宝石鲈营养需求的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国重要的淡水养殖新秀宝石鲈(Scortum barcoo)为研究对象,在网箱(60×60×120 cm)或室内圆形玻璃缸(规格:400L)中进行为期60天的摄食生长实验,探讨宝石鲈对蛋白质、脂肪、碳水化合物、核黄素、泛酸、吡哆醇、叶酸的适宜需求量以及钙磷、益生菌、低聚木糖和植酸酶添加对宝石鲈生长和生理状态的影响。主要研究结果如下。一、宝石鲈对蛋白质、脂肪和碳水化合物需求量的研究部分
     1.以鱼粉为蛋白源,配制5种不同蛋白浓度的等能半精制实验饲料,蛋白水平分别为25.1%、30.2%、36.1%、40.2%和45.6%。25.1%组的终末体重显著低于36.1%、40.2%和45.6%组(P<0.05)。25.1%组的日增重和特定生长率显著低于其它组(P<0.05)。宝石鲈的日增重和特定生长率,当饲料蛋白水平从25.1%增加到36.1%时具有增大的趋势,而从36.1%增加到45.6%时显著减少(P<0.05)。25.1%组的饲料系数和蛋白质效率高于其余实验组(P<0.05)。当饲料蛋白水平从25.1%增加到36.1%,宝石鲈的饲料系数具有降低的趋势;而饲料蛋白水平从36.1%增加到45.6%,宝石鲈的饲料系数具有升高的趋势(P<0.05),36.1%组的饲料系数显著低于其它组(P<0.05)。蛋白质效率随着饲料蛋白含量的增大具有降低的趋势(从25.1%到36.1%),当饲料蛋白含量继续增大时(从36.1%到45.6%),蛋白质效率显著降低(P<0.05)。36.1%组宝石鲈的终末体重、日增重、特定生长率和蛋白质效率高于其余组(25.1%、30.2%、40.2%和45.6%),而饲料系数低于其它组。饲料蛋白水平对肥满度没有显著影响(P>0.05)。25.1%组宝石鲈肠道蛋白酶活性最低,淀粉酶活性最高(P<0.05)。肠道蛋白酶活性随着饲料蛋白水平的提高而增大,40.2%和45.6%组蛋白酶活性显著高于其余三组(25.1%、30.2%和36.1%)(P<0.05)。肠道淀粉酶活性随着饲料蛋白水平的提高而降低,40.2%和45.6%组淀粉酶活性显著低于25.1%和30.2%组(P<0.05)。不同饲料蛋白水平对全鱼和肌肉粗蛋白和粗脂肪含量有显著影响(P<0.05)。随着饲料蛋白水平的提高,全鱼和肌肉粗蛋白含量逐渐升高,45.6%组达到最高值。粗脂肪含量随饲料蛋白水平的增加而不断下降,45.6%组达到最小值。各组粗灰分和干物质含量没有显著差异(P>0.05)。以相对增重率作为评价指标,用折线模型来计算宝石鲈饲料蛋白质适宜需求量为35.98%。
     2.鱼油为脂肪源,配制脂肪水平为5.7%、8.4%、10.9%和13.1%共4种等蛋等能半精制实验饲料。10.9%和13.1%组间的终末体重、增重和特定生长率没有显著差异(P>0.05),但均显著高于5.7%和8.4%组(P<0.05)。各组宝石鲈的成活率没有显著差异(P>0.05)。饲料添加脂肪降低了饲料系数,13.1%组的饲料系数显著低于其它组(P<0.05)。蛋白质效率有随脂肪水平升高而上升的趋势,13.1%组蛋白质效率显著高于5.7%组(P<0.05)。鱼体脂肪和干物质含量随饲料脂肪水平的上升有升高趋势。10.9%组全鱼脂肪含量显著高于5.7%组(P<0.05);13.1%组全鱼脂肪含量显著高于5.7%和8.4%组(P<0.05)。全鱼粗蛋白含量随饲料脂肪水平的上升有降低的趋势,13.1%组粗蛋白含量显著低于5.7%和8.4%组(P<0.05),但与10.9%组没有显著差异(P>0.05)。10.9%组全鱼粗蛋白含量显著低于5.7%组(P<0.05);但与8.4%组没有显著差异(P>0.05)。饲料脂肪水平对宝石鲈全鱼粗灰分含量没有显著影响(P>0.05)。5.7%组全鱼干物质含量与8.4%组没有显著差异(P>0.05),但显著低于10.9%和13.1%组(P<0.05),8.4%、10.9%和13.1%组间干物质含量没有显著差异(P<0.05)。13.1%和10.9%组肌肉粗脂肪和干物质含量最高显著高于5.7%和8.4%组(P<0.05),13.1%和10.9%组间以及5.7%和8.4%组间肌肉粗脂肪和干物质含量差异不显著(P>0.05)。肌肉粗蛋白含量随饲料脂肪水平的上升有降低的趋势,13.1%组肌肉粗蛋白含量显著低于8.4%、10.9%和13.1%组(P<0.05),10.9%组的粗蛋白含量与8.4%组没有显著差异(P>0.05),但显著低于5.7%组(P<0.05)。各组宝石鲈肥满度之间没有显著性差异(P>0.05),体形相近。随着饲料脂肪水平上升,各组宝石鲈的脏体比和肝体比都呈上升趋势,脂肪水平13.1%组宝石鲈肝体比显著高于5.7%和8.4%组(P<0.05)。5.7%组脏体比显著低于10.9%和13.1%组(P<0.05)。随着脂肪添加量的增加,宝石鲈肝脏葡萄糖-6-磷酸脱氢酶与苹果酸酶活性有降低趋势。脂肪水平5.7%组葡萄糖-6-磷酸脱氢酶与苹果酸酶的活性显著高于13.1%组(P<0.05)。饲料脂肪水平对肝脏6-磷酸葡萄糖脱氢酶活性没有显著影响(P>0.05)。总之,当饲料脂肪水平高于10.9%时,对宝石鲈的生长性能没有影响,但脂肪在鱼体的沉积增加。
     3.玉米淀粉为碳水化合物源,配制碳水化合物水平为25.4%、29.6%、33.2%、37.3%和41.5%共5种等蛋白等脂肪的半精制实验饲料。饲料蛋白质和脂肪的表观消化率随饲料碳水化合物水平增加呈逐渐下降趋势,41.5%组表观消化率显著低于其它组(P<0.05)。25.4%和29.6%组的脂肪表观消化率显著高于其余3组(P<0.05)。25.4%、29.6%、33.2%和37.3%组碳水化合物的表观消化率无显著差异,但均显著大于41.5%组(P<0.05)。宝石鲈的终末体重、日增重和特定生长率当饲料碳水化合物水平从25.4%增加到37.3%时具有增大的趋势,而从37.3%增加到41.5%时显著减少(P<0.05)。饲料转化率和蛋白质效率随碳水化合物水平上升呈逐渐上升的趋势。33.2%、37.3%和41.5%组间饲料转化率和蛋白质效率无显著差异(P>0.05),但显著大于25.4%和29.6%组(P<0.05)。各组宝石鲈肥满度之间没有显著性差异(P>0.05),体形相近。随着饲料碳水化合物水平上升,各组宝石鲈的脏体比和肝体比都呈上升趋势,37.3%和41.5%组宝石鲈肝体比显著高于25.4%组(P>0.05)。随着碳水化合物添加量的增加,丙酮酸激酶与葡糖糖激酶活性有增加趋势,己糖激酶活性呈现降低趋势。41.5%组丙酮酸激酶和葡萄糖激酶活性显著高于25.4%组,而己糖激酶活性显著低于25.4%组(P<0.05)。各组甘油三酯、胆固醇含量、宝石鲈全鱼和肌肉的蛋白质、灰分和干物质含量没有显著差异(P>0.05)。鱼体脂肪含量随饲料碳水化合物水平的上升有先上升后下降的趋势,37.3%组血糖、全鱼和肌肉脂肪含量显著高于25.4%组(P<0.05)。综合以上结果知,宝石鲈饲料中碳水化合物的适宜含量为33.2-37.3%。
     二、宝石鲈对核黄素、泛酸、吡哆醇、叶酸需求量和钙磷对其生长和生理状态影响部分
     4.配制核黄素含量为0.60、2.83、5.21、7.37、9.86和20.26mg/kg的共6种等氮等能精制实验饲料。未添加核黄素组宝石鲈的终末体重、日增重、特定生长率、饲料转化率和蛋白质效率显著低于添加组(P<0.05)。当饲料核黄素含量为2.83 mg/kg时,宝石鲈终末体重、日增重、特定生长率、饲料转化率和蛋白质效率显著低于其它添加组(5.21、7.37、9.86和20.26mg/kg )(P<0.05)。饲料核黄素水平在5.21、7.37、9.86和20.26 mg/kg时,各组终末体重、日增重、特定生长率、饲料转化率和蛋白质效率没有显著差异(P>0.05)。未添加核黄素组宝石鲈肝脏D-氨基酸氧化酶活力为2.24U/g蛋白,显著低于其它各组(2.83、5.21、7.37、9.86和20.26mg/kg)(P<0.05)。随饲料核黄素含量的增加,D-氨基酸氧化酶活力显著增加,当核黄素含量超过5.21mg/kg时,D-氨基酸氧化酶活力没有显著增加(P>0.05)。宝石鲈肝脏核黄素含量随饲料核黄素含量的增加(0.60、2.83和5.21mg/kg)而显著升高(3.55、5.84和8.26μg/g)(P<0.05)。而当饲料中核黄素含量高于5.21mg/kg时,肝脏核黄素含量没有显著变化(P>0.05)。核黄素是宝石鲈所必需的维生素,其缺乏会造成一系列缺乏症。以特定生长率、D-氨基酸氧化酶和肝脏核黄素含量为评价指标,经折线模型拟合得宝石鲈对核黄素的需要量分别为5.73、6.85和6.64mg/kg。
     5.配制泛酸含量为0.05、5.45、11.20、22.25、45.07和84.86mg/kg的共6种等氮等能精制实验饲料。未添加泛酸组宝石鲈的终末体重、特定生长率、饲料转化率和蛋白质效率显著低于添加组(5.45、11.20、22.25、45.07和84.86mg/kg)(P<0.05)。当饲料泛酸含量为5.45mg/kg时,宝石鲈终末体重、特定生长率、饲料转化率和蛋白质效率与饲料3组(11.20mg/kg)差异不显著(P>0.05) ,但显著低于其它添加组(22.25、45.07和84.86mg/kg)(P<0.05)。当饲料泛酸水平在11.20、22.25、45.07和84.86 mg/kg时,各组终末体重、特定生长率、饲料转化率和蛋白质效率没有显著差异(P>0.05)。未添加泛酸组宝石鲈血红蛋白显著低于其它添加泛酸各组(P<0.05),而添加泛酸各组宝石鲈的血红蛋白含量没有出现显著差异(P>0.05)。未添加泛酸组宝石鲈肝脏脂肪含量显著高于添加泛酸各组(P<0.05),而添加泛酸各组宝石鲈肝脏脂肪含量差异不显著(P>0.05)。宝石鲈肝脏总泛酸含量在未添加组最低(P<0.05),随着饲料泛酸水平升高而显著升高,当高于11.20mg/kg时各组间差异不显著(P>0.05)。未添加泛酸组宝石鲈肝脏游离泛酸含量与5.45mg/kg组差异不显著(P>0.05),随着饲料泛酸含量的升高,肝脏游离泛酸显著升高(P<0.05),当饲料泛酸含量高于22.25mg/kg时,游离泛酸含量维持稳定(P>0.05)。未添加泛酸组肝脏结合泛酸量显著低于添加组(P<0.05),而添加泛酸各组差异不显著(P>0.05)。泛酸是宝石鲈所必需的维生素,其缺乏会造成一系列缺乏症。以特定生长率和肝脏总泛酸含量为评价指标,经折线模型拟合得宝石鲈对泛酸的需要量为12.40和13.47mg/kg。
     6.配制吡哆醇含量为0.18、1.46、3.14、6.71、12.67和26.25mg/kg的共6种等氮等能精制实验饲料。未添加吡哆醇组宝石鲈的终末体重、特定生长率、饲料转化率和蛋白质效率显著低于添加组(P<0.05)。当饲料吡哆醇含量为1.46mg/kg时,宝石鲈终末体重、特定生长率、饲料转化率和蛋白质效率显著低于其它添加组(3.14、6.71、12.67和26.25mg/kg)(P<0.05)。当饲料中吡哆醇水平在3.14、6.71、12.67和26.25 mg/kg时,各组的终末体重、特定生长率、饲料转化率和蛋白质效率没有显著差异(P>0.05)。未添加吡哆醇组宝石鲈肝脏谷草转氨酶和谷丙转氨酶活力以及肝脏吡哆醇和5-磷酸吡哆醛含量显著低于添加组(P<0.05)。当饲料中吡哆醇水平在3.14、6.71、12.67和26.25 mg/kg时,各组宝石鲈肝脏谷草转氨酶和谷丙转氨酶活力没有显著差异(P>0.05)。随着饲料中吡哆醇水平的增加,谷草转氨酶和谷丙转氨酶活力以及肝脏吡哆醇和5-磷酸吡哆醛含量显著增加,且吡哆醇含量增加到6.71mg/kg时达到最大,而吡哆醇继续增加对谷草转氨酶和谷丙转氨酶活力以及肝脏吡哆醇和5-磷酸吡哆醛含量没有显著影响(P<0.05)。吡哆醇是宝石鲈所必需的维生素,其缺乏会造成一系列缺乏症。以特定生长率、肝脏谷草转氨酶和谷丙转氨酶活力以及肝脏吡哆醇和5-磷酸吡哆醛含量为评价指标,经折线模型拟合后得宝石鲈对饲料中吡哆醇的需要量分别为2.67、3.85、4.04、4.91和5.17mg/kg。
     7.配制叶酸含量为0.11、0.11、0.58、1.07、2.20、4.52和9.15mg/kg的共7种等氮等能精制实验饲料。未添加叶酸组宝石鲈的终末体重、特定生长率、饲料转化率和蛋白质效率显著低于添加组(0.58、1.07、2.20、4.52和9.15 mg/kg)(P<0.05)。当饲料叶酸水平为0.58mg/kg时,宝石鲈终末体重、饲料转化率和蛋白质效率显著低于其它添加组(1.07、2.20、4.52和9.15 mg/kg)(P<0.05);而特定生长率与叶酸水平为1.07mg/kg组没有显著差异(P>0.05),但显著低于其它添加组(2.20、4.52和9.15 mg/kg)(P<0.05)。1.07、2.20、4.52和9.15mg/kg各组的终末体重、特定生长率、饲料转化率和蛋白质效率没有显著差异(P>0.05)。未添加叶酸组宝石鲈血液红细胞数量和肝脏叶酸含量没有显著差异(P>0.05),但显著低于添加组(P<0.05)。当饲料叶酸水平为0.58mg/kg时,宝石鲈血液红细胞数量和肝脏叶酸含量显著低于其它添加组(1.07、2.20、4.52和9.15 mg/kg)(P<0.05)。当饲料中叶酸水平在1.07、2.20、4.52和9.15mg/kg时,各组的血液红细胞数量和肝脏叶酸含量没有显著差异(P>0.05)。以特定生长率、红细胞数量和肝脏叶酸含量为评价指标,经折线模型拟合后得宝石鲈对叶酸的需要量分别为1.03、1.20和1.24 mg/kg。
     8.以酪蛋白和明胶作为蛋白源,乳酸钙(Ca-lactate)和磷酸二氢钠(NaH2PO4·2H2O)为钙源和磷源,配制成饲料1(0.0%钙,0.0%磷)、饲料2(0.5%钙,0.0%磷)、饲料3(0.0%钙,0.6%磷)、饲料4(0.5%钙,0.6%磷)、饲料5(1.0%钙,0.6%磷)和饲料6(1.5%钙,0.6%磷)共六种等氮等能纯化实验饲料。饲料中未添加磷组(饲料1和饲料2)实验鱼的终末体重、特定生长率和脊椎骨钙磷含量显著低于添加组(P<0.05),而饲料系数、全体和肌肉脂肪含量显著高于添加组(P<0.05)。当饲料中未添加磷时,添加0.5%钙对宝石鲈的特定生长率、饲料系数、全鱼和肌肉营养成分、脊椎骨的灰分和钙磷含量没有显著影响(P>0.05)。当饲料中添加0.6%磷时,钙的添加量(0-1.5%)对宝石鲈终末体重、特定生长率、饲料系数、全鱼组成、肌肉组成(水分、粗蛋白和灰分)和脊椎骨组成(粗灰分、磷和钙磷比)没有显著影响(P>0.05)。饲料中钙添加量过大(1.5%)组脊椎骨钙含量显著减少(P<0.05)。饲料中添加磷显著降低了鱼体中粗脂肪含量(P<0.05),但提高了脊椎骨钙磷的含量(P<0.05)。各组脊椎骨钙磷比均处于1.78-1.82范围内,组间差异不显著(P>0.05)。未添加磷组宝石鲈血浆磷含量和碱性磷酸酶活性显著低于添加0.6%磷组(P<0.05)。当饲料添加磷量相同时,钙的不同添加量对宝石鲈血浆磷含量和碱性磷酸酶活性没有显著影响。通过宝石鲈幼鱼生长性能和脊椎骨矿化作用分析表明,当饲料中添加0.6%磷时,钙的适宜添加量为0.5% (P>0.05)。
     三、宝石鲈非营养性添加剂部分
     9.用基础饲料投喂宝石鲈幼鱼作为对照组,实验组为分别在基础饲料中添加0.1%乳酸杆菌、0.1%芽孢杆菌和0.1%芽孢杆菌+0.1%乳酸杆菌。益生菌组宝石鲈的终末体重、日增重、特定生长率、饲料转化率和蛋白质效率显著高于对照组(P<0.05)。饲料中单独添加0.1%乳杆菌和0.1%芽孢杆菌组的生长和饲料利用指标差异不显著(P>0.05),但显著低于益生菌混合添加组(P<0.05)。饲料中单独添加乳杆菌组的特定生长率与益生菌混合添加组差异不显著(P>0.05)。对照组宝石鲈肠道的蛋白酶、淀粉酶和脂肪酶活性显著低于添加组(P<0.05)。益生菌混合添加组的蛋白酶活性显著高于单独添加组(P<0.05)。添加芽孢杆菌组肠道蛋白酶活性显著高于乳杆菌组(P<0.05)。混合添加组的淀粉酶和脂肪酶活性显著高于乳杆菌组(P<0.05),但这两组的肠道淀粉酶和脂肪酶活性与添加芽孢杆菌组差异不显著(P>0.05)。各益生菌添加组的肠道细菌总数与对照组相比没有显著差异(P>0.05)。益生菌添加组肠道气单胞菌属、肠杆菌科、黄杆菌属细菌数量显著低于对照组(P<0.05)。添加益生菌组肠道产碱菌属和芽孢杆菌属细菌数量显著高于对照组(P<0.05)。添加益生菌对肠道中棒杆菌属、不动杆菌属和葡萄球菌属细菌的数量没有显著影响(P>0.05)。益生菌添加组吞噬百分比、吞噬指数和碱性磷酸酶显著高于未添加组(P<0.05),但各添加组之间差异不显著(P>0.05)。饲料中添加乳杆菌组的血清溶菌酶活性显著高于未添加益生菌组(P<0.05),添加组之间没有显著差异(P<0.05)
     10.用基础饲料投喂宝石鲈幼鱼作为对照组,实验组为分别在基础饲料中添加0.06‰、0.12‰、0.18‰、0.24‰低聚木糖。对照组宝石鲈的终末体重、日增重、特定生长率、饲料转化率、蛋白质效率、蛋白酶、淀粉酶和脂肪酶活性与0.06‰组没有显著差异(P>0.05),但显著低于0.12‰、0.18‰和0.24‰组(P<0.05)。0.12‰组终末体重、日增重、特定生长率、饲料转化率和蛋白质效率最高。添加低聚木糖后各实验组间肠道蛋白酶和脂肪酶活性差异不显著(P>0.05)。对照组的血糖,甘油三酯和胆固醇含量显著低于添加低聚木糖各组(P<0.05),但添加低聚木糖各组间血糖、甘油三酯和胆固醇含量差异不显著(P>0.05)。饲料中添加低聚木糖降低了宝石鲈肠道中好氧菌总数(P<0.05)。添加低聚木糖各组间好养菌总数没用显著差异(P>0.05)。低聚木糖添加组的气单胞菌属和肠杆菌科细菌数量显著低于对照组(P<0.05),产碱菌属和芽孢杆菌属细菌数量显著高于对照组(P<0.05)。添加低聚木糖对肠道中棒杆菌属、不动杆菌属和葡萄球菌属细菌的数量没有显著影响(P>0.05)。对照组吞噬百分比、吞噬指数、溶菌酶和碱性磷酸酶活性低于添加组,但添加各组活性差异不显著(P>0.05)。饲料中添加低聚木糖能显著提高宝石鲈的生长、饲料利用和肠道消化酶活性,适宜添加量为0.12‰.
