紫色达利菊提取缩合单宁对大肠杆菌和瘤胃氮代谢以及瘤胃微生物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫色达利菊(Petalostemun purpureum)是一种适应性极强,适口性较好,并广泛分布于北美草原上的一种豆科植物。紫色达利菊含有较高的缩合单宁并具有极强的抗致病性大肠杆菌的能力。但关于其缩合单宁对大肠杆菌的抑菌活性及可能机制,是否具有保护植物蛋白过瘤胃的作用以及对瘤胃微生物的影响并不清楚。因此,设计三个实验来研究紫色达利菊缩合单宁对反刍动物的影响:
     实验一、紫色达利菊所含缩合单宁对肉牛后肠大肠杆菌抑制能力及其作用机理。
     在致病性大肠杆菌O157:H7的体外培养基中加入十一种不同植物缩合单宁(添加量: 400μg/ml),结果发现仅紫色达利菊所含缩合单宁表现出较强的抗致病性大肠杆菌O157:H7生物活性。同时,在厌氧条件下添加200μg/ml该缩合单宁表现出对大肠杆菌(ATCC 25922)的抑制作用。穿透电子显微镜观察发现大肠杆菌细胞膜在缩合单宁的作用下增厚,扫描电子显微镜观察发现当添加较高浓度缩合单宁时,大肠杆菌菌体表面被一层膜外物质包裹。大肠杆菌细胞膜的通透性在200μg/ml缩合单宁添加量下显著降低。为进一步确定紫色达利菊所含缩合单宁对反刍动物后肠消化及后肠大肠杆菌的影响,分别在2009和2010年进行放牧试验,试验采用随机区组设计,处理为对照组(不含紫色达利菊以雀麦草为主的草地),试验组Ⅰ(以紫色达利菊与雀麦草为主的草地)和试验组Ⅱ(以紫色达利菊与针茅草和雀麦草混合的草地)。于2009和2010年夏季和秋季在试验地采集植物样品和粪样,用于分析植物和粪样的化学成分及粪样中的大肠杆菌数量。缩合单宁含量在试验组Ⅰ和Ⅱ显著高于对照组(P<0.01)。试验组Ⅰ和Ⅱ动物粪样中大肠杆菌的数量在2009年秋季和2010年夏秋季放牧中显著低于对照组(P<0.05)。秋季放牧中,对照组粪样pH、总氮、有机物消化率、氨态氮和挥发性脂肪酸显著高于试验组Ⅰ和Ⅱ而乙酸/丙酸低于对照组(P<0.05)。夏季放牧动物粪样各指标差异不显著。因此,紫色达利菊所含缩合单宁可能通过改变大肠杆菌细胞膜或与细胞膜相互作用来抑制大肠杆菌的生长,从而减少肉牛粪便中的大肠杆菌数量。
     实验二、紫色达利菊及其与禾本科和豆科牧草混合氮代谢规律的研究。
     为确定紫色达利菊中缩合单宁的分布和体外瘤胃降解率,分别在营养生长期和盛花期采集整株植物,测定叶、茎和花所占的比例以及总酚,可提取单宁、蛋白结合单宁和纤维结合单宁的含量。花中总缩合单宁的含量显著高于茎和叶的含量(P<0.05)。营养生长期叶中的总酚和总缩合单宁都高于盛花期。紫色达利菊不同部位可提取单宁的量远高于蛋白结合单宁和纤维结合单宁。盛花期整株植物缩合单宁含量高于营养生长期(P<0.001)。体外试验采用2 x 2析因试验设计,将不同草地采集的两期植物放入三套DAISYII发酵器中,同时每个发酵器中的两个发酵罐添加聚乙二醇(单宁活性抑制剂),分别在0, 1, 2, 4, 8, 12, 24, 48和72 h取样。营养生长期具有较高的真干物质和真氮消化率,同时干物质和氮素中潜在降解部分(b)均高于盛花期。营养生长期干物质中快速降解部分(a)要高于盛花期(P<0.001),而氮素中的快速降解部分却低于盛花期(P<0.01)。添加聚乙二醇后,营养生长期干物质的慢速降解部分速率常数(C)增加(P<0.01)但对盛花期无影响。添加聚乙二醇增加盛花期真氮素潜在降解部分,对营养生长期无影响。两期紫色达利菊体外12h残留饲料δ~(15)N的含量在添加聚乙二醇后显著增加(P<0.01)。这表明紫色达利菊在营养生长期拥有较高的瘤胃消化率而在盛花期其缩合单宁对氮素的消化率有一定影响,同时两期植物所含缩合单宁均在消化过程中对微生物的附着有一定影响。但总的来看,高缩合单宁对紫色达利菊真干物质和真氮的消化率影响不大。
     为确认紫色达利菊与冷季禾本科植物混合对瘤胃发酵和菌体蛋白合成的影响。测定了紫色达利菊与混合冷季植物样品(冷季植物以雀麦草为主),并用缩合单宁含量在7, 14, 29和42 g /kg DM的样品进行体外发酵试验。试验采用4×2析因试验设计,重复两次。δ~(15)N硫酸氨用来测定菌体蛋白合成效率。添加聚乙二醇并未对最大产气量以及延迟期产生影响,但能够增加产气率(P<0.01)。随着紫色达利菊含量的增加,12和48h体外真干物质消化率均有所提高(P<0.01)但菌体蛋白产量在12h有所下降(P<0.01)。添加聚乙二醇增加12h真干物质消化率(P<0.01)。随着缩合单宁含量的增加,添加聚乙二醇增加氨态氮和支链挥发性脂肪酸的含量并降低菌体蛋白的合成效率(P<0.01)。这表明冷季植物中混合紫色达利菊能够增加瘤胃降解率。含量为4.2%的缩合单宁对干物质降解率无影响但能增加菌体蛋白合成效率。
     为了确定紫色达利菊所含缩合单宁对保护豆科植物蛋白不被微生物降解成氨态氮的能力,同时确定对甲烷气体产量以及瘤胃微生物的影响。试验采用5×2析因试验设计,用含δ~(15)N标记的苜蓿与紫色达利菊组成五个比例:100:0、75: 0、50:50、25: 75和0:100,同时添加或不添加聚乙二醇,重复三次。利用Ammoniaδ~(15)N diffusion技术和Real-time PCR测定苜蓿蛋白向氨态氮中的转化效率和微生物的菌体拷贝数。随着紫色达利菊比例的增加,添加聚乙二醇能够显著提高氨态氮和氨态氮中δ~(15)N含量以及苜蓿δ~(15)N向氨态氮的转化效率(P<0.01)。添加聚乙二醇对48h内消耗单位干物质的甲烷气体产量无影响。12h时,三种纤维降解菌,产琥珀酸丝状杆菌,瘤胃白球菌和瘤胃黄球菌随着紫色达利菊的比例增加而降低但差异不显著。非纤维降解菌中甲烷菌,瘤胃链球菌和嗜淀粉瘤胃杆菌的拷贝数同样随着紫色达利菊的比例增加而降低但差异不显著。这表明,缩合单宁能够减少瘤胃发酵氨态氮的浓度,同时减少混合苜蓿氮向氨态氮的转化,从而保护苜蓿中的氮不以氨态氮的形式损失。
     实验三、缩合单宁对主要瘤胃微生物的影响以及微生物对缩合单宁的适应性
     微生物纯培养试验选用3种纤维降解菌并在含缩合单宁0和25μg/ml培养液中以纤维素为底物,在试验开始前适应21天,然后在含缩合单宁0、75、150、300和450μg/ml中进行滤纸消化试验。同时选用四种非纤维降解菌在含缩合单宁0和50μg/ml中培养并适应15天,然后添加0、100、200、400和600μg/ml缩合单宁并测定生长曲线。当缩合单宁含量为75μg/ml时,降低产琥珀酸丝状杆菌,瘤胃白球菌和瘤胃黄球菌的滤纸消化率(P <0.01)。扫描电镜观察结果发现当缩合单宁含量高于150μg/ml时,纤维降解菌停止生长,纤维表面出现大量絮状物质。而非纤维降解菌中,瘤胃普雷沃氏菌,嗜淀粉瘤胃杆菌以及瘤胃链球菌对缩合单宁比较敏感,在含量为200μg/ml即显著改变其生长曲线,而反刍动物半月形单胞菌在缩合单宁含量为600μg/ml仍能较好的生长。试验选用三种纤维降解菌和四种非纤维降解菌均未表现出对缩合单宁的适应性。因此,高剂量缩合单宁对瘤胃微生物有抑制作用并影响纤维降解菌的附着。
     综上所述,紫色达利菊是一种高缩合单宁、高蛋白的豆科植物,其缩合单宁能够通过与细胞膜相互作用抑制大肠杆菌,并能够降低反刍动物后肠大肠杆菌的数量。同时,紫色达利菊与其它冷季草地植物混合后能够提高真干物质消化率。紫色达利菊与苜蓿混合时,其所含缩合单宁具有保护苜蓿蛋白不被瘤胃微生物降解成氨态氮的能力,但低浓度的缩合单宁就可能造成纤维降解菌的纤维附着能力受抑制。
The native legume Purple prairie clover (PPC, Petalostemon purpureum) is well adapted to the prairie region and is considered an important palatable component of prairie hay. PPC contained high concentration of condensed tannin (CT) that possesses strong antimicrobial activity against Escherichia coli O157:H7. Therefore, PPC could be a valuable diet component for sustainable beef production and food safety. However, there is no information available on the nutritive value of PPC and the effects of PPC tannin on nutrient metabolism of ruminant. The overall objectives of this research included (1) evaluating the in vivo effect of incorporating PPC into mixed forages on the reduction of fecal shedding of E. coli and possible antibiotic mechanism. (2)Determine the effect of condensed tannin on PPC two growth stages rumen nitrogen digestibility and on rumen microbial protein synthetic efficiency by mixed cool season grass. Meanwhile,δ~(15)N alfalfa mixed PPC were used for assess of condensed tannin capacity in reducing nitrogen from alfalfa to ammonia, and (3) rumen bacteria reaction by condensed tannin and adaptation were evaluated by pure culture technique.
