重金属生物吸附剂的开发、应用与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题对重金属的生物吸附进行了系统的研究。主要包括生物吸附剂的筛选、吸附性能、吸附工艺、吸附机理、现场试验及毒理实验等。
     本研究对多家电镀厂及五金厂进行了重金属废水、污泥采样,微生物分离、筛选、鉴定等工作。共筛选到了十株对铬具有良好吸附性能的菌株:细菌一株、掷孢酵母、产朊假丝酵母、解脂假丝酵母、霉菌六株。
     研究了掷孢酵母的培养基成份与配比对吸附铬的影响。最佳培养基配方是:葡萄糖20g/L、蛋白胨5g/L和酵母浸出粉2g/L、pH5。培养60h后,对30mg/L含铬水样的还原率与去除率分别为68.9%、61.6%;味精废水培养的菌体对铬的还原率与去除率分别为68.8%、63.1%。
     预处理研究表明NH_4Cl、NH_4NO_3、NaOH、Na_2MoO_4等预处理剂能促进铬的吸附。当NH_4Cl、NH_4NO_3为0.5mol/L时,掷孢酵母对30mg/LCr(VI)的还原率分别为87.1%、84.4%;去除率分别为83.9%、80.7%。吸附液中Na~+、K~+、NH4~+、—NH_2、Cl~-等离子在适当的浓度范围内能促进铬的生物吸附。
     吸附pH和培养时间是控制重金属废水生物吸附的重要因素。掷孢酵母、产朊假丝酵母和解脂假丝酵母的适宜pH分别为2.5~6.5、3~5和3~7,适宜培养时间分别是50~65h、35~48h、20~60h。对30~35mg/L Cr(总)的电镀废水的还原率分别达85%~95%、70%~80%、95%~100%;去除率达65%~80%、65%~70%、85%~98%。10g/L掷孢酵母在最佳吸附条件下曝气处理8h后,对Cr(总)34.4mg/L、Cr(VI)30mg/L的电镀废水的还原率与去除率均超过了92%。
     处理工艺研究结果表明,在进行鼓风曝气的情况下,生物吸附剂与活性污泥联合应用,能对铬进行有效去除。10g/L的解脂假丝酵母处理30.9~68.6 mg/L Cr(总)电镀废水8h后,去除率达94%~100%,pH 5.4-5.8。对电镀废水的现场实验研究表明,出水含铬低于0.05mg/L,可达标排放。首次提出了重金属废水和无毒高浓度有机废水同步处理的HMOC工艺。毒性实验结果表明,本研究应用的生物吸附剂无害无毒。
The biosorption of heavy metal-containing wastewater was studied comprehensively in the research, including selection of biosorbents, capability of sorption, treatment of simulated and practical chromium-containing wastewater, mechanism of biosorption, on-site experiment, and toxicity of chromium and strains of biosorption.
    Many samples of wastewater and sludge from plating plants and hardware plants were collected. Ten strains cultured by these samples were determined to have high-efficiency of chromium accumulation, including a strain of bacteria, Sporobolomycetaceae sp. YJS, Candida utilis, Candida FOLA, and six strains of mold.
    The study of culture conditions of biosorbent showed that different ingredients of the medium had distinctive effects on the growth of strains. The optimal cultivation condition of Sporobolomycetaceae sp. YJS was glucose 20g/L, peptone 5g/L, yeast extract 2g/L, and pH5. After cultivated by this medium for 60h, the ceil of S. sp. YJS had reduction and removal ratios of 68.9%, 61.6% to the 30mg/L chromium-containing wastewater after 8hr biosorption. When cultivated by monosodium glutamate wastewater, the ratios were 68.8% ^ 63.1%, respectively.
    The capability of the biosorbent would be promoted greatly after some rational pretreatments. Among the general compounds, NH4C1, NH4NO3, NaOH, Na2MoO4, especially NH4Cl, NH4NO3, could boost the biosorption effectively. The ratios of reduction were 87.1%, 84.4% respectively, and the removal ratios were 83.9%, 80.7% accordingly, after pretreated the cell by NH4Cl,NH4NO3 severally.
    There were a lot of ions and compounds in the chromium-containing wastewater, each of them would impact the practice of biosorption accordingly. When ranged from proper concentration, the ions of Na+, K+ , NH4+, -NH2, Cl- would increase the ratios of removal.
    PH was one of the most crucial factors for the removal of heavy metal by biosorbent. Different strains had dissimilar optimal pH. The appropriate pH of S. sp. YJS, Candida utilis, and Candida FOLA were 2.5-6.5, 3-5, 3-7, the optimal cultivation time were 50~65h, 35~48h, and 20~60h respectively. The reduction and removal ratios to the 30~35mg/L
    
    
    chromium-containing wastewater by these three strains after 8 hours biosorption were 85%~95%, 65%~80%; 70%~80%, 65%~70%; and 95%~100%, 85%~98% respectively.