     11.全鱼粉饲料(饲料1,对照饲料)以鱼粉为蛋白源。豆粕替代饲料(饲料2)以鱼粉和豆粕为蛋白源,其中豆粕取代44.15%的鱼粉蛋白,植酸酶添加饲料(饲料3)为在豆粕替代饲料中添加0.02%植酸酶,共制作3种饲料。全鱼粉组宝石鲈的终末体重、日增重、特定生长率、饲料转化率、蛋白质效率、肠道蛋白酶和脂肪酶活性显著高于豆粕部分代替鱼粉组(P<0.05),与添加植酸酶组没有显著差异(P>0.05)。豆粕部分代替鱼粉组的终末体重、日增重、特定生长率、饲料转化率、蛋白酶和脂肪酶活性显著低于添加植酸酶组(P<0.05)。全鱼粉组和添加植酸酶组的蛋白质、脂肪、干物质、总磷和总钙表观消化率显著高于豆粕部分代替鱼粉组(P<0.05)。豆粕部分替代鱼粉组氮的保留率显著低于全鱼粉组(P<0.05),而氮排放率显著高于全鱼粉组和添加植酸酶组(P<0.05)。全鱼粉组和植酸酶组的氮保留率和氮排放率没有显著差异(P>0.05)。饲料中添加植酸酶显著提高了磷的保留率并降低了磷的排放率(P<0.05)。全鱼粉组磷的排放率最高,显著高于豆粕部分代替鱼粉组和植酸酶组(P<0.05)。饲料中添加一定量的豆粕和植酸酶后,对钙的保留率影响不显著(P>0.05),但显著降低了钙的排放率(P<0.05)。
Jade perch(Scortum barcoo) is a highly valuable tropical freshwater fish with very few bones and a good taste. Jade perch that efficiently utilizes commercial feed and grows rapidly has become an increasingly important commercial species in China. Because of its fast growth, efficient feed conversion, and high market value, aquaculture of the fish plays an important role in the economy of China. The dietary requirements of protein, lipid, carbonhydrate, riboflavin, pyridoxine, pantothenic acid and folic acid and the effects of calcium (Ca), phosphorus, probiotics, xylooligosaccharides and phytase enzyme on growth and physiology state of juvenile jade perch were conducted in indoor cylindrical fiberglass tanks (400L ) or net cages (60cm×60cm×120cm). Results of the present study are presented as follows.
     The dietary requirements of protein, lipid and carbonhydrate for juvenile jade perch
     1. To conduct the dietary protein requirement of jade perch juveniles, fishmeal was as protein source, a 60-day feeding trial with five diets was conducted to investigate the effect of dietary protein levels (25.1% 30.2%, 36.1%, 40.2 and 45.6%) on the growth performance, feed utilization, digestive enzyme activities, whole body and muscle composition of jade perch juveniles. Five groups with three replicates of juvenile were reared in net cage (60cm×60cm×120cm). The final body weight of 25.1% group was lower than that of 36.1%、40.2% and 45.6% group (P<0.05). Fish fed diet with 25.1% dietary protein level had significantly lower daily gain (DG) and specific growth rate (SGR) than those groups with high dietary protein level (P<0.05) . The values of DG and SGR of jade perch showed increasing trend with increasing dietary protein level from 25.1%to 36.1%, then showed decreasing trend from 36.1% to 45.6% (P<0.05). The values of feed conversion ratio (FCR) and protein efficiency ratio (PER) for fish fed 25.1% dietary protein were significantly higher than other groups (P<0.05). The values of FCR showed decreasing trend with increasing dietary protein level from 25.1%to 36.1%, then showed increasing trend from 36.1% to 45.6% (P<0.05). The values of PER exhibited decreasing trend with increasing dietary protein level from 25.1%to 36.1% (P>0.05), then decrease from 36.1% to 45.6%, there was significant difference between groups (P<0.05). Jade perch fed 36.1% dietary protein exihibited higher values of final body weight, DG, SGR, PER and lower value of FCR than other groups (P<0.05). There were no significant difference in condition factor among groups (P>0.05). A linear increase (P<0.05) in protease activity was observed due to feeding increased dietary protein level. An inverse relationship was observed between intestinal amylase activity of jade perch and the dietary protein level. The protein content of whole body and muscle tended to increase, but crude lipid content tended to decrease with increasing dietary protein level(P<0.05). No differences between groups were found for crude ash and dry matter of whole body and muscle (P>0.05). Using the relative weight gain as the indicator, the broken-line regression analysis indicated that the optimum dietary protein requirement of juvenile jade perch were 35.98%.
     2. To conduct the dietary lipid requirement of jade perch juveniles, diets containing 36.3% crude protein supplemented with increasing lipid levels (5.7%, 8.4%, 10.9%, and 13.1% of the dry matter) were used to feed triplicate groups of 30 fish for 60 d. At the end of the experiment, more than 95% fish survived well from all diet groups (P > 0.05). Measurements on the final body weight , daily gain (DG) and specific growth rate (SGR) indicated that fish fed with diets of 10.9% and 13.1% lipids exhibited higher growth performance (P < 0.05), while these values between fish fed with 10.9% and 13.1% lipid diets were not significantly different. Lowest growth performance was observed for fish fed with the lowest lipid level, the 5.7% lipid diet (P < 0.05). The values of FCR were also significantly (P < 0.05) affected by dietary lipid levels and tended to decrease with increasing lipid levels. Fish fed with the 5.7% diets showed the highest FCR values, while fish in the 13.1% feeding group yielded the lowest FCR values. Evaluations for the feed conversion ratio (FCR) and the protein efficiency ratio (PER) indicated that fish fed with 10.9% and 13.1% lipid diets utilized their feed and dietary proteins more efficiently (P < 0.05). The lipid and dry matter content of whole body tended to increase, but crude protein content tended to decrease with increasing dietary lipid level (P<0.05). Jade perch fed 13.1% dietary lipid exhibited higher lipid content of whole body than the fish fed diets with 5.7% and 8.4% dietary lipid (P<0.05). Jade perch fed diet with 10.9% dietary lipid exhibited higher lipid content of whole body than the fish fed with 5.7% dietary lipid (P<0.05). Fish fed 13.1% dietary lipid exihibited lower protein content of whole body than the fish fed diets with 5.7% and 8.4% dietary lipid (P<0.05). Fish fed diet with 10.9% dietary lipid exhibited lower protein content of whole body than the fish fed with 5.7% dietary lipid (P<0.05). Crude ash contents were similar from whole fish in all treatment groups (P>0.05). Jade perch fed diet with 10.9% and 13.1% dietary lipid exhibited higher dry matter content of whole body than the fish fed with 5.7% dietary lipid (P<0.05).Lipid contents increased in muscles from fish fed with higher lipid diets, and reached the highest in fish fed diets with the 10.9% and 13.1% lipid (P<0.05). On the other hand, protein contents decreased in muscles from fish fed with increasing dietary lipids (P < 0.05), and reached the lowest in those fed diet with the 13.1% lipid. The amounts of muscle dry matter elevated from fish fed with the higher dietary lipids (P<0.05) and reached the highest amounts in the juveniles fed with the 10.9% diet. There were no significant difference in condition factor among groups. As dietary lipid level increased, viscerosomatic index (VSI) and hepatosomatic index (HSI) increased dramatically and the 13.1% group had the highest values. Activities of hepatic glucose-6-phosphate dehydrogenase (G6PDH) and malic enzyme (ME) were reduced with increasing lipid level, but activities of phosphogluconate dehydrogenase (PGD) did not change among groups. Jade perch fed diet with 5.7% dietary lipid exhibited higher activities of G6PDH and ME than fish fed diet with 13.1% dietary lipid (P<0.05). In conclusion, high dietary lipid levels above 10.9% produced little practical benefit because of higher fat accretion in jade perch.
     3. To conduct the dietary carbohydrate requirement of jade perch juveniles, cornstarch was as carbohydrate source, a 60-day feeding trial with five diets was conducted to investigate the effect of dietary carbohydrate levels (25.4%、29.6%、33.2%、37.3% and 41.5% ) on the growth performance, feed utilization, heopatic metabolic enzymes, plasma biochemical indices ,whole body and muscle composition of jade perch juveniles . The apparent digestibility coefficient (ADC) of protein and lipid decreased with increasing dietary carbohydrate level , and reached the lowest in those fed diet with the 41.5% carbohydrate level (P < 0.05). Jade perch fed diet with 25.4% and 29.6% dietary carbohydrate level exhibited higher ADC of lipid than the other groups (P<0.05). ADC of carbohydrate were similar in 25.4%, 29.6%, 33.2% and 37.3% groups (P > 0.05), and the 41.5% group had the lowest values (P<0.05). The final body weight, daily gain (DG) and specific growth rate (SGR) increased at a level of dietary carbohydrate not more than 33.2%, and decreased at a higher dietary carbohydrate leve1(from 33.2% to 41.5%) (P < 0.05). The values of feed efficiency ratio (FER) and protein efficiency ratio (PER) tended to increase with increasing dietary carbohydrate level (P<0.05). Jade perch fed diets with 33.2%、37.3% and 41.5% carbohydrate level exhibited higher FER and PER values than 25.4% and 29.6% groups (P<0.05). There was no significant difference in condition factor among groups (P>0.05). As dietary carbohydrate level increased, the values of viscerosomatic index (VSI) and hepatosomatic index (HSI) increased and fish fed diet with 37.3% and 41.5% carbohydrate level exhibited higher HSI values than those with 25.4% carbohydrate level (P<0.05). Activities of hepatic pyruvate kinase and glucokinase increased with increasing lipid level, but activities of hepatic hexokinase decreased. Jade perch fed 41.5% carbohydrate diet exihibited higher activities of hepatic pyruvate kinase and glucokinase, and lower activities of hepatic hexokinase than the fish fed with 25.4% dietary carbohydrate (P<0.05). Fish fed 25.4% carbohydrate diet exhibited lower plasma glucose content than the fish fed with 37.3% and 41.5% carbohydrate diets (P<0.05). The plasma triglycerides and cholesterol content, the protein, ash and dry matter content of whole body and muscle were no remarkable differences among groups (P>0.05). Jade perch fed diet with 37.3% carbohydrate level exhibited higher plasma glucan content and lipid content of whole body and musle than the fish fed with 25.4% carbohydrate diet (P<0.05). In conclusion, the results suggested that the optimal dietary carbohydrate level for jade perch was 33.2-37.3%.
     The dietary requirements of riboflavin, pantothenic acid , pyridoxine and folic acid for juvenile jade perch and the effect of dietary calcium (Ca) and phosphorus (P) on growth performance and physiology state of juvenile jade perch.
     4. A study was conducted to investigate the dietary requirement of riboflavin for juvenile jade perch, and to characterize riboflavin deficiency signs. Six isoenergetic and isonitrogenous purified diets (0.60、2.83、5.21、7.37、9.86 and 20.26 mg riboflavin /kg dry diet) were prepared using casein and gelatin as protein sources. Fish fed the basal diet (0.60 mg/kg) exhibited lower final body weight, daily gain (DG), specific growth rate (SGR), feed efficiency ratio (FER) and protein efficiency ratio (PER) than the fish fed diets supplemented with riboflavin (P<0.05). Fish fed diet supplemented with 2.83 mg /kg riboflavin exhibited lower final body weight, DG, SGR, FER and PER than other groups supplemented with riboflavin (5.21、7.37、9.86 and 20.26 mg/kg) (P<0.05), and no significant differences were observed among the other dietary treatments (P>0.05). Hepatic D-amino acid oxidase activity (D-AAO) was low in the riboflavin-deficient fish and increased in a dose-response manner with maximum activity being observed in fish fed the 5.21mg riboflavin/kg diet (P<0.05), and then leveled off (P>0.05). The riboflavin concentrations in the livers of fish fed basal diet was the lowest (P<0.05), and increased with increasing riboflavin up to 5.21 mg/kg (P<0.05), and then leveled off (P>0.05). Fish fed the riboflavin-free diet performed poorly in terms of growth parameters and exhibited signs of riboflavin deficiency such as caudal fin erosion, loss of normal body color and photophobia. No deficiency signs were observed in fish fed the riboflavin-supplemented diets. Using SGR, D-AAO and hepatic riboflavin concentrations as the indicator, the broken-line regression analysis indicated that the optimum dietary riboflavin requirements of juvenile jade perch were 5.73, 6.85 and 6.64 mg/kg respectively.
     5. A study was conducted to investigate the dietary requirement of pantothenic acid for juvenile jade perch, and to characterize pantothenic acid deficiency signs. Six isoenergetic and isonitrogenous purified diets (0.05、5.45、11.20、22.25、45.07 and 84.86 mg pantothenic acid /kg dry diet) were prepared using casein and gelatin as the main protein sources. Fish fed the basal diet (0.05 mg/kg) exhibited lower final body weight, specific growth rate (SGR), feed efficiency ratio (FER) and protein efficiency ratio (PER) than the fish fed diets supplemented with pantothenic acid (P<0.05). Fish fed diet supplemented with 5.45 mg/kg pantothenic acid exhibited lower final body weight, SGR, FER and PER than other groups supplemented with pantothenic acid (22.25、45.07 and 84.86 mg/kg) (P<0.05), and no significant differences were observed among the other dietary treatments (11.20、22.25、45.07 and 84.86) (P>0.05). Hemoglobin and hepatic lipid were significantly lower in fish fed the basal diet than those of fish fed supplemented diets (P<0.05), but no significant differences in hemoglobin and hepatic lipid were observed among the pantothenic acid-supplemented dietary groups (P>0.05). Hepatic lipid concentration was highest in the pantothenic acid-deficient fish than those of other dietary groups (P<0.05), and no significant differences were observed among the other dietary treatments (P>0.05). Hepatic total patothenate concentration (TP) was lowest in the pantothenic acid-deficient fish than those of other dietary groups, and no significant differences were observed among the other dietary treatments(11.20、22.25、45.07 and 84.86 mg/kg) (P>0.05) .