     For further understanding the effect of CT on E. coli, In vitro study was conducted to assess the inhibition of Condensed tannins isolated from PPC on E. coli or E. coli O157:H7 and possible mechanism. Tannin-mediated alterations in E. coli cell walls were detected by transmission electron microscopy (TEM), and scanning electron microscopy (SEM) revealed large amounts of extra cell material present on E. coli. The permeability of bacteria membrane was reduced when CT were added at levels of 200μg/ml. Grazing studies were conducted at Swift Current, Saskatchewan during two seasons (summer and fall) in two consecutive years (2009 and 2010) to assess the effect of including PPC in cool season pastures on fecal shedding of E.coli in beef cattle. Twenty five steers were allocated into five paddocks distributed in three treatments. One paddock containing pure brome grass (Check; C), two paddocks (Simple) and two paddocks (Complex). Purple prairie clover was mainly in vegetative/early flowering stage during summer and in later flowering/early seeding stage during fall. Fecal samples were collected from rectum of the cattle by hand grabbing. Fecal samples collected in 2010 were mixed for each animal into a single sample for summer and fall grazing periods and analyzed for organic matter (OM), total N, ammonia-N (NH3-N) and volatile fatty acids (VFA). Check and PPC mixed plants collected from all paddocks were harvested during summer and fall periods for CT analysis. Concentration of CT in PPC mixed pasture was higher (P < 0.01) in fall than in summer. Compared to the Check, counts of E. coli in feces of cattle grazing pasture containing PPC was lower (P < 0.05) in fall for both years, and in summer during 2010. There was no difference in fecal E. coli counts between cattle grazing the simple and complex PPC-containing pastures in 2009 and 2010. Fecal pH, total N, NH3-N, VFA and acetate: propionate ratio (A: P) did not change during summer grazing in 2010. . However, cattle grazing C in fall had higher (P < 0.05) pH, N, NH3-N, VFA, and lower (P < 0.05) A:P than cattle grazing simple and complex pastures containing PPC. Determination of microbial population revealed that total 16S rDNA gene copies were higher in C, but not significant. Amount of 16S rDNA gene copies of Fibrobacter succinogenes, Ruminococcus albus, and Ruminobacter amylophilus in fecal samples from animals grazing C or PPC were low but not different. Other main rumen bacteria species (Ruminococcus flavefaciens, Prevotella bryantii, Streptococcus bovis and Selenomonas ruminantium) were not detectable. These results suggest that inhibitory effects of CT on E. coli are related to shifts in the cell membrane. Incorporation of PPC into forage has potential to reduce the prevalence of fecal E. coli.
     For understanding the chemical changes in PPC at different growth stage. The chemical composition of the whole plant and condensed tannin content from leaf, stem and flower were determined in two stages. Whole plants of PPC were harvested from artificial pastures at Swift Current, SK at vegetative (VEG) and full-flowering/early seeding (FL) stages. Proportions of leaf, stem and flower were determined after freeze drying. Whole plants were analyzed for OM, total N, neutral detergent fibre (NDF) and acid detergent fibre (ADF). Leaf, stem, flower and whole plant were also analyzed for total phenolics, total tannins and condensed tannin (CT). Condensed tannins were detected in all tissues (i.e. leaf, stem and flower) of the plant, with flower containing the highest (198-213 g/kg DM) and stem the lowest (17-18 g/kg DM) contents. Concentrations of total phenolics, total extractable tannins and total CT (extractable and protein- and fibre- bound) in leaf were higher (P<0.01) in VEG than FL stage, but similar in stem and flowers at both growth stages.
     The following three in vitro were conducted to evaluate the effect of condensed tannin on rumen fermentation and nitrogen digestion by mixed cool season grass andδ~(15)N lablled alfalfa. The first In vitro experiment was conducted to assess the effects of condensed tannins (CT) on the ruminal degradability of PPC by using three DAISYII fermentor units. Whole PPC plants were harvested at vegetative (VEG) and full-flowering/early seeding (FL) stages from pastures located at three different sites.δ~(15)N labelled ammonium sulfate was included in the inoculum to assess microbial protein synthesis and feed colonization. Half of the jars in each unit were supplemented with polyethylene glycol (PEG), yielding a 2 x 2 factorial arrangement of treatments in each unit. Plants harvested at VEG stage had higher (P<0.001) TDMD, total nitrogen degradability (TND) and potential degradable fraction (b) of DM and N than those harvested at FL stage. Inclusion of PEG increased (P<0.01) TND and the potentially degradable N fraction of PPC harvested at FL, but not at VEG stage.
     Effect of PPC tannins on ruminal fermentation and ture dry matter disappearance of mixed forages from grazing trial were determined in vitro (48-h batch culture) by incubating mixtures of PPC and cool season grasses containing 7, 14, 29 and 42 g CT/kg DM with mixed rumen microbes.δ~(15)N labelled ammonium sulfate was added to quantify microbial protein (MP) synthesis. Polyethylene glycol (PEG) was included in half of the vials for each mixture yielding a 4 x 2 factorial arrangement of treatments. Substrate, PEG and substrate x PEG interaction had no effect on potential gas production (A) or Lag time. However, rate of gas production was increased (P<0.05) by the inclusion of PEG. As the proportion of PPC increased in the forage mixtures, true dry matter disappearance (TDMD) increased (P < 0.01) at both 12 and 48-h incubation, whereas efficiency of MP synthesis (mg/g truly digested DM) decreased (P<0.01) at 12 but not at 48 of the incubation. Inclusion of PEG increased (P<0.01) TDMD at 12-h but reduced (P<0.01) the efficiency of MP synthesis at 12 and 48h incubation. As the concentration of CT increased, efficacy of PEG treatment in increasing ammonia accumulation and decreasing MP synthesis was increased. The results indicated that incorporation of PPC into cool season grasses improved ruminal digestibility. Condensed tannins in PPC/grasses mixture at concentrations up to 42 g/kg DM had no negative effects on the extent of DM digestibility, but increased MP synthesis.
     Effect of PPC on retard of alfalfa protein transferred into ammonia, methane production and rumen bacteria were determined in vitro (48-h batch culture) by incubating mixtures of PPC andδ~(15)N labeled alfalfa at different ratios (100:0, 75: 0, 50:50, 25: 75, and 0:100). Half of the vials were supplemented with polyethylene glycol (PEG), yielding a 5 x 2 factorial arrangement of treatments in each batch culture. The experiment was conducted at three time and incubations were carried out at 6, 12, 24 and 48h. Determination of alfalfa protein conversion to ammonia and changes in main ruminal bacteria were detected usingδ~(15)N diffusion and real-time polymerase chain reaction techniques, respectively. Inclusion of PEG did not affect methane produced per unit of digested DM (DDM). As the tannin concentration increased, addition of PEG increased (P<0.01) ammonia and NH3-15N accumulation, and the amount of 15N from alfalfa converted into ammonia. Bacterial gene copies of cellulolytic (Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus), non-cellulolytic (Streptococcus bovis and Ruminobacter amylophilus) bacteria and Archae were reduced as PPC ratio increased, but these changes were statistically similar. Overall, the alfalfa protein can be protected by CT from PPC to convert into ammonia, but the CT also has a negative effect on ruminal bacteria.
     Our previous study showed PPC contained high concentration of tannins. However, the ecological role of PPC in the mixed forage pasture and the effects of PPC tannins on the nutritive value of mixed forages have not been assessed. Thus, two of in vitro experiments were conducted to assess the effect of CT from PPC on ruminal fermentation, degradability and bacteria population.
