechnology,1990,8:543-545
    Robertson G H, Wong D W S, Lee C C, Wagschal K, Smith M R, Orts W J. Native or raw starchkey step in energy efficient biorefining of grain. J Agric Food Chem,2006,54:353-365
    Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins:the PEST hypothesis. Science,1986,234:364-368
    Roggenkamp R, Kustermann-Kuhn B, Hollenberg C P. Expression and processing of bacterial-lactamase in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA,1981,78:4466-4470
    Romanos M A, Makoff A J, Fairweather N F, Beesley K M, Slater D E, Rayment F B, Payne M M,Clare J J. Expression of tetanus toxin fragment C in yeast: gene synthesis is required toeliminate fortuitous polyadenylation sites in AT-rich DNA. Nucleic Acids Res,1991,19:1461-1467
    Romanos M A, Scorer C A, Clare J J. Foreign gene expression in yeast. Yeast,1992,8:423-488
    Rose M, Grisafi P, Botstein D. Structure and function of the yeast URA3gene: expression inEscherichia coli. Gene,1984,29:113-124
    Rosenberg S, Coit D, Tekamp-Olson P. Glyceraldehyde-3-phosphate dehydrogenase-derivedexpression cassettes for constitutive synthesis of heterologous proteins. Meth Enzymol,1990,185:341-351
    Rudolph H K, Antebi A, Fink G R, Buckley C M, Dorman T E, LeVitre J, Davidow L S, Mao J,Moir D T. The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ATPase family. Ce11,1989,58:133-145
    Sabin E A, Lee-Ng C T, Shuster J R, Barr P J. High-level expression and in vivo rocessing ofchimeric ubiquitin fusion proteins in Saccharomyces cerevisiae. BioTechnology,1989,7:705-709
    Sakai A, Ozawa F, Higashizaki T, Shimizu Y, Hishinuma F. Enhanced secretion of human nervegrowth factor from Saccharomyces cerevisiae-integration system.BioTechnology,1991,9:1382-1385
    Sambrook J. Russell D. Molecular Cloning: A Laboratory Manual (Third Edition). New York:Cold Spring Harbor Laboratory Press,2001,1.105-1.111
    Sandhu D K, Vilkhu K S, Soni S-amylase by Saccharomycopsis fibuligeraSyn. Endomycopsis fibuligera. J Ferment Bioeng,1987,65:387-394
    Sanz-Aparicio J, Polo A. Structural and kinetic analysis of Schwanniomyces occidentalis invertasereveals a new oligomerization pattern and the role of its supplementary domain in substratebinding. J Biol Chem,2010,285:13930-13941
    Sato T, Uemura H, Izumoto Y, Nakao J, Nakamura Y, Matsubara K. The conformation of mature-amylase conditions its secretion from yeast. Gene,1989,83:355-365
    Sauer B. Site-specific recombination: development and applications. Curr Opin Biotechnal,1994,5:521-527
    Schiestl R H, Manivasakam P, Woods R A, Gietz R D. Introducing DNA into yeast bytransformation. Methods: A Companion to Methods Enzymol,1993,5:79-85
    Schreuder M P, Brekelmans S, van den Ende H. Targeting of a heterologous protein to the cellwall of Saccharomyces cerevisiae. Yeast,1993,9:399-409
    Schultz L D, Tanner J, Hofmann K J, Emini E A, Condra J H, Jones R E, Kieff E, Ellis R W.Expression and secretion in yeast of a400-kDa envelope glycoprotein derived fromEpstein-Barr virus. Gene,1987,54:113-123
    Sharp P M, Cowe E. Synonymous codon usage in Saccharomyces cerevisiae. Yeast,1991,7:657-678
    Shortle D, Novick P, Botstein D. Construction and genetic characterisation of temperature-sensitive mutant alleles of the yeast actin gene. Proc Natl Acad Sci USA,1984,81:4889-4893
    Shuster J R. Regulated transcriptional systems for the production of proteins in yeast: egulation bycarbon source. In: Barr P J, Brake A J, Valenzuela P.(Eds), Yeast Genetic Engineering.Butterworths,1989.83-108
    Shuster J R. Gene expression in yeast: protein secretion. Curr Opin Biotechnol,1991,2:685-690
    Silve S, Monod M, Hinnen A, Haguenauer-Tsapis R. The yeast acid phosphatase can enter thesecretory pathway without its N-terminal signal sequence. Mol Cell Biol,1987,7:3306-3314