     Hepatic free pantothenate concentrations(FP) between fish fed Diet 1 and Diet 2 were similar, and were significantly lower than those of fish fed diets supplemented with 22.25 mg/kg pantothenic acid (P<0.05) , then leveled off (P>0.05). Hepatic bound pantothenate concentration (BP) was lowest in the pantothenic acid-deficient fish than those of other dietary groups (P<0.05), and no significant differences were observed among the other dietary treatments (P>0.05). Fish fed the pantothenic acid-free diet performed poorly in terms of growth parameters and exhibited signs of pantothenic acid deficiency such as gill pale, lethargy, dark body color and skin hemorrhages. Using SGR and BP as the indicator, the broken-line regression analysis indicated that the optimum dietary pantothenic acid requirements of juvenile jade perch were 12.40 and 13.47 mg/kg respectively.
     6. A study was conducted to investigate the dietary requirement of pyridoxine for juvenile jade perch, and to characterize pyridoxine deficiency signs. Six isoenergetic and isonitrogenous purified diet(s0.18、1.46、3.14、6.71、12.67 and 26.25 mg pyridoxine /kg dry diet) were prepared using casein and gelatin as the main protein sources. Fish fed the basal diet (0.18 mg/kg) exhibited lower final body weight, specific growth rate (SGR), feed efficiency ratio (FER) and protein efficiency ratio (PER) than the fish fed diets supplemented with pyridoxine (P<0.05). Fish fed diet supplemented with 1.46 mg/kg pyridoxine exhibited lower final body weight, SGR, FER and PER than other groups supplemented with pyridoxine (3.14、6.71、12.67 and 26.25 mg/kg) (P<0.05), and no significant differences were observed among the other dietary treatments(P>0.05). Hepatic aspartate aminotransferase (AST)and alanine aminotransferase (ALT) activity were low in the pyridoxine-deficient fish, and no significant differences were observed among the other dietary treatments (3.14、6.71、12.67 and 26.25 mg/kg) (P<0.05). The pyridoxine (PN) and pyridoxal 5’-phsophate (PLP) concentrations in the livers were the lowest in fish fed the basal diet (P<0.05), and increased with increasing dietary pyridoxine up to 6.71 mg/kg (P<0.05), and then leveled off (P>0.05). Fish fed the pyridoxine-free diet performed poorly in terms of growth parameters and exhibited signs of pyridoxine deficiency such as pale body color, erratic swimming and loosening of scales. No deficiency signs were observed in fish fed the pyridoxine-supplemented diets. Using SGR, AST, ALT, PN and PLP as the indicator, the broken-line regression analysis indicated that the optimum dietary pyridoxine requirements of juvenile jade perch were 2.67、3.85、4.04、4.91 and 5.17 mg/kg respectively.
     7. A study was conducted to investigate the dietary requirement of folic acid for juvenile jade perch, and to characterize folic acid deficiency signs. Seven isoenergetic and isonitrogenous purified diets (0.11、0.11、0.58、1.07、2.20、4.52 and 9.15 mg folic acid /kg dry diet) were prepared using casein and gelatin as the main protein sources. Fish fed the basal diet (0.11 mg/kg) exhibited lower final body weight, specific growth rate (SGR), feed efficiency ratio (FER) and protein efficiency ratio (PER) than the fish fed diets supplemented with folic acid (P<0.05). Fish fed diet supplemented with 0.58 mg/kg folic acid exhibited lower final body weight, FER and PER than other groups supplemented with folic acid (1.07、2.20、4.52 and 9.15 mg/kg) (P<0.05). Fish fed diet supplemented with 0.58 mg/kg folic acid exhibited lower SGR than other groups supplemented with folic acid (2.20、4.52 and 9.15 mg/kg) (P<0.05), but similar with group supplemented with folic acid (1.07 mg/kg) (P>0.05). Final body weight, SGR, FER and PER were no significant different among the folic acid-supplemented dietary groups (1.07、2.20、4.52 and 9.15 mg/kg) (P>0.05). Final body weight, SGR, FER, PER, numbers of erythrocytes (RBC) and hepatic folic acid concentrations were no significant difference between the fish fed the basal diet with or without succinylsulfathiazole. Fish fed diet supplemented with 0.58 mg/kg folic acid exhibited lower RBC and hepatic folic acid concentrations than other groups supplemented with folic acid (1.07、2.20、4.52 and 9.15 mg/kg) (P<0.05), and no significant differences were observed among the other dietary treatments (P>0.05). Fish fed the folic acid-free diet performed poorly in terms of growth parameters and exhibited signs of folic acid deficiency such as pale body color, congestion in fins and lethargy. No deficiency signs were observed in fish fed the folic acid-supplemented diets. Using SGR, RBC and hepatic folic acid concentrations as the indicator, the broken-line regression analysis indicated that the optimum dietary folic acid requirements of juvenile jade perch were 1.03, 1.20 and 1.24 mg/kg respectively.
     8. A study was conducted to investigate the effects of dietary calcium (Ca) and phosphorus (P) on juvenile jade perch, and to characterize P deficiency signs. Six isoenergetic and isonitrogenous purified diets (Diet 1: 0.0% Ca, 0.0% P; Diet 2: 0.5% Ca, 0.0% P; Diet 3: 0.0% Ca, 0.6% P; Diet 4: 0.5% Ca, 0.6% P; Diet 5: 1.0% Ca, 0.6i% P; Diet 6: 1.5% Ca, 0.6% P) were prepared using casein and gelatin as the main protein sources, Ca-lactate and NaH2PO4·2H2O as the Ca, P source , respectively. Fish fed diets without P supplement(Diet 1 and Diet 2)showed reduced final weight, special growth rate(SGR) and mineral (Ca and P) deposition in vertebrae, and an increase in feed conversion rate (FCR), whole body and muscle lipid content than fish fed diets with P supplement (P<0.05). When P was not supplemented, 0.5% Ca supplement had no significant effect on final weight, SGR , FCR, whole body and muscle composition, ash content and mineral (Ca, and P) deposition in vertebrae (P>0.05). When diets were supplemented with 0.6% P, Ca supplement from 0.0% to 1.5% had no significant effect on final weight, SGR, whole body composition, muscle composition (moisture, crude protein and ash), vertebrae composition (ash, P and Ca-P ratio ) (P>0.05) . Excess Ca supplement (1.5%) had a negative effect on vertebrae Ca deposition (P<0.05). Fish fed diets with P supplement(Diet 3- Diet 6) showed an decrease in whole body and muscle lipid content, an increase in ash content and mineral (Ca, and P) deposition in vertebrae (P<0.05) . Ca and P supplement had no significant effect on Ca-P ratio ranged from1.78 to 1.82 in vertebrae (P>0.05). Fish fed the P-free diet exhibited lower plasma phosphorus and plasma alkaline phosphatase (ALP) activity than other groups supplemented with 0.6% P (P<0.05), and no significant differences were observed among the other dietary treatments though supplemented with different Ca level (P>0.05). If growth performance and vertebrae mineralization are taken into account, 0.5% Ca supplement might be optimum when diet was supplemented with 0.6% P. Non-nutritive additive for jade perch
     9. The Lactobacillus sp. and Bacillus sp. were added to jade perch basal diets as the probiotics in three forms: 0.1% lyophilized Lactobacillus sp. (L), 0.1% lyophilized Bacillus sp. (B) and their mix, and used to investigate the effect of probiotics on growth performance, feed utilization, digestive enzyme activities and intestinal microflora. Fish fed the diets supplemented with probiotics showed significantly better results of final body weight, daily gain (DG), specific growth rate (SGR), feed efficiency ratio (FER) and protein efficiency ratio (PER) than those with the basal diet (control). Final body weight, DG, SGR, FER and PER were no significant difference between the fish fed the diets supplemented with Lactobacillus sp. and with Bacillus sp., but was lower than the mix group. Mean digestive enzyme activities of all probiotics groups were significantly higher than the control group (P<0.05). Fish fed diet supplemented with Bacillus sp. exihibited higher protease activities than fish fed diet supplemented with Lactobacillus sp. (P<0.05). Fish fed diet supplemented with Lactobacillus sp. and Bacillus sp. exhibited higher amylase and lipase activities than fish fed diet supplemented with Lactobacillus sp. (P<0.05). As for amylase and lipase, assays showed no difference between groups supplemented with probiotics(P>0.05). Supplementation with probiotics had no influence on intestinal aerobic bacterial counts (P>0.05), and affected the composition of intestinal microflora with a tendency of Aeromonas, Enterobacteriaceae, Vibrio, Flavobacterium decreasing and Alcaligence, Bacillus increasing as compared with the contol (P<0.05). Supplementation with probiotics had no influence on intestinal Corynebacterium, Acinetobacter, and Staphylococcus (P>0.05). Fish fed the diets supplemented with probiotics showed significantly better results of phagocytic percentage (PP), phagocytic index (PI) and alkaline phosphatase (AKP) than those with the basal diet (control). In conclusion, it showed that probiotics highly increased the growth performances, feed utilization, digestive enzyme activities and immunity function and improve intestinal microbial balance. Furthermore, different probiotics forms indicated different performances and the mix produced the best results.
     10. A 60-day feeding trial was conducted to investigate the effect of dietary xylooligo saccharides (XOS) on the growth performance, feed utilization, digestive enzyme activities, bacteria of intestinal and immune of jade perch juveniles. The basal diet was used as control, the trial diets were designed with 4 added levels of XOS which were mixed with the basal diet. The added levels of XOS were 0.06‰, 0.12‰、0.18‰and 0.24‰respectively. The results showed that Jade perch fed the control diet showed lower final body weight, daily gain (DG), specific growth rate (SGR), feed efficiency ratio (FER) , protein efficiency ratio (PER) , protease, amylase and lipase activities than fish fed diets supplemented with 0.12‰、0.18‰and 0.24‰XOS (P<0.05), and no significant differences compared with fish fed diet supplemented with 0.06‰XOS (P>0.05). Fish fed diet supplemented with 0.12‰XOS exhibited better final body weight, DG, SGR, FER and PER than other groups. There were no significant difference in protease and lipase activities among groups supplemented with XOS (P>0.05). Jade perch fed the control diet showed higher glucose, triglycerides and cholesterol in serum than fish fed diets supplemented with 0.18‰and 0.24‰XOS, and no significant difference among groups supplemented with XOS (P>0.05). The XOS additive could significantly (P<0.05) decrease the number of total bacteria counts, no significant difference among groups supplemented with XOS (P>0.05). Supplementation with XOS affected the composition of intestinal microflora with a tendency of Aeromonas and Enterobacteriaceae decreasing and Alcaligence and Bacillus increasing as compared with the control (P<0.05). Supplementation with probiotics had no influence on intestinal Corynebacterium, Acinetobacter and Staphylococcus (P > 0.05). Supplementation with XOS had no influence on intestinal Corynebacterium, Acinetobacter, and Staphylococcus (P>0.05). Jade perch fed the control diet showed lower phagocytic percentage (PP), phagocytic index (PI) , lysozyme (LSZ) and alkaline phosphatase (AKP) than fish fed diets supplemented with XOS, and no significant difference among groups supplemented with XOS (P>0.05). The present results suggested that the diet added XOS can improve growth, feed utilization, digestive enzyme activities and immune of jade perch juveniles, the optimum dietary XOS requirements of juvenile jade perch were 0.12‰.
     11. A 60-day feeding study was conducted to investigate the effect of dietary phytase on the growth performance, feed utilization and digestive enzyme of jade perch juveniles. The basal diet designed with fish meal as protein source was used as control, the trial diets were designed with partially replacing fish meal with soybean meal as replacing fish meal group, replacing fish meal group with 0.02% phytase as phytase group. The results showed that jade perch fed the control diet showed higher final body weight, daily gain (DG), specific growth rate (SGR), feed efficiency ratio (FER) , protein efficiency ratio (PER) , protease and lipase activities than replacing fish meal group (P<0.05), and no significant differences compared with phytase group (P>0.05). Fish fed the replacing fish meal group diet showed lower final body weight, DG, SGR, FER, PER, protease and lipase activities than phytase group (P<0.05). Fish fed basal and phytase groups diet exhibited better apparent digestibility coefficient (ADC) of protein, lipid, dry matter, total phosphorous and calcium than replacing fish meal group (P<0.05). Retention of nitrogen in replacing fish meal group was significantly lower than the control group (P<0.05), and load of nitrogen in replacing fish meal group was significantly higher than phytase group. No differences between control and phytase groups were found for retention and load of nitrogen (P>0.05). Fish fed phytase group diet exhibited higher retention and lower load of phosphorous than other groups (P<0.05)。Load of phosphorus in control group was significantly higher than the other groups (P<0.05). Supplementation with soybean meal and phytase had no influence on retention of calcium (P>0.05) and affected load of calcium with a decreasing tendency (P<0.05).
引文
[1]苏小凤.饲料蛋白水平对宝石鲈生长和消化酶活性的影响[D].杭州:浙江大学, 2003: 3–5.
    [2]宋理平,朱永安,师吉华,等.宝石鲈幼鱼蛋白质需求量的研究[J].长江大学学报, 2006, 3(1): 165–167.
    [3]邵庆均,苏小凤,许梓荣,舒妙安.饲料蛋白水平对宝石鲈生长和体组成影响研究[J].水生生物学报, 2004, 28(4): 367–373.
    [4]麦康森.无公害渔用饲料配制技术[M].北京:中国农业出版社, 2003:
    [5] Tacon A G J, Cowey C B. Protein and amino acid requirements [A]. In: Calow P, Tytler P. Fish Energetics: New Perspectives [M]. London: Croom Helm, 1985: 155–183.
    [6]李爱杰.水产动物营养与饲料学[M].北京:中国农业出版社, 1996:
    [7] NRC (National Research Council). Nutrient Requirement of Fish [M]. National Academy Press, Washington, DC, 1993:
    [8] Tacon A G J. Standard methods for the nutrition and feeding of farmed fish and shrimp [J]. Argent Laboratories Press, 1990: 2–18.
    [9]钱雪桥,崔奕波,解绶启,等.养殖鱼类饲料蛋白需求量的研究进展[J].水生生物学报, 2002, 26(4): 410–416.
    [10]沈维华.鱼类蛋白质、氨基酸营养研究进展[J].中国饲料, 1995(9): 29–30.
    [11] Lochmann R T, Phillips H. Dietary protein requirement of juvenile golden shiners (Notemigonus crysoleucas) and goldfish (Carassius auratus) in aquaria [J]. Aquaculture, 1994, 128: 277–285.
    [12] Gurure R M, Moccia R D, et a1. Optimal protein requirements of young Arctic charr (Silvelinus alpinus) fed practical diets [J]. Aguacult. Nutr., 1995, 1: 227–234.
    [13] Baker D H. Problems and pitfalls in animal experiments designed to establish dietary requirements for essential nutrients [J]. J. Nutr., 1986, 116: 2339–2349.
    [14] Millikin. Interactive effects of dietary protein and fat on growth and protein utilization of striped bass (Morone saxatilis) [J]. Tams. AM. Fish. Soc., 1983, 112: 185–193.
    [15] Daniels W H, Robinson E H. Protein and energy requirements of juvenile red drum (Sciaenops ocellatus) [J]. Aquaculture, 1986, 53: 243–252.
    [16] Henken A M, Machiels M A M, Dekker W, Hogendoorn H. The effect of dietary protein and energy content on growth rate and feed utilization of the African catfish, Clarias gariepinus (Burchell 1822) [J]. Aquaculture, 1986, 58: 55–74.
    [17] Hepher B, Liao I C, Cheng S H, Hsieh C S. Food utilization by red tilapia–effects of diet composition, feeding level and temperature on utilization efficiencies for maintenance and growth [J]. Aquaculture, 1983, 32: 255–275.
    [18] Shiau S Y, Chen S Y. Carbohydrate utilization by tilapia (Oreochromis nilohcus×O. aureus) as influenced by different chromium sources [J]. J. Nutr., 1993, 123: 1747–1753.
    [19] Zeitoun I H, Ullrey D E, Magee W T. Quantifying nutrient requirements of fish [J]. Fish. Res. Board Can., 1976, 33: 167–172.
    [20] Webster C D, Tiu L G, et a1. Effect of dietary protein and lipid levels on growth and body composition of sunshine bass (Morone chrysops×Morone saxatilis) reared in cages [J]. Aquaculture, 1995, 131: 291–301.
    [21] Nematipour G M, Brown M L, et a1. Effects of dietary energy: Protein ratio on growth characteristics and body composition of hybird striped bass (Morone chrvsons×M. Saxatilis) [J]. Aquaculture, 1992, 107: 359–368.
    [22] Chen H Y, Tsai J C, et a1. Optimal dietary protein level for the growth of juvenile grouper, Epinephelus malabaricus, fed semipurified diets [J]. Aquaculture, 1994, 119: 265–271.
    [23] Seenappa D, Devaraj K V. Effect of different levels of protein, fat and carbohydrate on growth, feed utilization and body carcass composition of fingerlings in Catla catla [J]. Aquaculture, 1995, 129: 243–249.
    [24] Ogino C, Chiou J Y, et a1. Protein nutrition in fish VI. Effects of dietary energy sources on the utilisationof proteins by rainbow trout and carp [J]. Bull. Jpn. Soc. Sci. Fish, 1976, 42: 213–218.
    [25]付世建.南方鲇的营养学研究III:饲料脂肪对蛋白质的节约效应[J].水生生物学报, 2001, 25(1): 70–75.
    [26] Page J W, Andrews J W. Interactions of dietary levels of protein and energy on channel catfish (Ictalurus punctatus) [J]. J. Nutr., 1973, 103: 1339–1346.
    [27] Shiau S Y, Peng C Y. Protein sparing effect of carbohydrates in diets for tilapia, Oreochromis nilohcus×O. aureus [J]. Aquaculture, 1993, 117: 327–334.