     A study using pure cultures of main ruminal bacteria was conducted to assess if ruminal bacteria were able to overcome the negative effects of isolated CT from PPC. Three cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus) and four non-cellulolytic bacteria (Prevotella bryantii, Ruminobacter amylophilus, Streptococcus bovis, and Selenomonas ruminantium) were used. Ruminal bacteria was initially cultured in a media containing 0 or 25μg CT/ml (cellulolytic) during 21-d and 0 or 50μg CT/ml (non-cellulolytic) during 15-d doing transferences every three days. At these levels of CT, cellulolytic and non-cellulolytic bacteria were able to overcome the potential negative effects of tannins. To observe the persistence of this effect, cellulolytic bacteria were then cultured for 4-d on Whatman N°1 filter paper in medium containing 0, 75, 150, 300 or 450μg CT/ml, whereas non-cellulolutic bacteria were cultured for 24-h in ruminal fluid medium containing 0, 100, 200, 400 or 600μg CT/ml. The growth curve showed that among non-cellulolytic bacteria, P. bryantii, R. amylophilus, and S. bovis were more sensitive to CT than S. ruminantium, which grew well up to 600μg CT/ml. The fiber digestion of F. succinogenes, R. flavefaciens, and R. albus was markedly reduced by CT at 75μg CT/ml and little bacteria grow was observed at CT concentrations up to 150μg/ml (P <0.01). Scanning electron micrographs indicated that the attachment of cellulolytic bacteria was depressed by CT and no adaptation was found in this group.
     Overall, Purple prairie clover could be characterized as good quality forage with higher N content and uique bioactive compounds and also has the potential to alter membrane of E coli and reduce fecal shedding of E. coli in cattle. Condensed tannins in PPC/grasses mixture at concentrations up to 42 g/kg DM had no negative effects on the extent of DM digestibility, but increased MP synthesis. The CT can protect alfalfa nitrogen from ruminal degradation into ammonia but, the attachment of cellulolytic bacteria can be affected by CT even at very low concentration. The cellulotic bacteria were very sensitive to CT from PPC and their attachment can be affected.
引文
丁学智,龙瑞军,阳伏林. 2007.体外产气法评定天祝几种高山植物的抗营养因子及饲用潜力[J].草业学报. 16(1): 24-29
    郭彦军,张德罡,龙瑞军. 2004.高山灌木和牧草单宁含量季节变化动态研究[J].四川草原. (6):3-5
    李晓鹏, 2009.缩合单宁对体外发酵特性的影响.硕士论文, pp. 37-38.甘肃农业大学
    文亦芾,曹国军,樊江文. 2009. 6种豆科饲用灌木中酚类物质动态变化和体外消化率的关系[J].草业学报. 18(1):32-38
    张晓庆,李勇,李发弟等. 2009.红豆草单宁含量对绵羊养分消化率及氮利用的影响[J]. 畜牧兽医学报[J]. 40:356-362
    张晓庆,郝正里,李发弟,郑琛,金艳梅,吴秋珏,李勇. 2010.红豆草缩合单宁对绵羊瘤胃代谢及饲粮尼龙袋降解率的影响[J].草业学报. 19:166-172
    Adachi H., Konishi K., Toriizuka K., Horikoshi I. 1987. The in vitro effects of tannic acid on rat liver mitochondrial respiration and oxidative phosphorylation[J]. Chem. Pharm. Bull. 35:1176-1182
    Aerts R.J., McNabb W.C., Molan A., Brand A., Peters J.S., Barry T.N. 1999. Condensed tannins from Lotus corniculatus and lotus pedunculatus effect the degradation of ribulose 1,5-bisphosphate carboxylase (Rubisco) protein in the rumen differently[J]. J Sci Food Agric. 79:79-85
    Allison M.J., Bryant M.P. 1963. Biosynthesis of branched-chain fatty acids by rumen bacteria. Arch. Biochem. Biophys[J]. 101:269
    Ammar H., López S., González J.S. Ranilla M.J. 2004. Seasonal variations in the chemical composition and in vitro digestibility of some Spanish leguminous shrub species[J]. Anim. Feed Sci Tech. 115:327-340
    AOAC. 1990. Official Methods of Analysis, 15th Edition. Association of Official Analytical Chemists[J]. Arlington, Virginia, USA
    Asquith T.N., Butler L.G. 1986. Interactions of condensed tannins with selected proteins[J]. Phytochemistry 25:1591-1593
    Balogun R.O., Jones R.J., Holmes J.H.G. 1998. Digestibility of some tropical browse species varying in tannin content[J]. Anim Feed Sci Tech. 76:77-78
    Barrau E., Fabre N., Fouraste I., Hoste H. 2005. Effect of bioactive compounds from Sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides[J]. Parasitology. 131:531-538
    Barahona R., Lascano C.E., Narvaez N., Owen E., Morris P., Theodorou M.K. 2003. In vitro degradability of mature and immature leaves of tropical forage legumes differing in condensed tannin and non-starch polysaccharide content and composition[J]. J. Sci Food Agric 83:1256-1266.
    Bartiaux-thill N., Robert O. 1986. The indirect estimation of the digestibility in cattle of herbage from Belgian permanent pasture[J]. Grass Forage Sci. 41:269-272
    Barry T.N., Manley T.R. 1986. Interrelationships between the concentrations of total condensed tannin, free condensed tannin and lignin in lotus sp. and other possible consequences inruminant nutrition[J]. J. Sci.Food Agric. 37:248-254
    Barry T.N., Forss D.A. 1983. The condensed tannin content of vegetative Lotus pedunculatus for sheep. 2. Qquantitative digestion of carbohydrate and proteins[J]. Br. J. Nutri. 51:493-504
    Barry T.N., McNabb W.C. 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants[J]. Brit J Nutr. 81:263-272
    Bell T.A.M, Etchells J.L. Singleton J.A., Smart Jr W.W.G. 1965. Inhibition of pectinolytic and cellulolytic enzymes in cucumber fermentation by sericea[J]. J. Food Sci. 30, 233-239
    Bell T.A., John L., Smart W.W.G. 1965. Pectinase and cellulose enzyme inhibitor from sericea and certain other plants[J]. Botanical Gazette. 126:40-45
    Bemingham E.N., Hutchinson K.J., Revell D.K., Brookes L.M., McNabb W.C. 2001. The effect of condensed tannins in sainfoin (Onobrychi viciifolia) and sulla (Hedysarum coronarium) on the digestion of amino acids in sheep[J]. Proc. N.Z. Sco. Anim. Prod. 61:116-119
    Benoit R.E., Starkey R.L. 1968. Enzyme inactivation as a factor in the inhibition of decomposition of organic matter by tannins[J]. Soil Sci. 1055:203-208
    Berard N.C., Holley R.A., McAllister T.A., Ominski H.O., Wittenberg K.M., Bouchard K.S., Bouchard J.J., Krause D.O. 2009. Potential to reduce Escherichia coli Shedding in Cattle Feces by Using Sainfoin (Onobrychis viciifolia) Forage, tested in vitro and in vivo[J]. Appl. Environ. Microbol. 75:1074-1079
    Biolo G., Wolfe R.R. 1993. Insulin action on protein metabolism. In: Ferranini, E. (ed), Bailliere’s Clinical Endocrinology andMetabolism. Bailliere Tindall, London, UK, pp. 989-1005
    Blummel M., Steingass H., Becker K., Soller H. 1993. Production of SCFA, CO2, CH4 and microbial cells in vitro. Proceedings of the Society of Nutrition Physiology. 1:9
    Brooker J.D., O’Donovan L.A, Skene I., Sellick G., Clarke K., Blackall L., Muslera P. 1994. Streptococcus caprinus sp. Nov, atannin-resistant ruminal bacterium from feral goats[J]. Lett Appl Microbiol. 18:313-318
    Brooker J.D., O’Donovan L.A, Skene I., Sellick G. 2000. Mechanisms of tannin resistance and detoxification in the rumen. In: Brooker J.D. (ed.), Tannins in Liverstock and Human Nutrition. ACIAR Proceedings No.92, pp. 117-122
    Brooks P.D., Stark J.M., McInteer B.B., Preston T. 1989. Diffusion method to prepare soil extracts for automated nitrogen-15 analysis[J]. Soil Soc. Am. J. 53:1707-1711
    Brown J.C. 1963. Interactions involving nutrient elements[J]. Annual Review of Plant Physiology. 14: 93-106
    Brownlee H.E., McEuen A.R., Hedger J., Scott I.M. 1990. Antifugal effects of cocoa tannin on the witches’broom pathogen Crinipellis perniciosa[J]. Physiol. Mol. Plant Pathol. 3:39-48