    The efficiency of biosorption would heighten markedly when the suitable conditions for the treatment were reached. When treating plating waste water in which the total content of chromium was 34.4mg/L and the Cr(VI) was 30mg/L, the reduction and removal ratios were exceeded 92% after treated by Sporobolomycetaceae sp. YJS undergoing the optimal condition for 8 hours.
    The study of aerobic treatment of practical plating wastewater was discussed. The removal ratio to the 30.9-68.6 mg/L chromium-containing wastewater was reached 94%~100% after treated by 10g/L Candida FOLA for 8 hours within the pH range of 5.4-5.8. The combination treatment of heavy metal and organic waste water was proposed for the first time. The toxic experiment showed that the biosorbent were safe.
引文
[1] David K Geiger. Chromium 1996. Coordination Chemistry reviews, 1998, 172: 157—180
    [2] Andre S. Ellis, Thomas M. Johnson, Thomas D. Bullen. Chromium Isotopes and the Fate of Hexavalent Chromium inthe Environment. Science, 2002, 295(15): 2060—2062
    [3] 江澜.微量元素铬(Ⅲ)的生理功能.渝州大学学报,2000,17(4):74—77
    [4] 杨晓霞.铬研究进展.中国地方病学杂志,1998,17(3):170—173
    [5] 朱晔,金献华.低铬污染鞣制方法的研究.中国皮革,1998:27(9):8—10
    [6] Henry C. Lukaski. Chromium as a Supplement. Annual Reviews Nutrition, 1999, 19: 279—302
    [7] Ellen J. O'Flaherty, Brent D. Kerger, Sean M. Hays. A Physiologically Based Model for the Ingestion of Chromium(Ⅲ) and Chromium(Ⅵ) by Humans. Toxicological Sciences, 2001, 60, 196—213
    [8] H. Pauls, B.Bredenbrocker, W. Schoner. Inactivation of CNa~+ K~+)-ATPase by chromium(Ⅲ) complexes of nucleotide triphosphates. European Journal of Biochemistry, 1980, 109: 523—533
    [9] KE Earle, AG Archer, JE Baillie. Circulating and excreted levels of chromium after an oral glucose challenge: influence of body mass index, hypoglycemic drugs, and presence and absence of diabetes mellitus. American Journal of Clinical Nutrition, 1989, 49:685—689
    [10] RA Anderson, MM Polansky, NA Bryden, EE Roginski, KY Patterson, C Veillon, W Glinsmann. Urinary chromium excretion of human subjects: effects of chromium supplementation and glucose loading. American Journal of Clinical Nutrition, 1982, 36:1184—1193
    [11] FY Mohamedshah, PB Moser-Veillon, S Yamini, LW Douglass, RA Anderson, C Veillon. Distribution of a stable isotope of chromium (53Cr) in serum, urine, and breast milk in lactating women. American Journal of Clinical Nutrition, 1998, 67: 1250—1255
    [12] 丁文军,钱琴芳,柴之芳,侯小琳,陈春英,丰伟悦.富铬酵母中14种元素的ICP-AES测定.光谱学与光谱分析,1999,19(4):595—597
    [13] BW Morris, A Blumsohn, S Mac Neil, TA Gray. The trace element chromium--a role in glucose homeostasis.American Journal of Clinical Nutrition, 1992, 55: 989—991
    
    
    [14] Xinfu Guan, Jacques J. Matte, Pao K. Ku, Janet L. Snow, Jeanne L. Burton, Nathalie L. Trottier. High Chromium Yeast Supplementation Improves Glucose Tolerance in Pigs by Decreasing Hepatic Extraction of Insulin. Journal of Nutrition, 2000, 130:1274—1279
    [15] Michelle A. Rubin, John P. Miller, Alice S. Ryan, Margarita S. Treuth, Kristine Y. Patterson, Richard E. Pratley, Ben F. Hurley, Claude Veillon, Phylis B. Moser-Veillon, Richard A. Anderson. Acute and Chronic Resistive Exercise Increase Urinary Chromium Excretion in Men as Measured with an Enriched Chromium Stable Isotope.The Journal of Nutrition, 1998, 128(1): 73—78