    [28] Umino T, Arai K, et a1. Growth performance in clonal crucian, Carassius langsdorfii, effects of genetic difference and feeding history [J]. Aquaculture, 1997, 155: 271–283.
    [29] Ogunji J O, Wirth M. Effect of dietary protein content on growth, food conversion and body composition of tilapia (Oreochromis niloticus) fingerlings feed fishmeal diet [J]. Aquaculture, 2000, 15: 381–389.
    [30] MacDonald M L, Rogers Q R, Morris J G. Nutrition of the domestic cat, a mammalian carnivore [J]. Annu. Rev. Nutr., 1984, 4: 521–562.
    [31]杨严鸥.饲料质量和摄食水平对不同食性鱼类生长和活动的影响[D].华中农业大学, 2003:
    [32]付萃长.转人生长激素基因鲤鱼F4代的生长和饲料利用:饲料蛋白质水平的影响[D].武汉:中国科学院水生生物研究所, 1998:
    [33]钱雪桥.长吻鮠和异育银鲫幼鱼饲料蛋白需求的比较营养能量学研究[D].武汉:中国科学院水生生物研究所, 2001:
    [34] Kitamikado M, Tachino S. Studies on the digestive enzymes of the rainbow trout [J]. Bulletin of the Japanese Society of Scientific Fisheries, 1960, 26: 685–690.
    [35] Das K M, Tripathi S D. Studies on the digestive enzymes of grass carp, Clenopharyngodon idella [J]. Aquaculture, 1991, 92: 21–32.
    [36] Nagase G. Contribution to the physiology of digestion in Tilapia mossambica Peter: Digestive enzymes and the effects of diets on their acticity [J]. Z. Vergl. Physiol., 1964, 49: 270–284.
    [37]黄耀桐.草鱼肠道、肝胰脏蛋白酶活性初步研究[J].水生生物学报, 1988, 12(4): 328–333.
    [38]示野贞夫.饲料碳水化合物对肝脏酵素的适应[J].日本水产学会志, 1981, 47(1): 71–77.
    [39] Wu M S. Vitamin B6 requirements of juvenile grass shrimp, Penaeus monodon and juvenile malabar grouper, Epinephelus malabaricus [D]. National Taiwan Ocean University, Keelung, Taiwan, 2000:
    [40]蔡春芳,吴康,等.蛋白质营养对异育银鲫生长和免疫力的影响[J].水生生物学报, 2001, 25(6): 590–595.
    [41] Burrells C, Williams P D, Southgate P J, et al. Immunological, physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins [J]. Vererinary Immunology and Immunopathology, 1999, 72: 277–288.
    [42] Krogdahi A, Balclce–mckellep A M, Roed K H, et al. Feeding Altantic salmon Salmo salar L. soybean products: effects on disease resistance (furuwculosis), and lysozme and IgM levels in the intestinal mucosa [J]. Aquaculture Nutrition, 2000, 6: 77–84.
    [43] Kidd M T, Gerard P D, Heger J. et al. Threonine and crude protein responses in broiler chicks [J]. Animal Feed Science and technology, 2001, 94: 57–64.
    [44] Buentello A J, GatlinⅢD M. Effects of elevated dietary arginine on resistance of Channel catfish to exposure to Edwardsiellaictaluri [J]. Journal Health, 2001, 13: 194–201.
    [45] Watanabe T. Lipid nutrition in fish[J]. Comp. Biochem. Physiol., 1982, 73B: 3–15.
    [46] Fernández–Palacios H, Izquierdo M S, Robaina L, Valencia A, Salhi M, Vergara J M. Effect of n–3 HUFA level in brood stock diets on egg quality of gilthead sea bream (Spares aurata L.) [J]. Aquaculture, 1995, 132: 325–337.
    [47] Cavalli R O, Lavens P, Sorgeloos P. Performance of Macrobrachiurn rosenbergii broodstock fed diets with different fatty acid composition [J]. Aquaculture, 1999, 179: 387–402.
    [48] Furuita H, Tanaba H, Yamamoto T, Suzuli N, Takeuchi T. Effects of high levels of n–3 HUFA in broodstock diet on egg quality and egg fatty acid composition of Japanese flounder, Paralichthys olivaceus [J]. Aquaculture, 2002, 210: 323–333.
    [49] Andersen N G, Alsted N S. Growth and body composition of turbot (Scophthalmus maximus L.) in relationto different lipid/protein ratios in the diet [J]. Fish nutrition in Practice, 1993, 61: 479–491.
    [50]杨凤.动物营养学(第二版)[M].北京:中国农业出版社, 2003: 76–88.
    [51] Garling D L, Wikon R P. The optimum dietary protein to energy ratio for channel catfish fingerlings, Ictalurus punctatus [J]. J. Nutr., 1976, 106: 1368–1375.
    [52]周继术.必需脂肪酸n–6/n–3比例与油脂水平对奥尼罗非鱼生长的影响[D].西南农业大学, 2001:
    [53]廖翔华,林鼎,毛永庆.养殖鱼类营养需求研究进展[J].水生生物学报, 1989, 13(2): 170–186.
    [54] Castell J D, D J Lee, R O Sinnhuber. Essential fatty acids in the diet of rainbow trout (Salmo gairdneri Richardson): Metabolism and fatty acid composition [J]. Nutr., 1972, 102: 93–100.
    [55] Takeuchi T, Satohand S, Watanabe T. Dietary lipids suitable for the practical feed of tilapia nilotica [J]. Bull. Jpn. Soc. Sci. Fish., 1983, 49(9): 1361–1365.
    [56]曹俊明,林鼎,劳彩玲.饲料中添加大豆磷脂对草鱼肝胰脏脂质脂肪酸组成的影响[J].水产学报, 1997, 21: 32–38.
    [57] Kanazawa A. Essential Fatty Acid and Lipid Requirement of Fish [J]. In: Cowey C B. Nutrition and Feeding in Fish [M]. London: Academic Press, 1985: 281–298.
    [58]来长青,刘传忠,宋剑,等.饲料中添加不同比例磷脂油养殖虹鳟试验[J].水产学杂志, 1998, 11(2): 76–80.
    [59]沈同,王镜岩.生物化学[M].北京:高等教育出版社, 1990:
    [60]王道尊,潘兆龙.不同脂肪源饲料对青鱼生长的影响[J].水产学报, 1989, 13(4): 370–374.
    [61]刘纬,任本根.饲料中不同脂肪含量对草鱼稚鱼生长的影响[J].江西科学, 1995, 13(4): 119–223.
    [62] Caballero M J, Obach A, Rosenlund G, Montero D, Gisvold M, Izquierdo M S. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 2002, 214(1–4): 253–271.
    [63]宋昭彬,何学福.鱼类饥饿研究现状[J].动物学杂志, 1998, 33(1): 48–52.
    [64]季文娟.饲料中不同脂肪源对黑鲷幼鱼生长和鱼体脂肪酸组成的影响[J].中国水产科学, 1999, 20(1): 69–74.
    [65]高淳仁,李岩.黑鲷幼鱼对饵料蛋白质、脂肪、糖类需求量的研究[J].齐鲁渔业, 1993, (6): 36–37.
    [66]高淳仁,刘瑜.真鲷幼鱼对饵料中蛋白质、脂肪、碳水化合物需求量的研究[J].海洋水产研究, 2003, 24(1): 60–63.
    [67]高淳仁.鲈鱼幼鱼人工配合饲料中蛋白质、脂肪、糖适宜含量的研究[J].海洋水产研究, 1998, 19(1): 81–85.
    [68]洪惠馨,林利民,陈学豪,等.鲈鱼人工配合饵料中脂肪的适宜含量研究[J].集美大学学报(自然科学版), 1999, 4(2): 41–43.
    [69]杜震宇,郑文晖.三种脂肪源和两种降脂因子对鲈生长、体营养成分组和血清生化指标的影响[J].水产学报, 2002, 26(6): 542–550.
    [70]钱国英.铒料中不同蛋白质、纤维素、脂肪水平对加州鲈鱼生长的影响[J].动物营养学报, 2000, 12(2): 48–52.
    [71] Chou R L, Su M S. Optimal dietary protein and lipid levels for juvenile Cobia (Rachycentron canadum) [J]. Aquaculture, 2001, (193): 81–89.
    [72] Wang J T, Liu Y J, Tian L X, et al. Effect of dietary lipid level on growth performance, deposition, hepatic lipogenesis in juvenile (Rachycentron canadum) [J]. Aquaculture, 2005, 249, 439–447.
    [73] Otwell W S, Rickards L W. Cultured and wild American eels, A. rosfrata: fat content and fatty acid composition [J]. Aquaculture, 1981, 26: 67–76.
    [74]林浩然.鱼类生理学[M].广州:广东高等教育出版社, 1999: 28–29.
    [75]王道尊,丁磊,赵德福.必需脂肪酸对青鱼生长影响的初步观察[J].水产科技情报, 1986, (2): 4–6.
    [76] Tibalbi E, Beraldo L A, Volpelli Pinosa M. Growth response of juvenile dendex (Dendex dendex L.) to varying protein level and protein to lipid ratio in practical diets [J]. Aquaculture, 1996, 139: 91–99.
    [77] Lin Y H, Shiau S Y. Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses [J]. Aquaculture, 2003, 225:243–250.
    [78] Winfree, R A, Stickney R R. Effects of dietary protein and energy on growth, feed conversion efficiency and body composition of Tilapia aurea [J]. J Nut r., 1981, 111:1001–1012.
    [79] Dias J. Regulation of hepatic lipogenesis by dietary protein energy in juvenile European sebass (Dicent rarchus labrax) [J]. Aquaculture, 1998, 161: 169–186.
    [80] Takeda M, Shimeno S, Hosokawa H, Kajiyama H, Kaisyo T. The effect of dietary calorie–to–protein ratio on the growth, feed conversion and body composition of young yellowtail [J]. Bull. Jpn. Soc. Sci. Fish., 1975, 41: 443–447.
    [81] Takeuchi T, Watanabe T, Ogino C. Optimum ratio of protein to lipid in diets of rainbow trout [J]. Bull. Jpn. Soc. Sci. Fish., 1978, 44: 683–688.
    [82] Bromley P J. Effect of dietary protein, lipid and energy content on the growth of turbot (Scophthalamus maximus L.) [J]. Aquaculture, 1980, 19: 359–369.
    [83] Arzel J, Metailler R, Kerlegrer C, et al. The protein requirement of brown troust (Salmo trutta) fry [J]. Aquaculture, 1995, 130: 67–78.
    [84] Morais S, et al. Protein/lipid ratios in extruded diets for Atlantic cod (Gadus morhua): effects on growth, feed utilisation, muscle composition and liver histology [J]. Aquaculture, 2001, (203): 101–119.
    [85] Gaylord T G. Dietary protein and energy modifications to maximize compensatory growth of channel catfish (Ictalurus punctatus) [J]. Aquaculture, 2001, 194: 337–348.
    [86] Lee S M. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli) [J]. Aquaculture, 2002, (211): 227–239.
    [87] Tort L, Rotllant J, Liarte C, Acerete L, Hernandez A, Ceulemans S. Effect of temperature decrease on feeding rates, immune indicators and histopathological changes of gilthead sea bream Sparus aurata fed with an experimental diet [J]. Aquaculture, 2004, 229: 55–65.
    [88] Montero D. Effects of a–tocopherol and n–3 HUFA deficient diets on blood cells, selected parameters and proximate body composition of gilthead seabream (Sparus aurata) [A]. In: Stolen J S, Fletcher T C, Bayne C J, et al. Modulators of Immune Response [M]. The Evolutionary Trail, SOS Publications, Fair Haven, 1996: 251–266.
    [89]孙德文,詹勇,许梓荣.日粮营养调控动物肠道黏膜免疫研究[J].饲料博览, 2003, (5): 63–83.
    [90] Lall S P. Nutrition and health of fish [R]. Institute for Marine Biosciences National Research Council of Canada Halifax, Canada, 2000: 13–23.
    [91] Kiron V, Fukuda H, Okamoto N, Takeuchi T. Protein nutrition and defence mechanisms in rainbow trout Oncorhynchus mykiss [J]. Comp. Biochem. Physiol., 1995b, 111: 351–359.
    [92] Bergot F. Carbohydrate in rainbow trout diets: Effects of the level and source of carbohydrate and the number of meals on growth and body composition [J]. Aquaculture, 1979a, 18: 157–167.
    [93]Furuichi M, Yone. Change of blood sugar and plasma insulin levels in glucose tolerance test [J]. Bull. Soc. Sci. Fish., 1981, 47: 761–764.
    [94] Anderson J, Jackson A J, MattS A J, Capper B S. Effects of dietary carbohydrate and fibre on the tilapia (Oreochromis nilohcus) [J]. Aquaculture, 1984, 37: 303–314.
    [95] Degani G, Viola S, Levnon D. Effects of dietary carbohydrate source on growth and body composition of the European eel (Anguilla anguilla) [J]. Aquaculture, 1986, 52: 97–104.
    [96] Hilton J W, Dixon D G. Effect of increased liver glycogen and liver weight on liver function in rainbow trout, Salmo gairdneri R. recovery from anaesthesia and plasma 35S–sulphobromophthalein clearance [J]. Fish Dis., 1982, 5: 185–195.
    [97] Dixon D G, Hilton J W. Effects of available dietary carbohydrate and water temperature on the chronic toxicity of waterborne copper to rainbow trout Salmo gairdneri [J]. Can. J. Fish. Aquatic. Sci., 1985, 42: 1007–1013.
    [98] Hemre G L, Mommsen T P, Krogdahl A. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes [J]. Aquacult. Nutr., 2002, 8: 175–194.
    [99] McGarry J D. What if Minkowsli had been ageusic? An alternative angle on diabetes [J]. Science, 1992, 258: 766–770.
    [100] Ballantyne J S. Jaws: the inside story. The metabolism of elasmobranch fishes [J]. Comp. Biochem. Physiol., 1997, 118B: 703–742.
    [101] DeRoos R, DeRoos C C, Werner C S, Werner H. Plasma levels of glucose, alanine, lactate and beta–hydroxybutyrate in the unfed spiny dogfish shark (Squalus acanthias) after surgery and following mammalian insulin infusion [J]. Gen. Comp. Endocrinol., 1985, 58: 28–43.
    [102] Cowey C B, Higuera M, Adron J W. The effect of dietary composition and of insulin on gluconeogenesis in rainbow trout (Salmo gairdneri) [J]. Br. J. Nutr., 1977a, 38: 385–395.
    [103] Tashima L, Cahill G F. Effects of insulin in the toadfish, Opsanus tau [J]. Gen. Comp. Endocrinol., 1968, 11: 262–271.
    [104] Mommsen T P, Plisetskaya E M. Insulin in fish and agnathans: History, structure and metabolic regulation [J]. Rev. Aquat. Sci., 1991, 4: 225–259.
    [105] Shikata T, Iwanaga S, Shimeno S. Effects of dietary glucose, fructose and galactose on hepatopancreatic enzyme activities and body composition in carp [J]. Fish. Sci., 1994, 60: 613–617.
    [106] Ottolenghi C, Puviani A C, Ricci D, Brighenti L, Morsiani E. The effect of hi temperature on blood glucose level in two teleost fish (Ictalurus melas and Ictalurus punctatus) [J]. Comp. Biochem. Physiol., 1995, 111A: 229–235.
    [107] West T G, Arthur P G, Surez R K, et al. In vivo utilization of glucose by heart and locomotory muscles of exercising rainbow trout (Onchorhynchus rnykus) [J]. Journal of Experimental Biology, 1993, 177: 63–79.
    [108] Milligan C L. Metabolic recovery from exhaustive exercise in rainbow trout [J]. Comp. Biochem. Physiol., 1996, 113A: 51–60.
    [109]Hyvarinen H, Holopainen L J, Piironen J. Anaerobic metabolism of crucian carp (Carassius carassius L.) I. Annual dynamics of glycogen reserves in nature [J]. Comp. Biochem. Physiol., 1985, 85A: 797–803.
    [110] Soengas J L, Strong E F, Fuentes J, Veira J A R, Adnres M D. 1996, Food deprivation and refeeding in Atlantic salmon Salmo salar: effects on brain and liver carbohydrate and ketone bodies metabolism [J]. Fish Physiol. Biochem., 1996, 15: 491–511.
    [111] Walton M J, Covey C B. Aspects of intermediary metabolism in salmonid fish [J]. Comp. Biochem. Physiol., 1982, 73B: 59–79.
    [112] Degani G, Dosoretz C. Source of dietary carbohydrate, how it affects fatty acid composition in European eels (Antuilla anguilla) [J]. J. Aquacult. Trop., 1998, 13: 261–268.
    [113] Hemre G I, Storebalken T. Tissue and organ distribution of 14C in dextrin–adapted Atlantic salmon after oral administration of radiolabelled 14C1–glucose [J]. Aquacult. Nutr., 2000, 6: 229–234.
    [114] Van den Thillart G. Energy metabolism of swimming trout (Salmo gairdneri). Oxidation rates of palmitate, glucose, lactate, alanine, leucine and glutamate [J]. J. Comp. Physiol., 1986, 156B: 511–520.
    [115] Buhler D R, Halver J E. Nutrition of salmonid fishes: IX. Carbohydrate requirements of Chinook salmon [J]. J. Nutr., 1961, 74: 307–318.
    [116] Austreng E, Risa S, Edwards D J, Hvidsten H. Carbohydrate in rainbow trout diets. II. Influence of carbohydrate levels on chemical composition and feed utilisation of fish from different families [J]. Aquaculture, 1977, 11: 39–50.