    Singh A, Lugovoy J M, Kohr W J, Perry L J. Synthesis, secretion and processing of-factor-interferon fusion proteins in yeast. Nucleic Acids Res,1984,12:8927-8938
    Singh P, Gill P K. Production of inulinases: recent advances. Food Technol Biotechnol,2006,44:151-162
    Sleep D, Belfield G P, Goodey A R. The secretion of human serum albumin from the yeastSaccharomyces cerevisiae using five different leader sequences. BioTechnology,1990,8:42-46
    Smith R A, Duncan M J, Moir D T. Heterologous protein secretion from yeast. Science,1985,230:1219-1224
    S gaard M, Svensson B-amylase1and2in yeast andcharacterisation of the secreted proteins. Gene,1990,94:173-179
    Spiro R G. Analysis of sugars found in glycoproteins. Meth Enzymol,1966,8:3-26
    Sudbery P E. The expression of recombinant proteins in yeasts. Curr Opin Biotechnol,1996,7:517-524
    Stepien P P, Brousseau R, Wu R, Narang S, Thomas D Y. Synthesis of a human insulin gene VI.Expression of the synthetic proinsulin gene in yeast. Gene,1983,24:289-297
    Sternberg N, Hamilton D. Bacteriophage P1site-specific recombination. I. Recombinationbetween loxP sites. J Mol Biol,1981,150:467-486
    Sternberg N, Hamilton D. Bacteriophage P1site-specific recombination. II. Recombinationbetween loxP and the bacterial chromosome. J Mol Biol,1981,150:487-507
    Struhl K, Davis R. W.. A physical, genetic, and transcriptional map of the yeast HIS3gene ofSaccharomyces cerevisiae. J Mol Biol,1980,136:309-332
    Struhl K. Molecular mechanisms of transcriptional regulation in yeast. Ann Rev Biochem,1989,58:1051-1077
    St. John T P. Davis R W. The organisation and transcription of the galactose gene cluster ofSaccharomyces. J Mol Biol,1981,152:285-315
    Swanson W. H., Clifton C E. Growth and assimilation in cultures of Saccharomyces cerevisiae. JBact,1948,56:115
    Tokuhiro K, Muramatsu M, Ohto C, Kawaguchi T, Obata S, Muramoto N, Hirai M, Takahashi H,Kondo A, Sakuradani E, Shimizu S. Overproduction of geranylgeraniol by metabolicallyengineered Saccharomyces cerevisiae. Appl Environ Microbiol,2009,75:5536-5543
    Thompson J R, Register E, Curotto J, Kurtz M, Kelly R. An improved protocol for the preparationof yeast cells for transformation by electroporation. Yeast,1998,146:565-571
    T ttrup H V, Carlsen S. A process for the production of human proinsulin in Saccharomycescerevisiae. Biotechnol Bioeng,1990,35:339-348
    Tschumper G, Carbon J. Sequence of a yeast DNA fragment containing a chromosomal replicatorand the TRP1gene. Gene,1980,10:157-166
    Tuite M F, Dobson M J, Roberts N A, King R M, Burke D C, Kingsman S M, Kingsman A J.Regulated high efficiency expression of human interferon-alpha in Saccharomyces cerevisiae.EMBO J,1982,1:603-608
    Turner B G, Avgerinos G C, Melnick L M, Moir D T. Optimization of pro-urokinase secretionfrom recombinant Saccharomyces cerevisiae. Biotechnol Bioeng,1991,37:869-875
    Ueda M, Asano T, Nakazawa M, Miyatake K, Inouye K. Purification and characterization ofnovel raw-starch-digesting and cold--amylases from Eisenia foetida. Comp BiochemPhysiol B Biochem Mol Biol,2008,150:125-130
    Vad R, Moe E, Saga K, Kvinnsland A M, yen T B. High-level production of human parathyroidhormone (hPTH) by induced expression in Saccharomyces cerevisiae. Protein Expr Purif,1998,13:396-402
    Van Arsdell J N, Kwok S, Schweickart V L, Ladner M B, Gelfand D H, Innis M A. Cloning,characterisation and expression in Saccharomyces cerevisiae of endoglucanase I fromTrichoderma reesei. BioTechnology,1987,5:60-64
    van den Heuvel J J, Bergkamp R J M, Planta R J, Raue H A. Effect of deletions in the5’-noncoding region on the translational efficiency of phosphoglycerate kinase mRNA in yeast.Gene,1989,79:83-95