    [16] 孟祥和,胡国飞.重金属废水处理.化学工业出版社,北京(2),2001:12
    [17] M Huvinen, J Uitti, A Zitting, P Roto, K Virkola, P Kuikka, P Laippala, A Aitio. Respiratory health of workers exposed to low levels of chromium in stainless steel production. Occupational and Environmental Medicine, 1996, 53. 741—747
    [18] T Sorahan, DC Burges, L Hamilton, JM Harrington. Lung cancer mortality in nickel/chromium platers, 1946-95.Occupational and Environmental Medicine, 1998 55. 236—242
    [19] Rolf Petersen, Jane Frφlund Thomsen, Niels Kjrgaard Jφrgensen, Sigurd Mikkelsen. Half life of chromium in serum and urine in a former plasma cutter of stainless steel. Occupational and Environmental Medicine, 2000, 57. 140—142
    [20] 谭小欣,王小宁.肾上腺病变36例的计算机体层扫描、磁共振成像诊断分析.南京医科大学学报,2001,21(6):550—551
    [21] 孙福康,刘定益,吴瑜璇,祝宇,周文龙.嗜铬细胞瘤手术前后血糖浓度分析.临床泌尿外科杂志,2001,16(6):252—253
    [22] 刘传信,蓝建勇,李芳萍.嗜铬细胞瘤的诊断和治疗.实用临床医学,2001,2(1):66—67
    [23] 薛山涛,薛文山,董红艳,韩晓辉,吕秀琳.电镀厂周围环境与人群血、尿、发六价铬水平调查.环境与健康杂志,1999,16(1):31—32
    [24] 廖金凤.电镀废水中铜锌铬镍对农业环境的影响.农村生态环境,1999,15(4):52—55
    [25] 刘利萍,张淑蓉.电镀含铬废水的处理和利用.重庆环境科学,1999,21(3):37-42
    [26] J.A.S. Tenorio, D.C.R. Espinosa. Treatment of chromium plating process effluents with ion exchange resins. Waste Management, 2001, 21: 637—642
    [27] Ighodalo C. Eromosele, Solomon S. Bayero. Adsorption of chromium and zinc ions from
    
    aqueous solutions by cellulosic graft copolymers. Bioresource Technology 2000, 71: 279—281
    [28] 叶锦韶,尹华,彭辉,刘慧璇,梁郁强,李桂娇.生物吸附剂的制备及其对铬的吸附性能.环境化学,2002,21(2):144—148
    [29] C. J. Wiliams, D. Aderhold, R.G.J. Edyvean. Comparison between biosorbents for the removal of metal ions from aqueous solutions. Water Research, 1998, 32(1): 216—224
    [30] 刘月英,傅锦坤,陈平,于新生,阳鹏程.巨大芽孢杆菌D01吸附金(Au~(3+))的研究.微生物学报,2000,40(4):425—429
    [31] 尹平河,赵玲,Yu Qi-Ming,J T Matheickal.海藻生物吸附废水中铅、铜和镉的研究.海洋环境科学,2000,19(3):11—15
    [32] Amit Gupta, Maria Maynes, Simon Silver. Bacterial heavy metal resistance: new surprises. Annual Reviews Microbiology, 1996, 50:753—789
    [33] 叶锦韶,尹华,彭辉.微生物抗重金属毒性研究进展.环境污染治理技术与设备,2002,3(4):1—4
    [34] Alicia Hernández, Rafael P. Mellado, José L. Martínez. Metal Accumulation and Vanadium-Induced Multidrug Resistance by Environmental Isolates of Escherichia herrnannii and Enterobacter cloacae. Applied and Environmental Microbiology, 1998, 64(11): 4317—4320
    [35] David A. Pearce, Fred Sherman. Toxicity of Copper, Cobalt, and Nickel Salts Is Dependent on Histidine Metabolism in the Yeast Saccharormyces cerevisiae. Journal of Bacteriology, 1999, 181(16): 4774—4779
    [36] Tanja Klaus, Ralph Joerger, Eva Olsson, Claes-Gran Granqvist. Silver-based crystalline nanoparticles, microbially fabricated, 1999, 96(24): 13611—13614
    [37] Perry J. Riggle, Carol A. Kumamoto. Role of a Candida albicans P1-Type ATPase in Resistance to Copper and Silver Ion Toxicity. Journal of Bacteriology, 2000, 182(17): 4899—4905
    [38] 刘文群,徐尔尼,李曼,郑辉.真菌对微量元素铁、锌、硒生物富集作用的研究.环境与开发,2000,15(3):3—4
    [39] 韩润平,蒋海涛,陆雍森.酵母菌对Cr(Ⅵ)的生物吸附作用.环境保护科学,2001,27(104):28—33
    [40] 徐容,汤岳琴,王建华,杨红.固定化产黄青霉废菌体吸附铅与脱附平衡.环境科学,1998,19(4):72—75
    
    
    [41] 李青彪,吴涓,杨宏泉,邓旭,卢英华,洪丽玉,蔡立哲.白腐真菌菌丝球形成的物化条件及其对铅的吸附.环境科学,1999,20(1):33—38
    [42] 张小枝,罗上庚,杨群,张怀礼,李金英.满江红鱼腥藻吸附低浓度铀的研究.核化学与放射化学,1998,20(2):114—118
    [43] 田建民.用微生物红硫螺菌属形成的生物聚合物去除废水中的重金属.太原理工大学学报,1999,30(2):175—178