    Bullen L.L., Rogers H.J., Leigh L. 1972. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants[J]. British medical journal. 1:69-75
    Butler L.G. 1988. Effects of condensed tannin on animal nutrition, p. 553. In Hemingway R.W., Karchesy J.J., (ed.), Chemistry and significance of condensed tannins. Plenum Press, New York, N.Y
    Cabiddu A., Decandia M., Sitzia M., Molle G. 2000. A note on the chemical composition and tannin content of some Mediterranean shrubs browsed by Sarda goats. In: Ledin I., Morand-Fehr P., (eds.), Sheep and Goat Nutrition: Intake, Digestion, Quality of products and Rangelands, Cashiers Options Mediterraneennes. 52, 175-178
    Carron T.R., Morris P., Evans T.E., Robbins M.P. 1992. Condensed tanni levels in different tissures and different developmental stages of transformaed and non-transformed Lotus Corniculatus[J]. Lotus Newsletter 23:49-52
    Caygill J.C., Mueller-Harvey I., Secondary Plant Products- Antinutritional and Beneficial Actions in Animal Feeding. Nottingham University Press, Nottingham
    Charlton A.J., Baxter N.J., Khan M.L., Moir A.J.G., Haslam E., Davies A.P. 2002. Polyphenol/peptide binding and precipitation[J]. J Agric Food Chem. 50:1593-1601
    Chiquette J., Cheng K.J., Costerton J.W Milligan L.P. 1988. Effect of tannins on the digestibility of two iso-synthetic strains of birds foot trefoil (Lotus corniculatus L.) using in vitro and in sacco techniques[J]. Can J Anim Sci. 34:465-468
    Cotta M.A., Russell J.B. 1997. Digestion of nitrogen in the rumen: a model for metabolism of nitrogen in gastrointestinal environments. In; Mackie R.I., White B.A. (Eds.), Gastrointestinal Microbiology, Vol.1. Chapman &Hall, New York, pp. 380-423
    Decruyenaere V., Remond D., Zimmer N., Poncet C., Jebri A., Thewis A. 1996. Effect des tannins de chataignier sur la digestion in sacco et in vivo des matées chez les ruminanats[J]. Renc Rech Rumin. 3:93-96
    Dixon R.A., Sumner L.W. 2003. Legume natural products: understanding and manipulating complex pathways for human and animal health[J]. Plant Physiol. 131:878-885
    Douglas G.B., Stienzen M., Waghorn G.C., Foot A.G. 1999. Effect of condensed tannins in birdsfoot trefoil (Lotus corniculatus) and sulla (Hedysarum coronarium) on body weight, carcass fat depth, and wool growth of lambs in New Zealand[J]. N.Z. J. Agric. Res. 42:55-64
    Downing J.A., Scaramuzzi R.J. 1991. Nutrient effects on ovulation rate, ovarian function and the secretion of gonadotrophic and metabolic hormones[J]. J.Rep. Fert. 43:209-227
    Downing J.A., Joss J., Scaramuzzi R.J. 1995. Amixture of the branched chain amino acids leucine, isoleucine and valine increases ovulation rate in ewes when infused during the late luteal phase of the oestrus cycle: and effect that may be mediated by insulin[J]. J. Endocrinol. 145:315-323
    Drasar B.S. 1974. Some factors associated with geographical variations in the intestinal microflora. In: The normal microbial flora of man. (eds.), Academic Press London.pp. 187-196.
    Drasar B.S., Barrow P.A. 1985. Intestinal Microbiology. In : (eds), Amer. Soc. Microbiol. Press, Washington, DC. pp. 19-40
    Driedger A., Hatfield EF. 1972. Influence of tannins on the nutritive value of soybean meal for ruminants[J]. J Anim Sci. 34:463-468
    Dube J.S., Ndlovu L.R. 1995. Feed intake, chemical composition of faeces and nitrogen retention in goats consuming single browse species or browse mixtures[J]. Zimbabwe J Agric Res. 33:133-141
    Duncan C.J., Bowler K., Davison T.F. 1970. The effect of tannic acid on the phosphorylation and ATPase activity of mitochondria form blowfly flight muscle[J]. Biochemical Pharmacology. 19:2453-3460
    Faure M., Glomot F., Papet I. 2001. Branched-chain amino acid amino transferase activity decreases during development in skeletal muscles of sheep[J]. J. Nutr. 131:1528-1534
    Ferreira D., Bekker R. 1996. Oligomeric Proanthocyanidins: naturally occurring O-heterocycles[J]. Nat Prod Rep 13:411-433
    Fish B.C., Thompson L.U.J. 1991. Lectin–tannin interactions and their influence on pancreatic amylase activity and starch digestibility[J]. J. Agric. Food Chem. 39:727–731
    Frutos P., Hervás G., Giráldez F.J., Mantecón A.R. 2002. Condensed tannin content of several shrub species from a mountain area in northern Spain, and its relationship to various indicators of nutritive value[J]. Anim Feed Sci Tech 95:215-226
    Frutos P., Hervás G., Giráldez F.J., Mantecón A.R. 2004. An in vitro study on the ability of polyethylene glycol to inhibit the effect of quebracho tannins and tannic acid on rumen fermentation in sheep, goats, cows, and deer[J]. Aust J Agric Res. 55:1125-1132
    Foo L.y., Jones W.T., Porter L.J.,Willims V. N. 1982. Proanthocyanidin polymers of fodder legumes[J]. Phytochemistry. 21:933-935
    Foo L.Y., Lu Y, McNabb W.C., Waghorn G.C., Ulyatt M.J. 1997. Proanthocyanidins from Lotus Pedunculatus[J]. Phytochemistry. 45:1689-1696.
    Foo L.Y., Newman R., Waghorn G.C., McNabb W.C., Ulyatt M.J. 1996. The proanthocyanidins of Lotus corniculatus[J]. Phytochemistry. 41:617-624
    Foo L.Y., Yingrong L., Howell A.B., Vorsa N. 2000. A-type proamthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbricated Escherichia coli[J]. J. Nat. Prod. 63:1225-1228
    Freeland W.J., Calcott P.H., Anderson L.R. 1985. Tannins and saponins: interaction in herbivore diets[J]. Biochem. Syst. Ecol.13, 189-193
    Geissman T.A. 1963. Flavonoid compounds, tannins, lignins and related compounds, 265. In Florkin M., Stotz E.H., (ed.), Pyrrole pigments, isoprenoid compounds and phenolic plant constituents, vol. 9. Elservier, New York, NY
    Getachew G., Makkar H.P.S., Becker K. 2000. Tannins in tropical browses: effects on in vitro microbial fermentation and microbial protein synthesis in media containing different amounts ofnitrogen[J]. J. Agric. Food Chem. 48:3581–3588
    Giner-Chávez B.I. 1996 Condensed tannins in tropical forages. Doctoral Thesis. Cornell University. Ithaca, NY, USA
    Garlic P.J., Grant I. 1988. Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin: effect of branched chain amino acids[J].Biol.J. 254:579-584
    Goldstein W.S., Spencer K.C. 1985. Inhibition of cyanogensis by tannins[J]. J. Chem. Ecol. 11: 847-857
    Gong J.G., Webb R. 1996. Control of ovarian follicle development in domestic ruminants: it manipulation to increase ovulation rate and improve reproductive performance[J]. Anim. Breed. Abs. 64:195-204
    Hagerman A.E., Butler L.G. 1991. Tannins and lignins. In: Herbivores: their interactions with secondary plant metabolites, VolⅠ: The chemical participants, (Rosenthal G.A. and Berenbaum M.R., eds), Academic Press, NY(USA), 355-388
    Hagerman A.E., Butler L.G. 1991. The specificity of proanthocyanidin-protein interactions[J]. J.Biol. Chem. 256:4494-4497
    Hagerman A.E., Robbins C.T., Weerasuriya Y., Wilson T.C., McArthur C. 1992. Tannin chemistry inrelation to digestion[J]. J range Manage. 45:57-62
    Hagerman A.E., Rice M.E., Ritchard N.T. 1998. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin (16) (4-8) catechin (procyanidin) [J]. J Agric Food Chem. 46:2590-2595
    Hagerman A.E., Riedl K.M., Jones G.A., Sovik K.N., Ritchard N.T., Hartzfeld P.W. 1998.