    van den Heuvel J J, Planta R J, Raue H A. Effect of leader primary structure on the translationalefficiency of phosphoglycerate kinase mRNA in yeast. Yeast,1990,6:473-482
    Varshavsky A. The N-end rule pathway of protein degradation. Genes Cells,1997,2:13-28
    Varshavsky A, Bachmair A, Finley D, Gonda D K, Wunning I. Targeting of proteins fordegradation. In: Barr P J, Brake A J, Valenzuela P.(Eds), Yeast Genetic Engineering,Butterworths,1989.109-143
    Verma G, Poonam N, Dalel S. Bioconversion of starch to ethanol in a single-step process bycoculture of amylolytic yeasts and Saccharomy cerevisiae. Bioresource Technol,2000,72:261-266
    Volkert F C, Wilson D W, Broach J R. Deoxyribonucleic acid plasmids in yeasts. Microbiol Revs,1989,53:299-317
    Webster T D, Dickson R C. Direct selection of Saccharomyces cerevisiae resistant to theantibiotic G418following transformation with a DNA vector carrying the kanamycin resistancegene of Tn903. Gene,1983,26:243-252
    Wagenbach M, O’Rourke K, Vitez L, Wieczorek A, Hoffman S, Durfee S, Tedesco J, Stetler G.Synthesis of wild type and mutant hemoglobins in Saccharomyces cerevisiae. BioTechnology,1991,9:57-61
    Walmsley R M, Gardner D C, Oliver S G. Stability of a cloned gene in yeast grown in chemostatculture. Mol Gen Genet,1983,194:361-365
    Wang J M, Zhang T, Chi Z, Liu G L, Chi Z M.18S rDNA integration of the exo-inulinase geneinto chromosomes of the high ethanol producing yeast Saccharomyces sp. W0for directconversion of inulin to bioethanol. Biomass Bioenergy,2011,35:3032-3039
    Wong D W S, Batt S B, Lee C C, Robertson G H. High-activity barley-amylase by directedevolution. Protein J,2004,23:453-460
    Wood C R, Boss M A, Kenton J M, Calvert J E, Roberts N A, Emtage J S. The synthesis and invivo assembly of functional antibodies in yeast. Nature,1985,314:446-449
    YaDeau J T, Klein C, Blobel G. Yeast signal peptidase contains a glycoprotein and the Sec11geneproduct. Proc Natl Acad Sci USA,1991,88:517-522
    Yu X J, Guo N, Chi Z M, Gong F, Sheng J, Chi Z. Inulinase overproduction by a mutant of themarine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis.Biochem Eng J,2009,43:266-271.
    Yuan W J, Chang B L, Ren J G, Liu J P, Bai F W, Li Y Y. Consolidated bioprocessing strategyfor ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus underhigh gravity conditions. J Appl Microbiol,2012,112:38-44
    Zaman Z, Brown A J P, Dawes I W. A3' transcriptional enhancer within the coding sequence of ayeast gene encoding the common subunit of two multienzyme complexes. Mol Microbiol,1992,6:239-246
    Zhang T, Chi Z, Chi Z M, Parrou J L, Wang F. Expression of the inulinase gene from themarine-derived Pichia guilliermondii in Saccharomyces sp. W0and ethanol production frominulin. Microb Biotechnol,2010,3:576-582
    Zhang T, Chi Z, Zhao C H, Chi Z M, Gong F. Bioethanol production from hydrolysates of inulinand the tuber meal of Jerusalem artichoke by Saccharomyces sp. W0. Biores Tech,2010,101:8166-8170
    Zhang T, Chi Z, Chi Z M, Parrou J L, Wang F. Expression of the inulinase gene from themarine-derived Pichia guilliermondii in Saccharomyces sp. W0and ethanol production frominulin. Microb Biotechnol,2010,3:576-582
    Zhang T, Gong F, Chi Z, Sheng J, Li J, Wang X H. Cloning and characterization of the inulinasegene from a marine yeast Pichia guilliermondii and its expression in Pichia pastoris. AntonieVan Leeuwenhoek,2009,95:13-22
    Zhu S D, Wu Y X, Yu Z N. Simultaneous saccharification and fermentation of microwave/alkalipre-treated rice straw to ethanol. Biosyst Eng,2005,92:229-235
    Zsebo K M, Lu H S, Fieschko J C, Goldstein L, Davis J, Duker K, Suggs S V, Lai P H, Bitter G A.Protein secretion from Saccharomyces cerevisiae directed by the prepro--factor region. J BiolChem,1986,261:5858-5865

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700