    [117] Yone Y, Toshima N. The utilization of phosphorus in fish meal by carp and black sea bream [J]. Bull. Jap. Soc. Sci. Fish., 1979, 45: 753–756.
    [118] Alexis M N, Papaparaskeva–Papoutsoglou E. Amin–transferase activity in the liver and white muscle of Mugil capito fed diets containing different levels of protein and carbohydrate [J]. Comp. Biochem. Physiol., 1986, 83B: 245–249.
    [119] Baeverfjord G. Digestible and indigestible carbohydrates in rainbow trout diets [D]. Drscient Thesis Norwegian College of veterinary Medicine, 1992:
    [120] Ojaveer H, Morries P C, Davies S J, Russell P. The response of thick–lipped grey mullet, Chelon labrosus (Risso), to diets of varied protein–to–energy ratio [J]. Aquacult. Res., 1996, 27: 603–612.
    [121] Phillips A M, Brockway D R. Utilization of carbohydrates by trout [J]. Fish. Res. Bull., 1948, 11: 3–44.
    [122] Pieper A, Pfeffer E. Studies on the effect of increasing proportions of sucrose gelatinized maize starch in diets for: rainbow trout (Salmo gairdneri R.) on the utilization of dietary energy and protein [J]. Aquaculture, 1980, 20: 333–342.
    [123] Hilton J W, Athinson J L. Response of rainbow trout (Salmo gairdneri) to increased levels of availablecarbohydrate in practical trout diets [J]. Nutr., 1982, 47: 597–607.
    [124] Lee D J, Putnam G B. The response of rainbow trout to varying protein/energy ratios in a test diet [J]. J. Nutr., 1973, 103: 916–922.
    [125] Bergot F. Probleèmes particuliers posés par I'utilisation des glucides chez la truite arc–en–ciel [J]. Annu. Nutr. Aliment., 1979b, 33: 247–257.
    [126] Deng D F, Refstie S, Hung S S.Glycemic and glycosuric responses in white sturgeon (Aciperiser transmoatnus) after oral administration of simple and complex carbohydrates [J]. Aquaculture, 2001, 199:107–117.
    [127] Cowey C B, Adron J W, Brown D A, Shanks A M. The metabolism of glucose by plaice and the effect of dietary energy source on protein utilisation in plaice [J]. Br. J. Nutr., 1975, 33: 219–231.
    [128] Vornanen M. Effect of acute anoxia on the function of crucian carp heart: significance of cholinergic and purinergic control[A]. In: Gamperl K, Farrell A, Machinlay D. Cardiovascular Function in Fishes [M]. Academic Press, London, 1999: 115–119.
    [129] Hemre G L, Lie ?, Lied E, Lambertsen G. Starch as an energy source in feed for cod (Gadus morhua): Digestibility and Retention [J]. Aquaculture, 1989, 80: 261–270.
    [130] Hemre G L, Karlsen ?, Lehmann G, Holm J C, Lie ?. The utilization of protein, fat and glycogen in cod (Gadus morhua) [J]. Fisk. Dir. Slr. Series Ernxing, 1993b, 6: 1–9.
    [131] Hemre G L, Sandnes K, Lie ?, Waagbo R. Blood chemistry and organ nutrient composition in Atlantic salmon, Salmo salar L., fed graded amounts of wheat starch [J]. Aquacult. Nutr., 1995b, 1: 37–42.
    [132]Hemre G L, Mangor–Jensen A, Rosenlund G, Waagbo R, Lie ?. Effect of dietary carbohydrate on gonadal development in broodstock cod, Gadus morhua L. [J]. Aquacult. Res., 1995c, 36: 399–408.
    [133] Garcia–Rejon L, Sanchez–Muros M J, Cerda J, Dela Higuera M. Fructose 1,6 bisphosphatase activity in liver and gonads of sea bass (Dicentrarchus labrax). Influence of diet composition and stage of the reproductive cycle [J]. Fish Physiol. Biochem., 1997, 16: 93–105.
    [134] Hemre G L, Lambertsen G, Lie ?. The effect of dietary carbohydrate on the stress response in cod (Gadus morhua) [J]. Aquaculture, 1991, 95: 319–328.
    [135] Hemre G L, Bjonevik M, Beattie C, Bjonsson B T, Hansen T. Dietary carbohydrate influence on photo period manipulations affecting growth and salt–water tolerance in Atlantic salmon Salmo salar [J]. Aquacult. Nutr., 2001, 7: 1–10.
    [136] Lauff R F, Wood C M. Effects of training on respiratory gas exchange, nitrogenous waste excretion, and fuel usage during aerobic swimming in juvenile rainbow trout (Oncorhynchus mykiss) [J]. Can. J. Fish. Aquat. Sci. J. Can. Sci. Halieut. Aquat., 1997, 54: 566–571.
    [137] Black D, Love R M. The sequential mobilisation and restoration of energy reserves in tissues of Atlantic cod during starvation and refeeding [J]. J. Comp. Physiol., 1986, 156: 469–479.
    [138] Kiessling A, Johansson L, Kiessling K H. Effects of starvation on rainbow trout muscle [J]. Acta. Agric. Scand., 1990, 40: 309–324.
    [139] Thibault M, Bher U, Guderley H. Seasonal variation of muscle metabolic organization in rainbow trout (Oncorhynchus myknss) [J]. Fish Physiol. Biochem., 1997, 16: 139–155.
    [140] Medale F, Poh J M, Vallee F, Blanc D. Utilisation of a carbohydrate–rich diet bycommon carp reared at 18 and 25℃[J]. Cybium., 1999, 23: 139–152.
    [141] Garling D L, Wilson R P. Effect of carbohydrate–to–lipid ratios on growth and body composition of fingerling channel catfish [J]. Prog. Fish. Cult., 1977, 39: 43–47.
    [142] Shimeno S, Hosakawa H, Hirata H, Takeda M. Comparative studies on carbohydrate metabolism of yellowtail and carp [J]. Bull. Jpn. Soc. Sci. Fish., 1977, 43: 213–217.
    [143] Takeuchi T, Watanabe T, Ogino C. Availability of carbohydrate and lipid as dietary energy sources for carp [J]. Bull. Jpn. Soc. Sci. Fish., 1979, 45: 977–982.
    [144] Furuichi M, Yone Y. Effect of dietary dextrin levels on the growth and feed efficiency, the chemical composition of liver and dorsal muscle, and the absorption of dietary protein and dextrin in fishes [J]. Bull. Jpn. Soc. Sci. Fish, 1980, 46:225–229.
    [145] Shimeno S. Yellowtail, Seriola quinqueradiata[A]. In: Wilson R P. Handbook of Nutrition Requirement of Finfish [M]. Boca Raton, 1991: 181–191.
    [146] Furuichi M, Yone Y. Studies on nutrition of red sea bream. 4. Nutritive value of dietary carbohydrate[J]. Rep. Fish. Res. Lab.Kyushu Univ. (Japan), 1971a, 1: 75–81.
    [147] Ellis S C, R C Reigh. Effects of dietary lipid and carbohydrate levels on growth and body composition of juvenile red drum Sciaenops ocellstus [J]. Aquaculture, 1991, 97: 383–394.
    [148] Berger A, Halver J E. Effect of dietary protein, lipid and carbohydrate content on thegrowth, feed efficiency and carcass composition of striped bass, Morone saxahlis Walbaum, fingerlings [J]. Aquacult Fish Manage, 1987, 18: 345–356.
    [149] Nematipour G R, Brown M L, Gatlin III D M. Effect of dietary carbohydrate aipid ratio on growth and body composition of hybrid striped bass [J]. J. World Aquacult. Soc. 1992, 23:128–132.
    [150] El–Sayed A M, Garling D L Jr. Carbohydrate–to–lipid ratios in diets for Tilapia zillr fingerlings [J]. Aquaculture, 1988, 73: 157–163.
    [151] Edwards D J, Austreng E, Risa S, Gjedrem T. Carbohydrate in rainbow trout diets. 1. Growth of fish of different families fed diets containing different proportions of carbohydrate [J]. Aquaculture, 1977, 11: 31–38.
    [152] Shimeno S, Duan–Cun–Ming, Takeda M. Regulation of carbohydrate metabolism in fish. XVI. Metabolic response to dietary carbohydrate to lipid ratios in Oreochromis niloticus [J]. Bull. Jpn. Soc. Sci. Fish., 1993, 59: 827–833.
    [153] Furuichi M, Yone Y. Availability of carbohydrate in nutrition of carp and red sea bream [J]. Bull. Jpn. Soc. Sci. Fish., 1982a, 48: 945–948.
    [154] Hung S S O, Fynn–Aikins F K, Lutes P B, et al. Ability of juvenile white sturgeon (Acipenser transmontanus) to utilize different carbohydrate sources [J]. J. Nutr., 1989, 119: 727–733.
    [155] Hilton J W, Plisetskaya E M, Leatherland J F. Does oral 1,5,3'–triiodo–L–thronine affect dietary glucose utilization and plasma insulin levels in rainbow trout (Salmo gairdneri) [J]. Fish Physiol. Biochem., 1987, 4: 113–120.
    [156] Bureau D. The partitioning of energy from digestible carbohydrates by rainbow trout (Oncorhynchus myknss) [J]. Diss. Abst. Int. Sci. Eng., 1998, 58B: 33–79.
    [157] Arnesen P, Krogdahl ?, Sundby A. Nutrient digestibilities, weight gain and plasma and liver levels of carbohydrate in Atlantic salmon (Salmo salar L.) fed diets containing oats and maize [J]. Aquacult. Nutr., 1995, 1: 151–158.
    [158] Deng D E, Refstie S, Hemre G L, Crocker C E, Chen H Y, Cech J J, Hung S S O. A new technique of feeding, repeated sampling of blood and continuous collection of urine in white sturgeon [J]. Fish Physiol. Biochem., 2000, 22: 191–197.
    [159] Akiyama T, Murai T, Nose T. Effects of various dietary carbohydrates on growth, feed efficiency, and body composition of chum salmon fry [J]. Bull. Jpn. Soc. Sci. Fish, 1982, 33: 112–116.
    [160] Rawles S, Lochmann R. Effects of Amylopectin/Amylose starch ratio on growth, body composition and glycemic response of sunshine bass Morone chrysops♀X M. saxahlis♂[J]. J. World Aquacult. Soc., 2003, 34: 278–288.
    [161] Wilson R P, Poe W E. Apparent inability of channel catfish to utilize dietary mono and disaccharides as energy sources [J]. Nutr., 1987, 117: 280–285.
    [162] Shiau S Y, Liang H S. Carbohydrate utilization and digestibility by tilapia, Oreochromis nilohcus×O. aureus, are affected by chromic oxide inclusion in the diet [J]. J. Nutr., 1995, 125: 976–982.
    [163] Robinson E H, Li H M. Catfish nutrition. Part I. Nutrients and feeds[J]. Aquacult, 1995: 44–53.
    [164] Lee S M, Kim K D, Lall S P. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus) [J]. Aquaculture, 2003, 221:427–438.
    [165] Lee S M, Lee J H. Effect of dietary glucose, dextrin and starch on growth and body composition of juvenile starry flounder Plahchthys stellatus[J]. Fish Sci., 2004, 70:53–58.
    [166] Tian L, Liu Y, Hung S S O. Utilization of glucose and cornstarch by juvenile grass carp [J]. N. Am. J. Aquacult., 2004, 66: 141–145.
    [167] Jantrarotai W, Sitasit P, Raichapakdee S. The optimum carbohydrate to lipid ratio in hybrid Clarias catfish (Clarias macrocephalus×C.gariepinus) diets containing raw broken rice [J]. Aquaculture, 1994, 127: 61–68.
    [168] Hemre G L, Sandnes K, Lie ?, Torrissen O, Waagbo R. Carbohydrate nutrition in Atlantic salmon, Salmo salar L., growth and feed utilization [J]. Aquacult. Res., 1995a, 26: 149–154.
    [169] Shikata T, Khevvali D, Shimeno S. Regulation of carbohydrate metabolism in fish. XV. Effect of feeding rates on hepatopancreas enzymes and body composition in common carp [J]. Bull. Jpn. Soc. Sci. Fish., 1993, 59: 835–839.
    [170] Shimeno S, Shikata T. Regulation of carbohydrate metabolism in fish. XIV. Effects of acclimatization temperature and feeding rate on carbohydrate metabolizing enzyme activity and lipid content of common carp [J]. Bull. Jpn. Soc. Sci. Fish., 1993b, 59: 661–666.
    [171] Kim J D, Kaushik S J. Contribution of digestible energy from carbohydrates and estimation of protein/energy requirements for growth of rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 1992, 106: 161–169.
    [172] Koops H, Tiews K, Tiews J, Gropp J. St?rke and fettverwertung netzk?figgehaltener regenbogenforellen (Salmo gairdneri) [J]. Aquaculture, 1974, 4: 277–286.
    [173] Al–Asgah N A, Ali A. Feeding of various carbohydrate sources on the growth performance and nutrient utilization in Oreochromis nilohcus. In: International Symposium on Aquaculture Technology and Investment Opportunities [J]. Riyadh Saudi Arabia, 1993: 11–14.
    [174] Erfanullah, Jafri A K. Growth rate, feed conversion, and body composition of Catla catla Labeo rohita, and Cirrhinus mrigala fry fed diets of various carbohydrate–to–lipid ratios [J]. J. World Aquacult. Soc. 1998b, 29: 84–91.
    [175] Erfanullah, Jafri A K. Growth, feed conversion, body composition and nutrient retention efficiencies in fingerling catfish, Heteropneustes fossilis (Bloch), fed different sources of dietary carbohydrate[J]. Aquacult. Res. 1999, 30: 43–49.
    [176] Hemre G I, Hansen T. Utilisation of different dietary starch sources and tolerance to glucose loading in Atlantic salmon during parr smolt transformation [J]. Aquaculture, 1998, 161: 145–157.
    [177] Beamish, F W H, Hilton J W, Niimi E, Stinger S J. Dietary carbohydrate and growth, body composition and heat increament in rainbow trout (Salmo gairdneri) [J]. Biochem. Fish Physiol., 1986: 85–91.
    [178] Bergot F, Breque J. Digestibility of starch by rainbow trout: effects of the physical state of starch and of the intake level [J]. Aquaculture, 1983, 34: 203–212.
    [179] Helland S J, Grisdale–Helland B. Growth, feed utilization and body composition of juvenile Atlantic halibut (Hippoglossus hippoglossus) fed diets differing in the ratio between the macronutrients [J]. Aquaculture, 1998, 166: 49–56.
    [180] Hemre G L, Lie O, Sundby A. Dietary carbohydrate utilisation in cod (Gadus morhua): metabolic responses to feeding and fasting [J]. Fish Physiol. Biochem, 1993, 10: 455–463.
    [181] Cowey C B, Knox D, Walton M J, Adron. The regulation of gluconeogenesis by diet and insulin in rainbow trout [J]. Br. J. Nutr., 1977b, 38: 463–470.
    [182] Mourrieras F, Foufelle F, Foretz M, Morin J, Bouche S, Ferre P. Induction of fatty acid synthase and S14 gene expression by glucose, xylitose and dihydroxyacetone in cultured rat hepatocytes is closely correlated with glucose 6–phosphate concentrations [J]. Biochem. J., 1997, 326:345–349.
    [183] Kletzien R F, Harris P K, Foellmi L L. Glucose–6–phosphate dehydrogenase: a `housekeeping' enzyme subject to tissue–specific regulation by hormones, nutrients, and oxidant stress [J]. FASEB J. 1994, 8: 174–181.
    [184] Shimeno S, Shikata T. Regulation of carbohydrate metabolism in fish. XIII. Seasonal changes in carbohydrate metabolizing enzyme activity and lipid content of carp reared outdoors [J]. Bull. Jpn. Soc. Sci. Fish., 1993a, 59: 653–659.
    [185] Hemre G I, Kahrs F. 14C–injection in Atlantic cod (Gadus morhua), metabolic responses and excretion via the gill membrane [J]. Aquacult. Nutr., 1997, 2: 3–8.
    [186] Lin H, Romsos D R, Tack P I, Leveille G A.. Effects of fasting and feeding various diets on hepatic lipogenic enzyme activities in coho salmon Oncorhynchus kisutch (Walbaum) [J]. Nutr., 1977b, 107: 1477–1483.
    [187] Roberts R J. Nutritional pathology of teleosts [J]. Fish Pathology, 1989: 337–362.
    [188] Jauncey K. The effect of varying dietary protein level on the growth, food conversion, protein utilizationand body composition of juvenile tilapia Sarotherodon mosambicus[J]. Aquaculture, 1982, 27: 34–54.
    [189] Fletcher T C. Dietary effects on stress and health [M]. London, New York: Academic Press 1981: 147–69.
    [190] Ellis A E. Stress and the modulation of defence mechanisms in fish [J]. In: Pickering A D. Stress in fish [M]. London, New York: Academic Press, 1981: 147–169
    [191] Maule A G, Tripp R A, Kaattari S L, Schreck C B. Stress alters the immune function and disease resistance in Chinook salmon (Oncorhynchus tshawytscha) [J]. Endocrinol, 1989, 120: 135–142.
    [192] Wiik R, Andersen K, Ulgenes I, Egidius E. Cortisol–induced increase in susceptibility of Atlantic salmon, Salmo salar together with effects on the blood cell pattern [J]. Aquaculture, 1989, 83: 201–215.
    [193] Barton B A, Iwama G K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids [J]. Annu. Rev. Fish. Dis., 1991, 1: 3–26.