    High molecular weight plant polyphenolics (tannins) as biological antioxidants[J]. J Agric Food Chem. 46:1887-1892
    Hajime Ikigai., Taiji Nakae., Yukihiko Hara., Tadakatsu Shimamura. 1993. Bactericidal catechins damage the lipid bilayer. Biochimica[J]. Biophysica Acta. 1147:132-136
    Hamilton W.A. 1971. In Hugo W.B., (ed). Inhibition and destruction of the Microbial cell, Academic Press, London, 77
    Harborne j.b. 1999.An overview of antinutritional factors in higher plants.In: Secondary plants products. Antinutritional and beneficial actions in animal feeding (Caygill J.C. and Mueller-Harvey I., eds.).Nottingham Univ Press, UK, 7-16
    Harris S.L., Clark A.D., Laboyrie P.J. 1998. Birdsfoot trefoil-an alternative legume for New Zealand dairy pastures. Proc. N.Z. Grassland Soc. 60:99-103
    Harris C.M., Livingstone S.E., 1964. In: Dwyer F.P., Mellor D.P., (ed.), Chelating Agents and Metals Chelates, Academic Press, New York
    Haslam E. 1996. Natural polyphenols (vegetable tannins) as drugs: possible modes of action[J]. J.Nat. Prod. 59:205-215
    Hedqvist H., Mueller-Harvey I., Reed J.D., Krueger C.G., Murphy M. 2000.Characterisation of tannins and in vitro protein digestibility of several Lotus corniculatus varieties. Anim Feed SciTech. 87:41-56
    Henis Y., Tagari H., Volcani R. 1964. Effect of water extracts of carob pods, tannic acid, and their derivatives on the morphology and growth of microorganisms[J]. Appl Microbiol. 1964 12:204-209
    Hess H.D., Monsalve L.M., Lascano C.E., Carulla J.E., Díaz T.E., Kreuzer M. 2003. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis[J]. Aust.J.Agric .Res. 54:703-713
    Horigome T., Kumar R., Okamoto K. 1988. Effects of condensed tannins prepared from leaves of fodder plants on digestive enzymes in vitro and in the intestine of rats[J]. Br J Nutr. 60:275-285
    Hoshino N., Kimura T., Hayakawa F.m, Yamaji A., Ando T. 2001. Bacterial activity of catechin-copper (II) complexes against Staphylococcus aureus compared with Escherichia coli Letter[J]. Appl. Microbiol. 31:213-217
    Hoskin S.O. 1998. Internal parasitism and growth of farmed deer fed different forage species. PhD Thesis, Massey University, Palmerston North, New Zealand
    Hove L., Topps J.H., Sibanda S., Ndlovu L.R. 2001. Nutrient intake and utilisation by goats fed dried leaves of the shrub legumes Acacia angustissima, Calliandra calothyrsus and Leucaena leucocephala as supplements to native pasture hay[J]. Anim Feed Sci Tech. 91:95-106
    Hristov A.N., Huhtanen P., Rode L.M., Acharya S.N. McAllister T.A. 2001. Comparison of the ruminal Metabolism of Nitrogen From 15N-Labeled Alfalfa Preserved as Hay or as Silage[J]. J. Dairy Sci. 84:2738-2750
    Hudson S.M., Fenstermacher D., Mahar C. 1988. Role of mitochondrial transamination in branched chain amino acid metabiolism[J]. J. Biol. Chem. 263:3618-3625
    Hufford C.D., Jia Y., Croom E.M., J r., Muhammed I., Okunade A.L., Clark A.M., Rogers R.D., 1993. Antimicrobial compounds from Petalostemum purpureum[J]. J. Nat. Prod. 56:1878-1889
    Iason G.R., Hartley S.E., Duncan A.J. 1993. Chemical composition of Calluna vulgaris (Ericaceae): do responses to fertilizer vary with phonological stage[J]? Biochem Syst Ecol 21:315-321
    Ikigai H., Nakae T., Hara Y., Shimamura T. 1993. Bactericidal catechins damage the lipid bilayer. Biochem[J]. Biophysic Acta. 1147:132-136
    Jackson F.S., McNabb W.C., Barry T.N., Foo Y.L., Peters J.S. 1996. The condensed tannin content of a range of subtropical and temperate forages and the reactivity of condensed tannin with ribulose-1,5-bis-phosphate carboxylase (Rubisco) Protein[J]. J Sci Food Agri. 72:483-492
    Jansman A.J.M. 1995. Tannins in feedstuffs for simple-stomached animals[J]. Nutr res Rev. 6:209-236
    Jones E.T., Mangan J.L. 1977. Complexes of the condensed tannins of sainfoin (Onobrychis viciifolia scop.) with fraction 1 leaf protein and with submaxillary mucoprotein, and their reversal by polyethylene glycol and pH[J]. J. Sci. Food Agric. 28:126-136
    Jones G.A., McAllister T.A., Muir A.D., Cheng I. 1994. Effects of sainfoin (Onobrychisviciifolia Scoop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria[J]. Appl. Environ. Microbol. 60:1374-1378
    Komolong M.K., Barber D.G., McNeill D.M. 2001. Post-ruminal protein supply and N retention of weaner sheep fed on a basal diet of lucerne hay (Medicago sativa) with increasing levels of quebracho tannins[J]. Anim Feed Sci Tech. 92:59-62
    Kariuki I. 2004. Condensed tannins in tropical legume fodder trees: characterisation, and interaction with rumen microbes, feed, and endogenous protein. PhD thesis, University of Queensland, Brisbane, Australia
    Kaur H., Arora S.P. 1995. Dietary effects on ruminant livestock reproduction with particular reference to protein[J]. Nutr. Res. Rev. 8:121-136
    Khazaal K., Markantonatos X., Nastis A., Orskov E.R. 1993. Changes with maturity in fibre composition and levels of extractable polyphenols in Greek browse: effects on in vitro gas production and in sacco dry matter degradation[J]. J.Sci. Food Agric. 63:237-244
    Konishi K., Adachi H., Kita K., Horikoshi I. 1987. Inhibitory effects of tannicacid on the respiratory chain of Photobacterium phosphoreum[J].Chem. Pharm. Bull. 35:1169-1175
    Kumar R., Singh M. 1984. Tannins: their adverse role in ruminat nutrition[J]. J Agr Food Chem. 32:447-453
    Kume S. 2002. In: Takahashi J., Young B.A., (eds.), Establishment of profitable dairy farming system on control of methane production in Hokkaido Region in greenhouse gases and animal agriculture . Elsevier Science, Obihiro, Japan, pp. 87-94
    Lee J.H., Vanguru M., Kannan G., Moore D.A., Terrill T.H., Kouakou B. 2009. Influence of dietary condensed tannins from sericea lespedeza on bacterial loads in gastrointestinal tracts of meat goats[J]. Livestock Science. 126:314-317
    Less G.L., Hinks C.F., Suttill N.H. 1994 Effect of high temperature on condensed tannin accumulation in leaf tissues of big trefoil[J]. J. Sci Food Agric. 65:415-421
    Li Y.G. 1996. Tanner G and Larkin P, The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in foragelegumes[J]. J Sci Food Agric. 70:89-101
    Loh B., Grant C., Hancock R.E. 1984. Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa[J]. Antimicrob Agents Chem.26:546-551
    Loy A., Lehner A., Lee N., Adamczyk J., Meier H., Ernst J., Schleifer K-H, Wagner M. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulphate-reducing prokaryotes in the environment[J]. Appl Environ Microbiol. 68:5064-5081
    Lowry J.B., McSweeney C.S., Palmer B. 1996. Changing perceptions of the effect of plant phenolics on nutrient supply in the ruminant[J]. Aust J Agric Res. 47:829-842
    Lyr H. 1961. Analytic inhibition studies on some ecto-enzymes of wood-rotting fungi[J]. Enzymologia. 23:231-248
    Makkar H.P.S. 1988. Industrial applications of tannins[J]. Sci. Reporter 25:18-23
    Mangan J.L. 1988. Nutritional effects of tannins in aniaml feeds[J]. Nutr Res Rev. 1:209-231
    Makkar H.P.S. 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds[J]. Small Rumin Res. 49:241-256
    Makkar H.P.S., Dawra R.K., Singh B. 1991. Tannin levels in leaves of some oak species at different stages of maturity[J]. J. Sci Food Agric.54:513-520