    [44] 李英敏,杨海波,刘艳,于媛,张欣华.小球藻吸附水中Pb~(2+)影响因素的初步研究.生物技术,2002,12(1):
    [45] Olga Muter, Aloizijs Patmalnieks, Alexander Rapoport. Interrelations of the yeast Candida utilis and Cr(Ⅵ): metal reduction and its distribution in the cell and medium. Process Biochemistry, 2001, 36:963—970
    [46] G. Cetinkaya Donmez, Z. Aksu, A. Ozturk, T. Kutsal. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry 1999, 34: 885—892
    [47] H. Guha, K. Jayachandran, F. Maurrasse, Kinetics of chromium (Ⅵ) reduction by a type strain Shewanella alga under different growth conditions. Environmental Pollution, 2001, 115: 209—218
    [48] V. K. Gupta, A. K. Shrivastava, Neeraj Jain. Biosorption of Chromium(Ⅵ) from Aqueous Solutions by Green Algae Spirogyra Species. Water Research, 2001, 35(17): 4079—4085
    [49] Ana Alonso, Patricia Sanchez, José L. Martínez. Stenotrophornonas maltophilia D457R Contains a Cluster of Genes from Gram-Positive Bacteria Involved in Antibiotic and Heavy Metal Resistance. Antimicrobial Agents and Chemotherapy, 2000, 44(7): 1778—1782
    [50] 林稚兰,马国栋,李福荣,舒建芬,常立梅.异常汉逊酵母BDl02金属硫蛋白的分离纯化和鉴定.微生物学报,2001,41(2):216—222
    [51] 林稚兰,黄秀梨,主编.现代微生物学与实验技术,科学出版社,北京,2000:289—319
    [52] Simon V. Avery, Shareeka L. Smith, A. Mohamad Ghazi, Michael J. Hoptroff. Stimulation of Strontium Accumulation in Linoleate-Enriched Saccharomyces cerevisiae Is a Result of Reduced Sr~(2+) Efflux. Applied and Environmental Microbiology, 1999, 65(3):1191—1197
    
    
    [53] Scott S. Crupper, Veronica Worrell, George C. Stewart, John J. Iandolo. Cloning and Expression of cadD, a New Cadmium Resistance Gene of Staphylococcus aureus. Journal of Bacteriology, 1999, 181(13): 4071—4075
    [54] Seth A. Kareus, Colleen Kelley, Heidi S. Walton, Peter R. Sinclair. Release of Cr(Ⅲ) from Cr(Ⅲ) picolinate upon metabolic activation. Journal of Hazardous Materials, 2001, B84: 163—174
    [55] 魏景超.真菌鉴定手册.上海:上海科学技术出版社,1979
    [56] 邱郁春.水污染鱼类毒性实验方法.中国环境科学出版社,北京,1992:50—62
    [57] 周永欣,章宗涉.水生生物毒性试验方法.农业出版社,北京,1989:75—106,192—210
    [58] Chong Yoon Rha, Seong Keun Kang, Chang Eun Kim. Investigation of the stability of hardened slag paste for the stabilization/solidification of wastes containing heavy metal ions. Joumal of Hazardous Materials, 2000, B73:255—267
    [59] Charles Holbert, JoAnn S.Lighty. Trace metals behavior during the thermal treatment of paper-mill sludge. Waste Management, 1998, 18:423—431
    [60] Frances M.G.Pearl, David L., James E.Bray. Assigning genomic sequences to CATH. Nucleic Acids Research, 2000, 28(1): 277-282
    [61] 王建华,赵学慧.螯合剂对原生质体融合的影响.生物工程学报,1998,14(1):112—115
    [62] Julie G, Michael S. A Novel Selenite- and Tellurite-Inducible Gene in Escherichia coli. Applied and Environmental Microbiology, 2000, 66 (11): 4972—4978
    [63] George J. Brewer. Copper Control as an Antiangiogenic Anticancer Therapy: Lessons from Treating Wilson's Disease. Experimental Biology and Medicine, 2001, 226:665—673
    [64] Mark D, Brje L.Potential Role of Thiobacillus caldus in Arsenopyrite Bioleaching. Applied and Environmental Microbiology, 1999, 65 (1): 36—40
    [65] Frank C. Protein-Mediated. Adhesion of the Dissimilatory Fe(Ⅲ)-Reducing Bacterium Shewanella alga BrY to Hydrous Ferric Oxide. Applied and Environmental Microbiology, 1999, 65 (11): 5017—5022

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700