    [194] Dixon D G, Hilton J W. Influence of available dietary carbohydrate content on tolerance of waterborne copper by rainbow trout, Salmo gairdneri Richardson [J]. Fish Biol., 1981, 19: 509–517.
    [195] Hilton J W, Hodson P V. Effect of increased dietary carbohydrate on selenium metabolism and toxicity in rainbow trout (Salmo gccirdneni) [J]. Nutr., 1983, 113: 1241–1248.
    [196] Waagbo R, Glette J, Sandnes K, Hemre G I. Influence of dietary carbohydrate on blood chemistry, immunity and disease resistance in Atlantic salmon, Salmo salar L.[J]. Fish Dis., 1994, 17: 245–258.
    [197] Kumar S, Sahu N P, Pal A K, et al. Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohita juveniles [J]. Fish & Shellfish Imrnunology, 2005, 19: 331–344.
    [198] Vielma J, Koskela J, Ruohonen K, et al. Optimal diet composition for European whitefish (Coregonus lavaretus): carbohydrate stress and immune parameter responses [J]. Aquaculture, 2003, 225: 32–16.
    [199] Pinto J, Rivlin R S. Regulation of formation of covalently bound flavins in liver cerebrum by thyroid hormones [J]. Arch. Biochem. Biophys., 1979, 194: 211–213.
    [200] McCormick D B. Riboflavin[A]. In: Brown M L. Present knowledge in nutrition, 6thed[M]. International life sciences institute, Washington, D C, 1990: 146–154.
    [201] Rivlin R. Medical progress: riboflavin metabolism [J]. N. Engl. J. Med., 1970, 283: 463–472.
    [202] Toshiyuki T, Takeshi M. Antioxidant effects of protein–bound riboflavin and free riboflavin [J]. Journal of food science, 1988, 53(6): 1851–1853.
    [203] Toshiyuki T. Antioxidant effects of riboflavin in enzymic lipid peroxidation [J]. Journal of agricultural and food chemistry, 1992, 40(10): 1727–1730.
    [204] Levin Q, Cogan U. Riboflavin deficiency and the function and fluidity of rat erythrocyte membranes [J]. The Journal of nutrition, 1990, 120 (8): 857–861.
    [205]吴辉云,林利平,等.核黄素缺乏大鼠红细胞膜流动性与脂质过氧化关系的研究[J].营养学报, 1993, 15(4): 407–410.
    [206]梁慧芳,柳启沛,等.核黄素对大鼠脂质过氧化影响的研究[J].卫生研究, 2000, 28(6): 370–371.
    [207] Dutta P. Disturbances in glutathione metabolism and resistance to malaria: understanding and new concepts[J]. Soc. Pharm. Chem., 1993, 2: 11–48.
    [208] Dupree H K. Vitamin essential for the growth of channel catfish [J]. Ictalurus punctatus. U. S. Sport fish and wildlife Tech. Papers, 1966, 7: 7–13.
    [209] Murai T, Andrews J W. Riboflavin requirement of channel catfish fingerlings [J]. Nutr., 1978b, 108: 1512–1517.
    [210] Aoe H, Masuda I, Saito T, Komo A. Water–soluble vitamin requirements of carp. Requirement for vitamin B2 [J]. Bull. Jpn. Soc. Sci. Fish., 1967, 33: 355–360.
    [211] Ogino C. B vitamin requirements of carp–II. Requirements for riboflavin and pantothenic acid [J]. Bull. Jpn. Soc. Sci. Fish., 1967, 33:351–354.
    [212] Takeuchi L, Takeuchi T, Ogino C. Riboflavin requirements in carp and rainbow trout [J]. Bull. Jpn. Soc. Sci. Fish., 1980, 46: 733–737.
    [213] Arai S, Nose T, Hashimoto Y. Qualitative requirements for of young eels, Anguilla japonica, for water–soluble vitamins and their symptoms [J]. Bull. Freshwater Res. Lab. Tokyo, 1972, 22: 69–83.
    [214] Woodward W D. Riboflavin nutrition of the rainbow trout. Proceedings of the 17th annual nutritionconference for feed manufacturers [J]. Aquaculture, 1983: 102–107.
    [215] Ikeda S, Ishibash Y, Murata O, Nasu T, Harada T. Qualitative requirements of the Japanese parrot fish for water–soluble vitamins [J]. Bull. Jpn. Soc. Sci. Fish., 1988, 54: 2029–2035.
    [216] Halver J E. The vitamins [A]. In: Halver J E. Fish Nutrition, 3nd edition[M]. Academic Press, New York, 2002: 66–98.
    [217] Woodward B. Dietary vitamin requirements of cultured young fish, with emphasis on quantitative estimates for salmonids [J]. Aquaculture, 1994, 124: 133–168.
    [218] Lim C, LeaMaster B R, Brock J A. Riboflavin requirement of fingerlings red hybrid tilapia grown in seawater [J]. World Aquacult. Soc., 1993, 24: 451–458.
    [219] Woodward B. Riboflavin requirement for growth, tissue saturation and maximal flavin–dependent enzyme activity in young rainbow trout (Salmo gairdneri) at two temperatures [J]. Nutr., 1985,115: 78–84.
    [220] Amezaga M R, Knox D. Riboflavin requirements in on–growing rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 1990, 80: 87–98.
    [221] Leith D, Holmes J, Kaattari S. Effects of vitamin nutrition on the immune response of hatchery–reared salmonids [R]. Annual Report, FY, U.S. Department of Energy, Bonneville Power Administration, 1990:
    [222] Deng D F, Wilson R P. Dietary riboflavin requirement of juvenile sunshine bass (Morone Chrysops♀×Morone Saxatilis♂) [J]. Aquaculture, 2003, 218: 695–701.
    [223] Lipmann F, Kaplan N O, Novelli G D, et al. Coenzyme for acetylation, a pantothenic acid derivative [J]. Biol. Chem., 1947, 167: 869–870.
    [224] Wakil S J, Stoops J K, Joshi V C. Fatty acid synthesis and its regulation [J]. Annu. Rev. Biochem., 1983, 52: 537–579.
    [225] Tahiliani A G, Beinlich C L, et al. Pantothenic acid–in health and disease [J]. Vtam. Horm., 1991, 46: 165–228.
    [226]丁玉琴.泛酸在脂肪酸代谢中的作用[J].国外医学卫生学分册, 2000, 27(5): 304–306.
    [227] Herbert E, Uhler M. Biosynthesis of polyprotein precursors to regulator peptides [J]. Cell, 1982, 30: 1–2.
    [228] Odonohue T L, Handelmann G E. N–acetylation regulates the behavioral activity of melanotropin in a multineurotransmitter newon [J]. Science, 1982, 215: 1125–1127.
    [229] Plesofsky V N, Brambl R. Pantothenic acid and coenzyme A in cellular modification of proteins [J]. Annu. Rev. Nutr., 1988, 8: 461–482.
    [230] Hosokawa H. The vitamin requirements of fingerling yellowtail, Seriola quinqueradiata [D]. Ph D dissertation, Kochi University Japan, 1989:
    [231] Wilson R P, Bowser P R, Poe W E. Dietary pantothenic acid requirement of fingerling catfish [J]. Nutr., 1983, 113: 2224–2228.
    [232] Butthep C, Sitasit P, Bonyaratpalin M. Watre–soluble vitamins essential for the growth of Clarias [A]. In: Cho C Y, Cowey C B, Watanabe T. Finfish nutritoion in Asia, methodological approaches to reach and development [M]. International Develpoment Research Center, Ottawa, 1985:118–129.
    [233] Ashley L M. Nutritional pathology [A]. In: Halver J E. Fish Nutrition [M]. Academic Press, Inc., New York, 1972: 439–537.
    [234] Bell M V, Henderson R J, Sargent J R. Effects of dietary polyunsatuated fatty acid deficies on mortality, growth and gill structure in the turbot, Scophthalmus maximus [J]. Fish Biol., 1985, 26: 181–191.
    [235] Poston H A, Page J W. Gross and histological signs of dietary deficiencies of biotin and pantothenic acid in lake trout, Salvelinus namaycush [J]. Cornell Vet., 1982, 72: 242–261.
    [236] Murai T, Andrews J W. Pantothenic acid requirements of channel catfish fingerlings [J]. Nutr., 1979, 109: 1140–1142.
    [237] Mali B, Jaruratt W, Krasindhu H. Pantothenic acid requirements of seabass [R]. Proceedings of the fifth Asian Fish Nutrition Workshop, 1994, 9: 23–29.
    [238] Brunson M W, Robinette H R, Bowser P R, Wellborn T L. Nutritional gill disease associated with starter feeds for channel catfish fry [J]. Prog. Fish. Cult., 1983, 45: 119–120.
    [239] Wolf E. Dietary gill diseases of trout [J]. Fish. Res. Bull., 1945, 7:1–32.
    [240] Phillips A M, Tunison A V, Shaffer H B, White G K, Sallivan M W, Vincent C, Brockway D R, McCay CM. The nutrition of trout. The vitamin requirement of trout [J]. Fish. Res. Bull., 1945, 7: 1–31.
    [241] McLaren B A, Keller E, O’Donnell D J, Elvehjem C A. The nutrition of rainbow trout. I. Studies of vitamin requirements [J]. Arch. Biochem. Biophys, 1947, 15: 169–178.
    [242] Coates J A, Halver J E. Water–soluble vitamin requirements of silver salmon. Special Scientific Report Fisheries [M]. Washington, D C, Bureau of Sport Fisheries and Wildlife, 1958:
    [243] Kitamura S, Suwa T, Ohara S, Nakagawa K. Studies on vitamin requirements of rainbow troutⅡ. The defficiency symptoms fourteen kinds of vitamin [J]. Bull. Jpn. Soc. Sci. Fish., 1967, 33: 1120–1125.
    [244] Yone Y, Fujii M. Studies on nutrition of red sea bream 10 Qualitative requirements for water–soluble vitamins [J]. Rep. Fish. Res. Lab. Kyushu Univ. (Jpn), 1974, 2: 25–32.
    [245] Yano T, Nakao M, Furuichi M. Effects of dietary choline, pantothenic acid and vitamin C on the serum complement activity of red sea bream[J]. Nippon Suisan Gakkaishi, 1988, 205: 141–144.
    [246] Cho C Y, Woodward B. Dietary pantothenic acid requirements of young rainbow trout (Oncorhynchus mykiss) [J]. FASEB, 1990, 4: 37–47.
    [247] Roem A J, Sticjney R P, Kohler C C. Dietary pantothenic acid requirement of the blue tilapia [J]. Prog. Fish. Cult., 1991, 53: 216–219.
    [248] Halver J E. The vitamins[M]. Fish Nutrition, Academic Press, New York and London, 1972: 29–103.
    [249]黄厚今,王瑞淑.维生素B6的功能和临床应用研究进展[J].贵州医药, 1998, 22(5): 389–391.
    [250]徐豫松,徐俊良. VB6对家蚕氮代谢的影响[J].蚕业科学, 2001, 27(1): 34–37.
    [251] Okada M, Shibuya M. Dietary protein as a factor affecting vitamin requirement [J]. Nutr. Sci. Vitaminol., 1998, 44(1): 37–45.
    [252] Harripersad R, Burger F J. The effect of a subnormal dose of vitamin B6 on plasma lipids in the rat [J]. lnt. Vitam. Nutr. Res., 1997, 67: 95–101.
    [253] Albrektsen S, Sandnes K, Glette J, Waagbo R. Influence of dietary vitamin B6 on tissue vitamin B6 contents and immunity in Atlantic salmon,Salmo salar L.[J]. Aquacult. Res., 1995, 26: 331–339.
    [254] Tsuge H, Hotta N, Hayakawa T. Effects of vitamin B–6 on (n–3) polyunsaturated fatty acid metabolism [J]. Journal of nutrition, 2000, 130: 333–334.
    [255] Cunnane S C, Manku M S, Horrobin D F. Accumulation of linoleic andγ–linolenic acids in tissue lipids of pyridoxine–deficient rats [J]. Journal of nutrition, 1984, 114: 1754–1761.
    [256] Rose D P, Leklem J E, Brown R R, Linkswiler H M. Effect of oral contraceptives and vitamin B6 deficiency on carbohydrate metabolism [J]. Am. J. Clin. Nutr., 1975, 28: 872–878.
    [257] Black A L, Guirard B M, Snell E E. The behavior of muscle phosphorylase as a reservoir for vitamin B–6 in the rat [J]. Journal of Nutrition, 1978, 108: 670–677.
    [258] Hardy R W, Halver J E, Brannon E L. Effect of dietary protein level on the pyridoxine requirement and disease resistance of Chinook salmon [R]. In proceedings of the world symposium on finfish nutrition and fish feed technology, 1979: 253–260.
    [259]荫士安,山口贤次,等.维生素B6对硒的生物利用率影响的研究:V大鼠硒利用率与维生素B6剂量的依赖关系[J].卫生研究, 1996, 6: 371–374.
    [260]赵会军,张乃哲,等.维生素B6对实验室肝癌大鼠脂质过氧化的影响[J].肿瘤研究与临床, 2000, 12(1): 11–13.
    [261] Jain S K, Lim G. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ K+)–ATPase activity reduction in high glucose–treated human erythrocytes [J]. Free radical biology&medicine, 2001, 30(3): 232–237.
    [262] Nishigori H, Moudgil V K, Toft D. Inactivation of avian receptor binding to ATP–Sepharose by pyridoxine 5–phosphate [J]. Biochem Biophys. Res. Commun., 1978, 80: 112–118.
    [263] Compton M M, Cidlowski J A. Vitamin B–6 and glucocorticoid action [J]. Endocr. Rev., 1986, 7: 140–148.
    [264] Natori Y, Oka T. Vitamin B6 modulation of gene expression [J]. Nutrition research, 1997, 17 (7): 1199–1207.
    [265] Allgood V E, Cidlowski J A. Novel role for vitamin B–6 in steroid hormone action: a link between nutrition and the endocrine system [J]. Nutr. Biochem, 1991, 2: 523–534.
    [266] Wanakowat J,Boonyaratpalin M, Pimoljinda T ,et al. Vitamin B6 requirement of huvennile seabass , Lates calcarifer[A]. In: Takeda M, Watanabe T. Proc. Third Int Symp. on Feeding and Nutr . In Fish[C]. 28 Aug. 1– Sept. 1989, Toba.Japan. 1989: 141–147.
    [267] Albrektsen S, Waagbo R, Sandnes K. Tissue vitamin B6 concentrations and aspartate aminotransferase (AspT) activity in Atlantic salmon (Salmo salar) fed graded dietary levels of vitamin B6 [J]. Fisk Dir Skr (Ser Ernaring), 1993, 6: 21–34.
    [268] Herman R L. Histopathology associated with pyridoxine deficiency in Atlantic salmon (Salmo salar) [J]. Aquaculture, 1985, 46: 173–177.
    [269] Kissil G W, Cowey C B, Adron J W, Richerds R H. Pyridoxine of the gilthead bream, Sparus aurata [J], Aquaculture, 1981, 23: 243–255.
    [270] Herman R L. Histopathology associated with pyridoxine deficiency in Atlantic salmon (Salmo salar) [J]. Aquaculture, 1985 ,46 :173– 177.
    [271] Halver J E. Nutrition of salmonoid fishes.III Water–soluble vitamin requirements of chinook salmon [J]. Nutr., 1957, 62: 225–243.
    [272] Ogino C. B vitamins requirements of carp, Cyprinus carpio: I. Deficiency symptons and requirement of vitamin B6 [J]. Bull. Jpn. Soc. Sci. Fish., 1965, 31: 546–551.
    [273] Andrews J W, Murai T. Pyridoxine requirements of channel catfish [J]. Nutr., 1979, 109: 533–537.
    [274] Agrawal N K, Mahajan C L. Pathology of vitamin B6 deficiency in Channa (=Ophiocephalus) punctatus Bloch [J]. Fish Dis., 1983, 6: 439–450.
    [275] Jurss K, Jonas L. Electron microscopic and biochemical investigations on the pyridoxine deficiency of the rainbow trout (Salmo gairdneri Richardson)[J]. Zool. Jahrb. Physiol., 1981, 85: 181–196.
    [276] Cowey C B. Nutrition: estimating requirements of rainbow trout [J]. Aquaculture, 1992, 100: 177–189.
    [277] Shiau S Y, Wu M H. Dietary vitamin B6 requirement of grass shrimp, Penaeus monodon [J]. Aquaculture, 2003, 225: 397–404.
    [278] Mohamed J S.Dietary pyridoxine requirement of the Indian catfish, Heteropneustes fossilis [J]. Aquaculture, 2001, 194: 327–335.
    [279] Woodward B. Dietary requirements of some water soluble vitamins for young rainbow trout [R]. In: Proceedings of the 25th Annual Nutrition Conference for Feed Manufacturers, Toronto, Ontario, 1989: 25–33.
    [280] Ekhard E Z, et a1. Present knowledge in nutrition, 7th ed [M]. International Life Sciences Institute, Washington, DC. 1998: 154–199.
    [281] Joshi R, Adhikari S. Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity [J]. Free radical biology&medicine, 2001, 30(12): 1390–1399.
    [282] John M J, Mahajan C L. The physiological response of fishes to a deficiency of cyanocobalamin and folic acid [J]. J. Fish Biol., 1979, 14: 127–133.
    [283] Cowey C B ,Woodward B,The dietary requirement of young rainbow trout (Oncorhynchus mykiss) for folic acid [J]. Nutr, 1993, 123: 1594–1600.