    Makkar H.P.S., Blümmel M, Borowy N.K., Becker K. 1993. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods[J]. J. Sci. Food Agric. 61: 161-165
    Makkar H.P.S., Blümmel M., Becker K. 1995a. In vitro effects and interactions of tannins and saponins and fate of tannins in rumen[J]. J. Sci. Food Agric. 69:481-493
    Makkar H.P.S., Singh B., Negi S.S. 1989. Relationship of rumen degradability with biomass accumulation, cell wall constituents and tannin levels in some tree leaves[J]. Anim. Prod. 49: 299-303
    Makkar H.P.S., Becke K., Abel Hj., Pawelzik E. 1997a. Nutrient contents, rumen degradability and antinutritionalfactors in some colour- and white-flowering cultivars of Viciafaba beans[J]. J. Sci. Food Agric. 75:511–520
    Makkar H.P.S., Blümmel M., Becker K. 1998. Potential and limitations of in vitro gas method for studying the effects of plant defensive components on rumen fermentation. In: Proceedings of the Third International Workshop on Antinutritional Factors in Legume Seeds and Rapeseed, July 8–10, Wageningen, The Netherlands
    Makkar H.P.S., Blümmel M., Becker K. 1997b. In vitro rumen apparent and true digestibilities of tannin-rich forages[J]. Anim. Feed Sci. Technol. 67:245-251
    Makkar H.P.S., Blümmel M., Becker K. 1997c. Application ofan in vitro gas method to understand the effects of naturalplant products on availability and partitioning of nutrients. In: Proceedings of the BSAP Occasional Meeting on In Vitro Techniques for Measuring Nutrient Supply to Ruminants, July 8-10, Reading, UK
    Mangan J.L., Bloat in cattle. XI. 1959. The foaming properties of proteins, saponins, and rumen liquor[J]. NZ. J. Agric. Res 2:47-61
    Martin J.S., Martin M.M. 1982. Tannin assays in ecological studies:lack of correlation between phenolics, proanthocyanidins and protein-precipitating consituents in mature foliage of sxi oak species. Oecologia. 51:205-211
    McAllister T.A., Bae H.D., Jones G.A., Cheng K.J. 1994. Microbial attachment and feed digestion in the rumen[J]. J. Anim.Sci. 72:3004-3018
    McAllister T.A., Martinez T., Bae H.D., Muir A.D., Yanke L.J., Jones G.A. 2005. Characterization of condensed tannins purified from legume forages: chromophore production, protein precipitation, and inhibitory effects on cellulosed digestion[J]. J Chem Ecology. 31:2049-2068
    McLeod M.N., 1974. Plant tannins-Their role in forage quality[J]. Nutr Abst Rev. 44:803-812
    McMahon L.R., Mcallister T.A., Berg B.P., Majak W., Acharya S.N., Popp J.D. 2000. A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle[J]. Can J Plant Sci. 80:469-485
    McNabb W.C., Peters J.S., Foo L.Y., Waghorn G.C., Jacson F.S. 1998. Effect of condensed tannin prepared from several forages on the in vitro precipitation of ribulose-1,5-bisphosphate carboxylase (Rubisco) protein and its digestion by trypsin (E.C. 2.4.21.4)and chymotrypsin (E.C.2.4.21.1) [J].J.Sci. Food Agric. 77:201-212
    McNabbW.C., Waghorn G.C., Barry T.N., Shelton I.D. 1993. The effect of condensed tannins in Lotus Pedunculatus on the digestion and metabolism of methionine, cysteine and inorganic sulphur in sheep[J]. Br.J. Nutr. 70:647-661
    McNeill D.M., Osborne N., Komolong M., Nankervis D. 1998. Condensed tannins in the Leucaena genus and their nutritional significance for ruminants. In: Shelton H.M., Gutteridge R.C., Mullin B.F., Bray R.A., (eds.), Leucaena-Adaptation, Quality and Farming Systems. ACIAR Proceedings No.86, pp. 205-214
    McNeill D.M., Komolong M., Gobius N., Barber D. 2000. Influence of dietary condensed tannin on microbial crude protein supply in sheep. In: Brooker J.D. (ed.), Tannins in Livestock and Human Nutrition. ACIAR proceedings No.92, pp.57-61
    McSweeney C.S., Plamer B., Kennedy P.M., Krause D.O. 1998. Effect of Calliandra tannins on rumen microbial function[J]. Proc. Aust. Soc. Anim. Prod.22, 289
    McSweeney C.S., Palmer B., Bunch R., Krause D.O. 1999. Isolation and characterisation of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus[J]. Appl. Environ. Microbiol. 65:3075-3083
    McSweeney C.S., Palmer B., Bunch R., Krause D.O. 1999. Isolation and characterisation of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus[J]. Appl. Environ. Microbiol. 65:3075-3083
    McSweeney C.S., Palmer B., Mcneill D.M., Krause D.O. 2001. Microbial interactions with tannins: nutritional consequences for ruminants[J]. Anim. Feed Sci Tech. 91:83-93
    McWilliam E.L., Barry T.N., López-Villalobos N., Cameron P.N., Kemp P.D. 2004. Effects of willow (Salix) supplementation for 31 and 63d on the reproductive performance of ewes grazing low quality drought pasture during mating[J]. Anim Feed Sci Tech. 119:87-106
    Meagher L.P., Lane G., Sivakumaran S., Tavendale M.H., Fraser K. 2004. Characterization of condensed tannins from Lotus species by thiolytic degradation and electrospray mass spectrometry[J]. Anim Feed Sci Technol. 117:151-163
    Min B.R., McNabb W.C., Barry T.N., Kemp P.D., Waghorn G.C., Mc Donald M.F. 1999. The effect of condensed tannins in Lotus corniculatus upon reproductive efficiency and wool production in sheep during late summer and autumn[J]. J.Agric. Sci. 132:323-334
    Min B.R., Attwood G.T., Barry T.N., McNabb W.C. 2002b. The effect of condensed tanninsfrom lotus corniculatus on the proteolytic activities and growth of rumen bacteria[J]. J. Anim. Sci. 80 (Suppl. 1), 1602
    Min B.R., Attwood G.T., Reilly K., Sun W., Peters J.S., Barry T.N. 2002a. Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep[J]. Can J Microbiol. 48:911-921
    Min B.R., Barry T.N., Attwood G.T., McNabb W.C. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review[J]. Anim Feed Sci Tech. 106:3-19
    Min B.R., McNabb W.C., Barry T.N., Peters J.S. 2000. Solubilization and degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39; Rubisco) protein from white clover (Trifolium repens) and lotus corniculatus by rumen microorganisms and the effect of condensed tannins on these processes[J]. J. Agric Sci. Cam. 134:305-317
    Min B.R., Pinchak W.E., Merkel R., Walker S., Tomita G., Aderson R.C. 2008. Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens[J]. Scientific Research Essay. 3:66-73
    Min B.R., Pinchak W.E., Anderson R.C., Callaway T.R. 2007. Effect of tannins on the in vitro growth of Escherichia coli O157:H7 and in vivo growth of generic Escherichia ecoli excreted from steers[J]. J.Food Prot. 70:543-550
    Misselbrook T.H., Powell J.M., Broderick G.A., Grabber J.H. 2005. Dietary Manipulation in Dairy Cattle : Laboratory Experiments to assess the influence on Ammonia Emissions[J]. J. Dairy Sci. 88:1765-1777
    Mlambo V., Smith T., Owen E., Mould FL., Sikosana J.L.N., Mueller-Harvey I. 2004 Tanniniferous Dichrostachys cinerea fruits do not require detoxification for goat nutrition: in sacco and in vivo evaluations[J]. Livestock Prod Sci. 90:135-144
    Molan A.L., Attwood G.T., Min B.R., McNabb W.C. 2001. The effect of condensed tannins form Lotus pedunculatus and Lotus corniculatus on the growth of proteolytic rumen bacteria in vitro and their possible mode of action[J]. Can. J. Microbiol. 47:626-633
    Molan A.L., Waghorn G.C., Min B.R., McNabb W.C. 2000. The effect of condensed tannins from seven herbages on trichostrongylus colubriformi larval migration in vitro[J]. Folia Parasitologica 47:39-44
    Mole S., Waterman P.G. 1987. Tannicacid and proteolytic enzymes: enzyme inhibition or substrate deprivation[J]? Phytochemistry. 2:99-102