    [284] Dupree H K. Vitamin Essential for Growth of channel catfish, Ictalurus punctatus [R]. Techni pap no. 7. Bureau of sport fishes and Wildlife , Washington, DC, 1996:
    [285] Duncan P L, Lovell R T, Butterworth C E , Freeberg L F, Tamura T. Dietary folate requirement determined for channel catfish, Ictalurus punctatus [J]. Nutr., 1993, 123: 1888–1897.
    [286] Duncan P L, Lovell R T. Effect of folic acid on growth,survival and hematology in channel catfish (Ictalurus punctatus) [R]. Twenty–second Annual Conference of the World Aquaculture Society, San Juan ,Puerto Rico, 1991, 7: 16–20.
    [287] Phillips A M. Folic acid as an anti–anemia factor for brook trout[J]. Prog. Fish–Cult., 1963, 25: 132–134.
    [288] Kawatsu H. Studies on the anemia of fish–VII. Folic acid anemia in brook trout [J]. Bull. Freshwater Fish. Res. Lab., 1975, 25: 21–31.
    [289] Lim C, Klesius P H. Influence of dietary folic acid on growth and resistance of Nile tilapia, Oreochromis niloticus to Streptococcus iniae [R]. 6th Asian Fisheries Forum Book of Abstracts, 2001: 150.
    [290] Shiau S Y, Huang S Y. Dietary folic acid requirement determined for grass shrimp, Penaeus monodon [J]. Aquaculture, 2001, 200: 339–347.
    [291] Kashiwada K, Kanazawa A, Teshima S. Studies on the production of B vitamins by intestinal bacteria Production of folic acid by intestinal bacteria of carp [J]. Mem. Fac. Fish. Kagoshima. Univ., 1971, 20:185–189.
    [292] Robbins K R, Norton H W, Baker D H. Estimation of nutrient requirements from growth data [J]. J. Nutr., 1979, 109: 1710–1714.
    [293] Were K E. Determination of the tryptophan requirement of the juvenile rainbow trout using the indicator oxidation technique [D]. M. Sc. Thesis, University of Guelph, Guelph, Canada, 1989: 199.
    [294] Mai K S, Zhang C X, Ai Q H, et al. Dietary phosphorus requirement of arge yellow croaker (Pseudosciaena crocea) [J]. Aquaculture, 2006, 251: 346–353.
    [295] Lall S P. The minerals [A]. In: Halver J E, Hardy R W. Fish Nutrition, 3ed [M]. Academic Press, New York, 2002: 264–274.
    [296]Kaushik S J. Mineral nutrition [A]. In: Guillaume J, Kaushik S J, Bergot P, Métailler R. Nutrition and Feeding of Fish and Crustaceans [M]. Praxis Publishing, Chichester UK, 2001: 169–181.
    [297] Lovell R T. Nutrition and Feeding of Fish[M]. New York, NY, 1989: 260 .
    [298] Ogino C, Takeda H, Mineral requirement in Fish– III: Calcium and phosphorus requirements in carp [J]. Bull. Jap. Soc. Scient Fish, 1976, 42: 763–779.
    [299] Onishi T, Suzuki M, Takeuchi M, Change in carp hepatopancreatice activities with dietary phosphorus levels [J]. Bu11. Jpn. Soc. Sci. Fish., 1981, 47: 353–357.
    [300] Roy P K, Lall S P. Dietary phosphorus requirement of juvenile haddock (Melanogrammus aeglefmus)[J]. Aquaculture, 2003, 221: 451–468.
    [301] Boyd C E. Phosphorus dynamic in ponds [J]. Proc. Ann. Conf. South Assoc.Game Comm, 1971, 25: 418–426.
    [302] Phillips A M Jr, Podoliak H A, Brockway D R, Vaughn R R. The nutrition of the trout[J]. Fish. Res. Bull., 1958, 21: 93.
    [303] Phillips A M, Podilak H A, Brockway D R, et al. Mineral metabolism of the trout[J]. Fish. Res. Bull., 1957, 21: 33–70.
    [304] Riche M, Brown P B. Availability of phosphorus from feedstuffs fed to rainbow trout, Oncorhynchus mykiss[J]. Aquaculture, 1996, 142: 269–282.
    [305] Bureau D P, Cho C Y. Phosphorus utilization by rainbow trout (Oncorhynchus mykiss): estimation of dissolved phosphorus waste output [J]. Aquaculture, 1999, 179: 127–140.
    [306] Rodehutscord M, Gregus Z, Pfeffer E. Effect phosphorus intake on faecal and non–faecal phosphorus excretion in rainbow trout (Oncorhynchus mykiss) and the consequences for comparative phosphorus availability studies[J]. Aquaculture, 2000, 188: 383–398.
    [307] Eya J C, Lovell R T. Availability phosphorus requirements of food–size channel catfish (Ictalurus punctatus) fed practical diets in ponds [J]. Aquaculture, 1997, 154: 283–291.
    [308] Ketola H G. Requirement of Atlantic salmon for dietary phosphorus [J]. Trans. Am. Fish. Soc., 1975, 104: 548–551.
    [309] Dougall D S, Woods L C, Douglass L W, et al. Dietary phosphorus requirement of juvenile striped bass (Morone saxatilis) [J].World Aquac. Soc., 1996, 27: 82–91.
    [310] Vielma J, Koskela J, Ruohonen K. Growth, bone mineralization, and heat and low oxygen tolerance in European whitefish (Coregonus lavaretus L.) fed with graded levels of phosphorus [J]. Aquaculture, 2002, 212: 321–333.
    [311]游文章,黄忠志,廖朝兴,等.草鱼对饲料中磷需求量的研究[J].水产学报, 1987, 11: 285–292.
    [312]黄耀桐,刘永坚.草鱼对营养盐钙磷及饲料钙磷镁铁的利用率[J].水生生物学报, 1990, 14: 145–152.
    [313] Vielma J, Lall S P. The control of phosphorus homeostasis of Atlantic salmon, Salmo solar L., in fresh water [J]. Fish Physiol. Biochem., 1998c, 18: 83–93.
    [314] Ouchi K,Yamada J,Kosaka S. On the resorption of scales and associated cells in precocious male parr of the Masu salmon (Oncorhynchus masou) [J]. Bull. Jpn. Soc. Fish., 1972, 38: 423–430.
    [315] Persson P, Sundell K, Bjornsson B T. Estradiol–17β–induced calcium uptake and resorption in juvenile rainbow trout Oncorhynchus mykiss [J]. Fish Physiol. Biochem., 1994, 13: 379–386.
    [316] Persson P, Takagi Y, Bjornsson B T. Tartrate resistant acidphosphatase as a marker for scale resorption in rainbow trout Oncorhynchus mykiss: effect of estradiol–17βtreatment and refeeding [J]. Fish Physiol. Biochem, 1995, 14: 329–339.
    [317] Garrod D J, Newell B S. Ring formation in Tilapia esculenta [J]. Nature, 1958, 181: 1411–1412.
    [318] Mugiya Y, Watabe N. Studies on fish scale formation and resorption:Ⅲ. Effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish. Carassius auratus, and the killifish, Fundulus heteroclitus [J]. Comp. Biochem. Physiol. 1977, 57A: 197–202.
    [319] Vielma J, Lall S P, Koskela J, et al. Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 1998a, 163: 307–321.
    [320] Hardy R W, Casillas E, Cotter R T. Measurement of biotin and pantothenic acid status in rainbow trout (Salmon gaitdneri) [J]. International Symposium on Feeding and Nutrition in Fish, August, Bergen, Norway. 1987, 23–27.
    [321] Watanabe T, Mvurakami A, Takeuchi L, et al. Requirement of chum salmon held in freshwater for dietary phosphorus [J]. Bull. Jpn. Soc. Fish., 1980, 46: 361–367.
    [322] ?sg?rd T, Shearer K D. Dietary phosphorus requirement of juvenile Atlantic salmon Salmo salar. L [J]. Aquacult. Nutr., 1997, 3: 17–23.
    [323] Baeverfjord G, ?sg?rd T, Shearer K D. Development and detection of phosphorus deficiency in Atlantic salmon (Salmo salar L.) parr and post–smolts [J]. Aquacult. Nutr., 1998, 4: 1–11.
    [324] Shearer, K D. Whole body magnesium concentration as an indicater of magnesium status in rainbow trout (Salmo gairdneri) [J]. Aqaculture, 1989, 77: 201–210.
    [325] Refstie S, Storebakken T, Roem A J. Feed consumption and conversion in Atlantic salmon Salmo salar fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigens [J]. Aquaculture, 1998, 162: 301–312.
    [326] Baeverfjord G., ?sg?rd T, Shearer K D. Development and detection of phosphorus deficiency in Atlantic salmon, Salmo salar L., parr and post–smolts [J]. Aquacult. Nutr., 1998, 4: 1–11.
    [327] Sakamoto S, Yone Y. Effects of dietary calcium/phosphorus ratio upon growth, feed efficiency and blood serum Ca and P level in ed sea bream [J]. Bull. Jpn. Sci. Fish., 1973, 39(4): 343–348.
    [328] Nose T, Arai S. Resent advances in studies on the mineral nutrition of fish in Japan [J]. T. V. R., 1976: 584–590.
    [329] Cowey C B, Sargent J R. Nutrition in Fish Physiology [M]. New York: Academic Press, 1979, 3: 1–69.
    [330] Andrews J W, Murai T, Campbell C. Effects of dietary calcium and phosphorus on growth, food conversion, bone ash and hematocrit levels of catfish [J]. Journal of Nutrition, 1973, 103: 766–771.
    [331] Sakamoto S, Yone Y. Effects of dietary phosphorus level on chemical composition of red sea bream [J]. Bull. Jpn. Soc. Sci. Fish., 1978, 44: 227–229.
    [332] Takeuchi M, Nakazoe J. Effect of dietary phosphorus on lipid content and its composition in carp [J]. Bull. Jpn. Soc. Sci. Fish., 1981, 47: 347–352.
    [333] Rodehutscord M. Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 500g to supplements of dibasic sodium phosphate in semipurified diets [J]. Nutr., 1996, 126: 324–331.
    [334] Yang S D, Lin T S, Liu F G, et al. Influence of dietary phosphorus levels on growth, metabolic response and body composition of juvenile silver perch (Bidyanus bidyanus) [J]. Aquaculture, 2006, 253: 591–601.
    [335] Zhang C X, Mai K S, Ai Q H, et al. Dietary phosphorus requirement of juvenile Japanese Seabass (Lateolavrax japonicus) [J]. Aquaculture, 2006, 255: 201–209.
    [336] Skonberg D I, Yogev L, Hardy R W, et al. Metabolic response to dietary phosphorus intake in rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 1997, 157: 11–24.
    [337] Takeuchi M, Nakazoe J. Effect of dietary phosphorus on lipid content and its composition in carp [J]. Bull. Jpn. Soc. Sci. Fish., 1981, 47: 347–352.
    [338] Henry Y, Gueguen L, Rérat A. Influence of the level of dietary phosphorus on the voluntary intake of energy and metabolic utilization of nutrients in the growing rat [J]. British Journal of Nutrition, 1979, 42:127–137.
    [339] Hegsted D M. Energy needs and energy utilization [J]. Nutr. Rev., 1974, 32:33–38.
    [340] Sakamoto S, Yone Y. A principal source of deposited lipid in phosphorus deficient red sea bream [J]. Bull. Jpn. Soc. Sci. Fish., 1980, 46: 1227–1230.
    [341] Ketola H G, Richmond M E. Requirement of rainbow trout for dietary phosphorus and its relationship to the amount discharged in hatchery effluents [J]. Trans. Amer. Fish. Soc., 1994, 123: 587–594.
    [342] Wilson R P, Robinson E H, Gatlin D M III, et al. Dietary phosphorus requirement of channel catfish [J]. J. Nutr., 1982, 112: 1197–1202.
    [343] Ogino C, Takeda. Rainbow Trout[A]. in: Bull. Jap L, Takeda H, et al. Availability of dietary phosphorus in Carp[M]. Soc. Scient. Fish, 1979, 45: 1527–1532.
    [344]清水,千秋.鱼类的矿物质要求[J].国外水产, 1990, 3: 18–20.
    [345] Sugiura S H, Dong F M, Hardy R W. Effects of dietary supplements on the availability of minerals in fish meal; preliminary observations [J]. Aquaculture, 1998, 160: 283–303.
    [346] Buyukates Y, Rawles S D, Gatlin III D M. Phosphorus fractions of various feedstuffs and apparent phosphorus availability to channel catfish [J]. Aquaculture, 2000, 62: 184–188.
    [347] Riche M, Brown P B. Incorporation of plant protein feedstuffs into fish meal diets for rainbow trout increase phosphorus availability [J]. Aquac. Nutr., 1999, 5: 101–105.
    [348] Satoh S, Hernández A, Tokoro T, et al. Comparison of phosphorus retention efficiency between rainbow trout (Oncorhynchus mykiss) fed a commercial diet and a low fish meal based diet [J]. Aquaculture, 2003, 224: 271–282.
    [349] Pointillart A, Fontaine N, Thomasset M. Phytate phosphorus utilization and intestinal phosphatases in pigs fed low phosphorus: wheat or com diets [J]. Nutr. Rep. Int., 1984, 29: 473–483.
    [350] Liener I E. Implications of antinutritional components in soybean foods [J]. Crit. Rev. Food. Sci. Nutr., 1994, 34: 31–67.
    [351] Singh M, Krikorian A D. Inhibition of trypsin activity in vitro by phytate [J]. J. Agric. Food. Chem., 1982, 30: 799–800.
    [352] Spinelli J, Houle C R,6570Wekell J C. The effect of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium [J]. Aquaculture, 1983, 30: 71–84.
    [353] Richardson N L, Higgs D A, Beames R M, McBride J R. Influence of dietary calcium, phosphorus, zinc and sodium phytaye level on cataract incidence, growth and histopathology in juvenile chinook salmon (Oncorhynchus tshawytscha) [J]. Journal of Nutrition, 1985, 115: 553–567.
    [354] McClain W R, Gatlin D M. Dietary zinc requirement of Oreochromis aureus and effects of dietary calcium and phytate on zinc bioavailability [J]. Journal of the World Aquaculture Society, 1988, 19: 103–108.
    [355] Gatlin D M, Philips H F. Dietary calcium, phytate and zine interaction in channel catfish [J]. Aquaculture, 1989, 79: 259–266.
    [356] Hossain M A, Jauncey K. The effects of varying dietary phytic acid, calcium and magnesium levels on the nutrition of common carp, Cyprinus carpio [J]. AGRIS, 1993: 705–715
    [357] Brown P B. Comparison of fecal collection methods for determining phosphorus absorption in rainbow trout [J]. Fish Nutrition in Practice, 1993, 61: 443–447.
    [358] Cain K D, Garling D L. Pretreatment of soybean meal with phytase for salmonoid diets toreduce phosphorus concentrations in hatchery effluents [J]. Prog. Fish. Cult., 1995, 57: 114–119.
    [359] Rodehutscord M, Pfeffer E. Effects of supplemental microbial phytase on phosphorus digestibility and utilization in rainbow trout Oncorhynchus mykiss [J]. Water Sci. Technol., 1995: 143–147.
    [360] Jackson, L S, Li M H, Robinson E H. Use of microbial phytase in channel catfish Ictalurus punctatus diets to improve utilization of phytate phosphorus [J]. World Aquacult. Soc., 1996, 27: 309–313.
    [361] Sch?fer A, Koppe W M, Meyer–Burgdorff K H, et al. Effects of microbial phytase on the utilization of native phosphorus by carp in a diet based on soybean meal [J]. Water Sci. Technol., 1995, 31: 149–155.
    [362] Papatryphon E, Howell R A, Soares J H. Growth and mineral absorption by striped bass Morone saxatilis fed a plant feedstuff based diet supplemented with phytase [J]. World Aquacult. Soc., 1999, 30:161–173.
    [363] Vielma J, Ruohonen K, Peisker M. Dephytinization of two soy proteins increase phosphorus and proteinutilization by rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 2002b, 204: 145–156.
    [364] Lanari D, Agaro E D, Turri C. Use of nonlinear regression to evaluate the effects of phytase enzyme treatment of plant protein diets for rainbow trout Oncorhynchus mykiss [J]. Aquaculture, 1998, 161: 345–356.
    [365] Nordrum S, Asgard T, Shearer KD, Arnessen P. Availability of phosphorus in fish bone meal and inorganic salts to Atlantic salmon (Salmo salar) as determined by retention [J]. Aquaculture, 1997, 157: 51–61.
    [366] Sakamoto S, Yone Y. Availabilities phosphorus compounds as dietary phosphorus sources for red sea bream [J]. Journal of the Faculty of Agriculture of Kyushu University, 1979, 23: 177–184.
    [367] Lovell R T, Li Y P. Dietary phosphorus requirement of channel catfish Ictalurus punctatus [J]. Trans. Am. Fish. Soc., 1978, 107: 617–621.
    [368] Nakamura Y. Effects of dietary phosphorus and calcium contents on the absorption of phosphorus in the digestive tract of carp [J]. Bull. Jpn. Sci. Fish., 1982, 48(3): 409–414.
    [369] Lall S P. Salmonid nutrition and feed production [J]. Proceedings of the special session on salmonid aquaculture. Los Angeles, C A: World Aduaculture Society, 1991: 107–23.
    [370] Lall S P, Bishop F J, Studies on mineral and protein utilization by Atlantic salmon in seawater [J]. Fish. Mar. Serv. Tech. Rep., 1977, 688: 1–16.
    [371] Shearer K D. The use of factorial modeling to determine the dietary requirements for essential elements in fishes [J]. Aquaculture, 1995, 133: 57–72.