    Mosjidis C.O.H., Peterson C.M., Mosjidis J.A. 1990. Development differentces in the location of polyphenols and condensed tannins in leaves and stems of sericea lespedeza, Lespedeza cuneata. Ann. Bot London. 65: 355-360
    Montossi F., Hodgson J., Morris S.T., Risso D.F. 1996 Effects of condensed tannins on animal performance in lambs grazing Yorkshire fog(Holcus lanatus)and annual ryegrass (Lolium multiflorum) dominant swards. Proc.N.Z. Soc. Anim . Prod. 56:118-121
    Mueller-Harvey I. 1992. Tannins. Their biochemistry and nutritional properties. In: Advances in plant cell biochemistry and biotechnology, Vol.1 (Morrison I.M., ed.). JAI Press Ltd., London (UK), pp.151-217
    Mueller-Harvey I. 2006. Unravelling the conundrum of tannins in animal nutrition and health[J]. J. Sci Food Agri. 86:2010-2037
    Mueller-Harvey I., Reed J.D., Hartley R.D. 1987., Characterization of phenolic compounds, including flavonoids and tannins of 10 Ethiopian browse species by high performance liquid chromatography[J]. J Sci Food Agric. 39:1-14
    Mueller-Harvey I. 1999. Tannins: their nature and biological signifcance. In: Secondary plants products. Antinutritional and beneficial actions in animal feeding (Caygill J.C. and Mueller-Harvey I., eds.). Nottingham Univ Press (UK), PP. 17-70
    Naurato N., Wong P., Lu Y., Wróblewski K., Bennick A. 1999. Interaction of tannin with human salivary histatins[J]. J Agric Food Chem. 47:2229-2234
    Narvaez N., Brosh A., Pittroff W. 2010. Seasonal dynamics of nutritional quality of California chaparral species[J]. Anim Feed Sci Tech. 158:44-56
    Nelson K.E., Pell A.N., Doane P.H., Giner-Chavez B.I., Schofield P. 1997. Chemical and biological assays to evaluate bacterial inhibition by tannins[J]. J Chem Ecol. 23:1175-1194
    Nelson K.E., Thonney M.L., Woolston T.K., Zinder S.H., Pell A.N. 1998. Phenotypic and phylogenetic characterisation of ruminal tannin-tolerant bacteria[J]. Appl. Environ. Microbiol. 64:3824-3830
    Nemoto K., Osawa R., Hirota K., Ono T., Miyake Y. 1995. An investigation of garm-negative tannin-protein degrading bacteria in faecal flora of various mammals[J]. J. Vet.Med. Sci. 57:921-926
    Nicholson R.L., Butler L.G., Asquith T.N. 1986. Glycoproteins from colletotrichum graminicola that Bind Phenols: Implications fro Survival and Virulence of Phytopathogenic Fungi[J]. Phytopathology. 76:1315-1318
    Niderkorn V., Baumont R., LeMorvan A., Macheboeuf D. 2011. Occurrence of associative effects between grasses and legumes in binary mixtures on in vitro rumen fermentation characteristics[J]. J Anim Sci. 89: 1138-1145
    Niezen J.H., Robertson H.A., Waghorn G.C., Charleston W.A.G. 1998. Production, faecal egg counts and worm burdens of ewe lambs which grazed six contrasting forages. Vet. Parasitol. 80: 15-27
    Odenyo A.A., McSweeney C.S., Palmer B., Negassa D., Osuji P.O. 1999. In vitro screening of rumen fluid samples from indigenous African ruminats provides evidence for rumen fluid with superior capacities to digest tannin-rich fodders[J]. Aust. J. Agric. Res. 50:1147-1157
    Osawa R.O. 1990. Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from faeces of koalas[J]. Appl. Environ. Microbiol. 56: 829-831
    Osawa R.O. 1992. Tannin-protein complex-degrading enterobacteria isolated from thealimentary tracts of koalas and a selective medium for their enumeration[J]. Appl. Environ. Microbiol. 58:1754-1759
    Osawa R.O., Walsh T.P. 1993. Metabolism of tannin-protein complex by facultatively anaerobic bacteria isolated from koala faeces[J]. Biodegradation. 4:91-99
    Palmer B., McSweeney C.S. 2000. Tannins in Calliandra calothyrsus:effects of polyethylene glycol (PEG) and evaluation of 19 accessions. In: Brooker J.D. (ed.), Tannins in Livestock and Human Nutrition. ACIAR Proceedings No.92, pp. 36-39
    Papachristou T.G., Papanastis V.P. 1994. Forage value of Mediterranean deciduous woody fodder species and its implication to management of silv opastoral sytems for goats[J]. Agroforest. Syst. 27, 269-282
    Pellegrini A., Thomas U., Bramaz N. 1997. Identification and isolation of bactericidal domain in chicken egg white lysozyme[J]. J Appl Microbiol. 82:372-378
    Perez-Maldonado R.A., Norton B.W. 1996. The effects of condensed tannins from Desmodium intortum and calliandra calothyrsus on protein and carbohydrate digestion in sheep and goat[J]. Br.J.Nutr. 76:515-533
    Perez-Maldonado R.A., Norton B.W., Kerven G.L. 1995. Factors affecting in vitro formation of tannin-protein complexs[J]. J.Sci.Food Agric. 69:291-298
    Perrissoud D., Maignan M.F., Anderset G.. 1981. Int. Cong. Symp. Ser-R. Soc. Med. 47:21-25
    Poppi D.P., MacRae J.C., Brewer A., Coop R.L., 1986. Nitrogen Transactions in the digestive tract of lambs exposed to the intestinalparasite Trichostrongylus colubriformis[J]. British J. Nutr. 55:593-602
    Poppi D.P., Sykes A.R., Dynes R.A. 1990. The effect of endoparasitism on host nutrition-the implications for nutrient manipulation. Proc. New Zealand Soc. Anim. Prod., 50: 237-243
    Perevolotsky A. 1994. Tannins in Mediterranean woodlands species: lack of response to browsing and thinning[J]. Oikos 71:333-340
    Puupponen-Pimia R., Nohynek L., Alakomi H.L., Oksamn-Caldentey K.M. 2004. Bioactive berry compounds- novel tools against human pathogens[J]. Appl. Microbiol. Biotechnol. 67:8-18
    Ray H., Yu M., Auser P., Blahut-beatty L., Mckersie B., Bowley S. 2003. Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc[J]. Plant Physiol. 132: 1448-1463
    Reed J.D., Horvath P.J., Allen M.S., and Van Soest P.J. 1985. Gravimetric determination of soluble phenolics including tannins from leaves by precipitation with trivalent ytterbium[J]. J Sci Food Agric. 36:255-261
    Reed J.D. 1995. Nutritional toxicology of tannins and related polyphenols in forage legumes[J]. J Anim Sci. 73:1516-1528
    Reis P.J. 1979. Effects of amino acids on the growth and properties of wool. In: Black J.L., Reis J. (eds.), Physiological and Environmental Limitations to Wool Growth. University of New England Publishing Unit, Armidale, New South Wales,pp. 223-242
    Rhoades D.F. 1979 Evolution of plant chemical defence against herbivores. In: Herbivores: their interactions with secondary plant metabolites (Rosenthal G.A. and Janzen D.H., eds.). Academic Press, NY, USA, pp.3-54
    Robertson H.A., Niezen J.H., Waghorn G.C., Charleston W.A.G., Jinlong M. 1995. The effect of six herbages on live weight gain, wool growth and faecal egg count of parasitized ewe lambs. Proc. New Zealand Soc. Anim. Prod. 55:99-201
    Rubanza C.D.K., Shem M.N., Otsyina R., Nishino N., Ichinohe T., Fujihara T. 2003. Content of phenolics and tannins in leaves and pods of some Acacia and dichrostachys species and effects on in vitro digestibility[J]. J. Anim Feed Sci. 12:645-663
    Salawu M.B., Acamovic T., Stewart C.S., Hovell F.D. McKay D.B. 1997. Assessment of the nutritive value of Calliandra calothyrus: in sacco degradation and in vitro gas production in the presence of Quebracho tannins with or without Browse plus[J]. Anim Feed Sci Tech. 69:219-232
    Santos-Buelga C., Scalbert A. 2000. Proanthocyanidins and tannin-like compounds- nature, occurrence, dietary intake and effects on nutrition and health[J]. J Sci Food Agric. 80: 1094-1117.
    SAS Institute Inc. 2008. SAS OnlineDoc? 9.2. Cary, NC: SAS Institute Inc. Scalbert A. 1991. Antimicrobial properties of tannins[J]. Phytochemistry. 30:3875-3883
    Schofield P., Mbugua D.M.,Pell A.N. 2001. Analysis of condensed tannins: a review[J]. Animal feed Sci Tech. 91:21-40
    Schultes J.C. 1988. Tannin-insect interactions,p. 553. In Thomson W.W.R., (ed.),Chemistry and significance of condensed tannins Plenum Press, New York, N.Y
    Schultes R.E. 1978. The Kingdom of plants, p. 208. In Thomson W.A.R., (ed.), Medicines from the Earth. McGraw–Hill Book Co., New York, N.Y
    Scotland S.M., Willshaw G.A., Smith H.R., Rahn K. 2000. Prevalence and characteristics of shiga toxin producing Escherichia coli in beef cattle slaughtered on Prince Edward Island[J]. J. Food Prot. 63:1583-1586
    Serafini M., Ghiselli A., Ferro-Luzzi A. 1994. Red wine, tea and anti-oxidants[J]. Lancet. 344: 626
    Sheaffer C.C., Wyse D.L., Ehlke N.J. 2009. Palatability and nutritive value of native legumes[J]. Native plants Journal 10:224-231
    Smith J.F. 1991. A review of recent developments on the effect of nutrition on ovulation rate (the flushing effect) with particular reference to research at Ruakura. Proc. N.Z. Soc. Anim. Prod. 51:15-23
    Smith A H., Imlay J.A., Mackie R.I. 2003. In creasing the Oxidative Stress Response Allows Escherichia coli To Overcome Inhibitory Effects of Condensed tannins[J]. Appl. Environ. Microbiol. 69:3406-3411
    Silanikove N., Gilboa N., Nir I., Perevolotsky A., Nitsan Z. 1996. Effect of a daily supplementation of polyethylene glycol on intake and digestion of tannin-containing leaves (Quercus calliprinos, pistacia lentiscus and ceratonia siliqua) by goat[J]. J.Agric Food Chem.44:199-205
    Sivakumaran S., Molan A.L., Meagher L.P., Kolb B., Foo L.Y., Lane G.A. 2004. Variation in antimicrobial action of proanthocyanidins from Dorynium rectum against rumen bacteria[J]. Phytochemistry. 65:2485-2497
    Skene I., Brooker J.D. 1995. Characterisation of the tannin acylhydrolase in the ruminal bacterium Selenomonas ruminatium[J]. Anaerobe. 1:321-327
    ?liwiński, B.J., Kreuzer M., Sutter F., Machmüller A., Weststein H.R. 2004. Performance, body nitrogen conversion and nitrogen emission from manure of dairy cows fed diets supplemented with different plant extracts[J]. J Anim Feed Sci. 13:73-91
    Smart W.W.G., Bell T.A., Stanley N.W., Cope W.A. 1961. Inhibition of rumen cellulose by an extract from sericea forage[J]. J Dairy Sci. 44:1945-1946
    Springer T.L., McGraw R.L., Aiken G.E. 2002. Variation of condensed tannins in Roundhead Lespedeza Germplasm[J]. Crop Sci. 42:2157-2160
    Stern J.L., Hagerman A.E., Steinberg P.D., Mason P.K. 1996. Phlorotannins-protein interactions[J]. J.Chem. Ecol. 22:1887-1899
    Stewart J.L., Mould F., Mueller-Harvey I. 2000. The effect of drying treatment on the fodder quality and tannin content of two provenances of Calliandra calothyrsus Meissner[J]. J Sci Food Agric. 80:1461-1468
    Stienezen M., Waghorn G.C., Doughlas G.B. 1996. Digestibility and effects of condensed tannins on digestion of sulla (Hedysarum coronarium) when fed to sheep[J]. N. Z. J. Agric. Res. 39:215-221
    Tajima K., Aminov R.I., Nagamine T., Matsui H., Nakamura M., Benno Y. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR[J]. Appl Environ Microbiol 67:2766-2774
    Terrill T.H., Douglas G.B., Foote A.G., Purchas R.W., Wilson G.F, Barry TN. 1992a. Effect of condensed tannins upon body growth, wool growth and rumen metabolism in sheep grazing sulla and perennial pasture[J]. J Agric Sci. 119:265-273
    Terril T.H.,Rowan A.M., Douglas G.B., Barry T.N. 1992b. Determination of extractable and bound condensed tannin concentrations in forageplants, protein concentrate meals and cereal grains[J]. J Sci Food Agric. 58:321-329
    Terrill T.H., Waghorn G.C., Woolley D.J., McNabb W.C., Barry T.N. 1994. Assay and digestion of 14C-labelled condensed tannins in the gastrointestinal tract of sheep[J]. Br. J. Nutr. 72:467-477
    Toda M., Okubo S., Hiyoshi R., Shimamura T. 1989. The bactericidal activity of tea and coffee[J]. Letters Appl Microbiol. 8:123-125
    Van Soest P.J., Orbertson J.B., Lewis B.A. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition[J]. J. Dairy Sci. 74:3583-3597
    Van Soest P.J. 1994. Nutritional ecology of the ruminant, 2nd ed. Cornell Univ Press. Ithaca,NY, USA. 476
    Waghorn G.C. 1990. Beneficial effects of low concentrations of condensed tannins in forages feed to ruminants, in Microbial and Plant Opportunities to improve Lignocellulose Utilization by Ruminants, ed. By Akin D.E., Ljundahl L.G., Wilson J.R., and Harris P.J. Elsevier, New York, NY, pp. 137-147
    Waghorn G.C., Shelton I.D., McNabb W.C. 1994. Effects of condensed tannins in Lotus pedunculatus on its nutritive value for sheep. 1. Non-nitrogenous aspects[J]. J. Agric. Sci. 123:99-107
    Waghorn G.C., McNabb W.C. 2003. Consequences of plant phenolic compounds for productivity and health of ruminants. Proc Nutr Soc. 62:383-392
    Waghorn G.C., Ulyatt M.J., John A., Fisher M.T. 1987. The effects of condensed tannins on the site of digestion of amino acids and other nutrients in sheep fed on Lotus coniculatus L[J]. Br.J.Nutr. 57:115-126
    Waghorn G.C. 1990. Effect of condensed tannin on protein digestion and nutritive value of fresh herbage. Proc. Aust. Soc. Anim. Prod. 18:412-415
    Waghorn G.C. 1996. Condensed tannins and nutrient absorption from the small intestine. In: Rode L.M. (ed.), Proceedings of the Canadian Society of Animal Sciences Annual Meeting on Animal Science Research Development. Ministry of Supply & Services, Lethbridge, Alberta, Canada,pp. 175-189
    Waghorn G.C., Shelton I.D. 1997. Effect of condensed tannins in Lotus corniculatus on the nutritive value of pasture for sheep[J]. J. Agric. Sci 128:365-372
    Waghorn G.C., Tavendale M.H., Woodfield D.R. 2002. Methanogenesis from forages fed to New Zealand ruminants. Proc NZ Grass Assoc 64:167-171
    Wang R.F., Cao W.W., Cerniglia C.E. 1997. PCR detection of Ruminococcus spp. In human and animal faecal samples[J]. Mol Cell Probes. 11:259-265
    Wang Y., Waghorn G.C., McNabb W.C., Barry T.N., Hedley M.J., Shelton I.D. 1996. Effect of condensed tannins in Lotus corniculatus up on the digestion of methionine and cysteine in the small intestine of sheep[J]. J Agric Sci. 127:413-421
    Wang Y., Waghorn G.C., McNabb W.C., Barry T.N., Hedley M., Shelton I. 1996c. Effect of condensed tannins in Lotus corniculatus upon the digestion of methionine and cystine in the small intestine of sheep[J]. J. Agric. Sci. 126:87-98
    Wang Y., Waghorn G.C., Barry T.N., Shelton I.D. 1994. The effect of condensed tannins in Lotus corniculatus on plasmametabolism of methionine, cystine and inorganic sulphate by sheep[J]. Br. J. Nutr. 72:923-935
    Wang Y., Mcallister T.A., Yanke L.J., Xu Z.J., Cheeke P.R. Cheng K.J. 2000. In vitro effects of steroidal saponins from Yucca Schidigera extract on rumen microbial protein synthesis and ruminal fermentation[J]. J. Sci.Food Agric. 80:383-392
    Wang Y., Xu Z., Bach S.J., Mcallister T.A. 2009. Sensitivity of Escherichia coli to Seaweed(Ascophyllum nodosum) Phlorotannins and Terrestrial Tannins[J]. Asian-Aust. J. Anim. Sci. 22:238-245
    West J.W., Hill G.M., Utley P.R. 1993. Peanut skins as a feed in gradient for lactating dairy cows[J]. J Dairy Sci. 76:590-599
    Weinberg E.D. 1984. Iron withholding: A defense against infection and neoplasia[J]. Physiological Reviews. 64:65-102
    Wolin M.J. 1960. A Theoretical rumen fermentation balance[J]. J Dairy Sci. 43:1452-1459
    Woodward S.L., Auldist M.J., Laboyrie P.J., Jansen E.B.L. 1999. Effect of Lotus corniculatus and condensed tannins on milk yield and milk composition of dairy cows. Proc. NZ. Soc. Anim. Prod. 59:152-155
    Woodward S.L., Waghorn G.C., Ulyatt M.J., Lassey K.R. 2001. Early indications that feeding Lotus will reduce methane emissions from ruminants. Proc NZ Soc anim Prod 61:23-26
    Worobo R. 1999. Food Safety and You: Coliform Bacteria as indicators of Food Sanitary Quality. The Newsletter of the New York State Food Venture Center. 2: No.1
    Xie D.Y., Sharma S.B., Paiva N.L., Ferreira D., Dixon R.A. 2003. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis[J]. Science 299:396-399
    Ya C., Gaffney S.H., Lilley T.H., Haslam E. 1988. Carbohydrate-polyphenol complexation, p. 553.In R.W. Hemingway andJ.J. Karchesy (ed.), Chemistry and significance of condensed tannins. Plenum Press, New York, N.Y
    Yá?ez Ruiz D.R., Moumen A., Martín García A.I., Molina Alcaide E. 2004. Ruminal fermentation and degradation patterns, protozoa population, and urinary purine derivatives excretion in goats and wethers fed diets based on two-stage olive cake: Effect of PEG supply[J]. J. Anim Sci. 82:2023-2-32
    Zucker W.V. 1983. Tannins : does structure determine function? An ecological perspective[J]. Am Nat. 121: 335-365

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700