    [372] Schwarz F J. Determination of mineral requirements of fish [J]. J. Appl. Ich., 1995, 11:164–174.
    [373] Shearer K D, Hardy R W. Phosphorus deficiency in rainbow trout fed a diet containing deboned fillet scrap [J]. Prog. Fish. Cult., 1987, 49: 192–197.
    [374] Pfeffer E, Piper. Application of the factorial approach for deriving nutrient requirement for growing fish [A]. In:Halver J E, Tiews K. Fish Nutrition and Fish feed Technology[M]. Heeneman Verlagsgesellschaft MBH, Berlin, 1979: 545–553.
    [375] Robinson E H, Bomascus D L, Brown P B, Linton T L. Dietary calcium and phosphorus requirements of Oreochromis aureus reared in calcium–free water [J]. Aquaculture, 1987, 64: 267–276.
    [376] Davis D A, Robinson E H. Dietary phosphorus requirements of juvenile red drum Sciaenops ocellatus [J]. World Aquacult. Soc., 1987, 18: 129–136.
    [377] Phillips A M Jr. Effect of dietary and water temperature on the blood phosphorus of brook trout [J]. Prog. Fish. Cult., 1962, 24: 22–25.
    [378] Hille S. A literature review of the blood chemistry of rainbow trout Salmo gairdneri Richardson [J]. Fish Biol., 1982, 20: 535–569.
    [379] Bijvoet O L M. Indices for the measurement of the renal handling of phosphate [A]. In: Massry S G, Fleisch H. Renal Handling of Phosphate [M]. Plenum Medical Book, New York, NY, 1980: 1–37.
    [380] Sugiura S H, Raboy V, Young K A. Availability of phosphorus trace elements in low–phytate varieties of barley and corn for rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 1999, 70: 285–296.
    [381] Hughes K P, Soares J H. Efficacy of phytase on phosphorus utilization in practical diets fed to striped bass Monrce Saxatilis [J]. Aquac. Nutr., 1998, 4: 130–140.
    [382] Hardy R W, Fairgrieve W T, Scott T M. Periodic feeding of low–phosphorus diet and phosphorus retention in rainbow trout (Oncorhynchus mykiss) [J]. Nutr. Rev., 1993, 32: 33–38.
    [383] LeGrow S M, Beamish F W H. Influence of dietary protein and lipid on apparent heat increment of rainbow trout (Salmo gairdneri) [J]. Can. J. Fish. Aquat. Sci., 1986, 43: 19–25.
    [384] Pillay T V R. Aquaculture and the Environment [M]. Oxford, Fishing News Books, Blackwell Publishing Ltd., 1992: 189.
    [385] Pearson T H, Black K D. The environmental impact of marine cage culture [A]. In: Black K D. Environmental Impacts of Aquaculture[M]. Sheffield Academic Press, Sheffield, 2001: 1–31.
    [386] Naylor R L, Goldburg R J, Primavera J H, Kautsky N, Beveridge M C M, Clay J, Folke C, Lubchenco J, Mooney H, Troell M. Effect of aquaculture on world fish supplies[J]. Nature, 2000, 405: 1017–1024.
    [387]韩茂森.养殖鱼类的新秀─澳洲宝石鲈[J].科学养鱼, 2002, 04: 59.
    [388] Fiogbe E D, Kestemont P, Melard C, Micha J C. The effects of dietary crude protein on growth of theEuropean perch Perca fluviatilis [J]. Aquaculture, 1996, 44: 239–249.
    [389] Adrian E, Shim K F. Growth response of juvenile Barbodes alms fed isocaloric diets with variable protein levels [J]. Aquaculture, 1997, 158: 321–329.
    [390]Jose M V, Fernandez–Palacios H, Marie H E. The effects of varying dietary protein level on the growth, feed efficiency, protein utilization and body composition of gihhead sea bream fry [J]. Fish. Sci., 1996, 62: 620–623.
    [391] Jauncey K. The effect of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapia Sarotherodon mosambicus [J]. Aquaculture, 1982, 27: 34–54.
    [392] Lim C, Sukawongs S, et a1. A preliminary study on the protein requirements of Chanos chanos (Forskal) fry in a controlled environment [J]. Aquaculture, 1979, 17: 195–205.
    [393] Mazid M A, Tanaka Y. et a1. Growth response of Tilapia zilli fingerlings fed isocaloric diets with variable protein levels [J]. Aquaculture, 1979, 18: 115–122.
    [394] Delong D C, Halver J E, et al. Nutrition of sairnonid fishes: VI. Protein requirements of Chinook salmon at two temperatures [J]. Nutr., 1958, 65: 589–599.
    [395] Anderson R J, Keinholtz E W, et a1. Protein requirements of smallmouth bass and largemouth bass [J]. Nutr., 1981, 111: 1085–1097.
    [396] Aksnes A, Hjertnes T, et a1. Effect of dietary protein level on growth and carcass composition in Atlantic halibut (Hippoglossus L.) [J]. Aquaculture, 1996, 145: 225–233.
    [397] Teng S K, Chua T E. Diurnal feeding activities of the estuary grouper Epinephelus salmoides Maxwell, reared in floating net cages [D]. School of Biological Sciences, Universii Sains Malaysia, Penang, 1978:
    [398] Ogino C, Saito K. Protein nutrition in fish: I. The utilization of dietary protein by young carp [J]. Bull. Jpn. Soc. Sci. Fish., 1970, 36: 250–254.
    [399] Dabrowski K. Protein requirement of grass carp Ctenopharyngodon idella Val [J]. Aquaculture, 1977, 12: 63–73.
    [400] Das I, Ray A K. Growth response and feed conversion efficiency in Cirrhinus mrigala Ham. fingerlings at varying protein levels [J]. Aqua. Trop., 1991, 6: 179–185.
    [401] Huang C H, Shyong W J. Effect of dietary protein levels on growth of Varicorhinus barbatulus [J]. Chin. Biosci., 1998, 41: 1–10.
    [402] Chuapoehuk W. Protein requirement of walking catfish, Clarias batrachus (Linnaeus) fry [J]. Aquaculture, 1987, 63: 215–219.
    [403] Cowey C B, Sargent J R. Fish Nutrition [J]. Ad. Mar. Biol., 1972, 10: 383–492.
    [404] Engin K, Carter C G. Ammonia and urea excretion rates of juvenile red drum (Sciaenops ocellatus) [J]. Aquaculture, 2001, 53: 243–252.
    [405] Adron J W, Blair A, Cowey C B, et al. Effect of dietary energy level and dietary energy souree on growth, feed conversion and body composition of turbot (Scophthalnlusmaximus L.)[J]. Aquaeulture, 1976, 7:125–132.
    [406] Rychly J. Nitrogen balance in trout. II. Nitrogen excretion after feeding diets with varying protein and carbohydrate levels [J]. Aquaculture, 1980, 20: 343–350.
    [407] Cho C Y, Kaushik S J. Effects of protein intake on metabolizable and net energy values of fish diets [J]. Academic Press, 1985: 95–117.
    [408] Shimeno S, Takeda M, Takayama S, et al. Adaptation of hepatopancreatic enzymes to dietary carbohydrates in carp[J]. Bull. Jpn. Soc. Sci. Fish., 1981, 47: 71–77.
    [409] Mohanty S S, Samantaray K. Effect of varying level of dietary protein on the growth performance and feed conversion efficiency of snakehead, Channa striatus [J]. Aqua. Nutr., 1996, 2: 89–94.
    [410] Zeitter M, Kirchgessner M, Schwarz F J. Effect of different protein and energy supplies on carcass composition of carp, Cyprinus carpio (L.) [J]. Aquaculture, 1984, 36: 37–48.
    [411] Reis L M, Reutebuch E M, et al. Protein to energy ratios in production diets and growth, feed conversion and body composition of channel catfish Ictalurus punctatus [J]. Aquaculture, 1989, 77: 21–27.
    [412] Clark A E, Watanabe W O, et a1. Growth, feed conversion and protein utilization of Florida red tilapia fed isocaloric diets with different protein levels in seawater pools [J]. Aguaculture, 1990, 88: 75–85.
    [413] Khan M S, Ang K J, et a1. Optimum dietary protein requirement of a Malaysian freshwater catfish(Mystus nemurus) [J]. Aquaculture, 1993, 112: 227–235.
    [414] Tidwell J H, Webster C D, Coyle, et a1. Effect of dietary protein level on second year growth and water quality for largemouth bass (Micropterus salmoides) raised in ponds [J]. Aquaculture, 1996, 145: 213–223.
    [415] Papaparaskeva–Papoutsoglou E, Alexis M N. Protein requirements of young grey mullet, Mugil capito [J]. Aguaculture, 1986, 52: 105–115.
    [416] Felipe Fernández , Anna G, Miquel , Marlon Córdoba , Manuel Varas , Isidoro Metón , Anna Caseras , Isabel V Baanante. Effects of diets with distinct protein–to–carbohydrate ratios on nutrient digestibility, growth performance, body composition and liver intermediary enzyme activities in gilthead sea bream (Sparus aurata L.) fingerlings [J]. Journal of Experimental Marine Biology and Ecology, 2007, 343: 1–10.
    [417] Olevera–Novoa M A, Gasca–Leyva E, Ray H E. The dietary protein requirements of Cichlasoma synspolum Hubbs fry [J]. Aquacult. Cult. Res., 1996, 27: 167–173.
    [418] Van der Meer M B, Machiels M A M, et al. The effect of dietary protein level on growth, protein utilization and body composition of Colossoma macropomum (Cuvier) [J]. Aquacult. Cult. Res., 1995, 26: 901– 909.
    [419]于书坤.中国对虾消化酶的研究[J].海洋科学集刊, 1987, 28: 85–99.
    [420]董云伟.饲料蛋白水平对罗氏沼虾生长和消化酶活性的影响[J].北京师范大学学报, 2001, 37(1): 96–99.
    [421] McDonald P, Edwards R A, Greenhalgh J F D. Animal Nutrition[M], ELBS edition of 4th ed. Longman Group (FF) Ltd., Hong Kong, 1987: 125.
    [422] Moitra R, Bhattacharya S. Influence of diet on amylase activity in the fish Channa punctatus (Bloch) [J]. Indian J. Exp. Biol., 1975, 13: 314–315.
    [423]蔡春芳.青鱼和鲫鱼对饲料糖的利用及其代谢机制的研究[D].上海:华东师范大学, 2004: 70–87.
    [424] Lowry O H, Rosebrough N J, FarrA L, et al. Protein measurement with the Folin phenol reagent [J]. Biol Chem, 1951, 193: 265–275
    [425] Glock G E, McLean P. Further studies on the properties of glucose–6–phosphate dehydrogenase and 6–phosphoglucose dehydrogenase in rat liver [J]. Biochem, 1953, 55: 400–408.
    [426] Kawaga Y, Kawaga A, Shimazono N. Enzymatic studies on the metabolic adaptation of hexose monophosphate shunt in rat liver [J]. Biochem, 1964, 56: 364–371.
    [427] Wise E M, Ball E G. Malic enzyme and lipogenesis [J]. Proc. Natl. Acad. Sci. USA, 1964, 52:1255–1263.
    [428]段彪,向枭,周兴华,等.齐口裂腹鱼饲料中适宜脂肪需要量的研究[J].动物营养学报, 2007, 19 (3): 232–236.
    [429] Murat Yigit, Shunsuke Koshio, Shirrichi Teshima, et al. Dietary protein and energy requirements of juvenile Japanese flounder, Paralichthys olivaceus [J]. Appl. Sci., 2004, 4(3): 486–492.
    [430] Du Z Y, Y J Liu, L X Tian, J T Wang, Y Wang, G Y Liang. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella) [J]. Aquaculture Nutrition, 2005, 11: 139–146.
    [431] Espinós F J, A Tomás, L M Pérez, S Balasch, M Jover. Growth of dentex fingerlings (Dentex dentex) fed diets containing different levels of protein and lipid [J]. Aquaculture, 2003, 218: 479–490.
    [432] Pei Z, S Xie, W Lei, X Zhu, Y Yang. Comparative study on the effect of dietary lipids level on growth and feed utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Gunther) [J]. Aquaculture Nutrition, 2004, 10: 209–216.
    [433] Luo Z, Y Liu, K Mai, L Tian, D Liu, X Tan, and H Lin. Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating net cages [J]. Aquaculture International, 2005, 13: 257–269.
    [434] Caceres–Martinez C M, Cadena– Roa, Metailler R. Nutritional requirements of turbot (Scophthalmus maximus) I. A preliminary study of protein and lipid utilization [J]. World Maricult Soc., 1984 ,15: 191–202.
    [435] Lee S M, Cho S H, Kim KD. Effects of dietary protein and energy levels on growth and body composition of juvenile Japanese flounder Paralichthys olivaceus [J]. J. World Aquacult. Soc., 2000, 31: 306–315.
    [436] Rodehutscord M, Pfeffer E. Requirement for digestible and efficiency of utilization of digestible energy Oncorhynchus mykiss for retention in rainbow trout [J]. Aquaculture, 1999, 179: 95–107.
    [437] McGoogan B B, Gatlin D M. Dietary manipulations affecting growth and nitrogenous waste production of red drum, Sciaenops ocellatus I. Effects of dietary protein and energy levels [J]. Aquaculture, 1999, 178: 333–348.
    [438] Likimani T A, Wilson R P. Effects of diet on lipogenic enzyme activities in channel catfish hepatic and adipose tissue[J]. Nutr., 1982, 112: 112–117.
    [439] Lin H, Romsos D R, Tack P I, Leveille, G A. Influence of dietary lipid on lipogenic enzyme activities in coho salmon Oncorhynchus kisutch (Walbaum) [J]. Nutr., 1977a, 107: 846–854.
    [440] ?rnesen P, Krogdahl A, Kristiansen I ?, Lipogenic enzyme activities in liver of Atlantic salmon Salmo salar L. [J]. Comp. Biochem. Physiol., 1993, 105B: 541– 546.
    [441] Iniesta M G, Cano M J, Garrido–Pertierro A. Properties and function of malate enzyme from Dicentrarchus labrax L. liver [J]. Comp. Biochem. Physiol., 1985, 80: 35–39.
    [442] Walzem R L, Storebakken T, Hung S S O, Hansen R J. Relationship between growth and selected liver enzyme activities of individual rainbow trout [J]. Nutr., 1991, 121: 1090–1098.
    [443] Hung S S O, Storebakken T. Carbohydrate utilization by rainbow trout is affected by feeding strategy[J]. Nutr, 1994, 124: 223–230.
    [444] Brauge C, Corraze G, Medale F. Effects of dietary levels of carbohydrate and lipid on glucose oxidation and lipogenesis from glucose in rainbow trout, Oncorhynchus mykiss, reared in freshwater or seawater [J]. Comp. Biochem. Physiol, 1995, 111A: 117–124.
    [445] Catacutan M R, Coloso R M. Growth of juvenile Asian seabass, Lates calcarifer, fed varying carbohydrate and lipid levels [J]. Aquaculture, 1997, 149: 137–144.
    [446] Henderson R.J, Sargent J R. Lipid biosynthesis in rainbow trout, Salmo gairdneri, fed diets of differing lipid content [J]. Comp. Biochem. Physiol, 1981, 69: 31–37.
    [447] Kaushik S J, Medale F, Fauconneau B, et al. Effect of digestible carbohydrates on protein/ energy utilization and on glucose metabolism in rainbow trout ( Salmo gairdneri R. ) [J]. Aquaculture, 1989, 79: 63–74.
    [448]王道尊,龚希章,刘玉芳.饲料中脂肪的含量对青鱼鱼种生长的影响[J].水产学报, 1987, 11(1): 23–28.
    [449] Wilson R P, Moreau Y. Nutrient requirements of catfishes (Siluroidei) [J]. Aquatic Living Resources, 1996, 9: 103–111.
    [450] Lee Oh Kim, Sang–Min Lee. Effects of the dietary protein and lipid levels on growth and body composition of bagrid catfish, Pseudobagrus fulvidraco[J]. Aquaculture, 2005, 243: 323–329.
    [451]张泽芸,张季涛,陈先均.饲料中的脂肪含量对长吻鮠鱼种生长的影响[ J ].西南农业学报, 1991, 4 (4) : 110– 114.
    [452]汪留全,胡王,李海洋,卢文轩,江河.饲料中脂肪水平对幼蟹生长和饲料利用率的影响[J].上海水产大学学报, 2003 , 12 (1) : 21– 23.
    [453]邱岭泉,张永旺.饲料中添加不同含量脂肪对俄罗斯鲟(Acipenser greldenstedti Brandt)稚鱼生长的影响[J].水产学杂志, 2001, 14(2): 57–60.
    [454] Spannhof L, Plantikow H. Studies on the carbohydrate digestion in rainbow trout [J]. Aquaculture, 1983, 30: 95–108.
    [455] Weber J M, Haman F. Pathways for metabolic fuels and oxygen in high performance fish [J]. Comparative Biochemistry Physiology, 1996, 113A: 33–38.
    [456] Hillestad M, Johnsen F, Asgard T. Protein to carbohydrate ratio in high—energy diets for Atlantic salmon (Salmo salar L.) [J]. Aquacultare Research, 2001, 32: 517–523.
    [457] TranulisM A, Dregni O, Christophersen B, et al. A glucokinase–like enzyme in the liver of Atlantic salmon (Salm osalar) [J]. Comp. Biochem. Physiol., 1996, 114B (1): 35–39.
    [458] Panserat S, Médale F, Brèque J, et al. Lack of significant long term effect of dietary carbohydrates on hepatic glucose–6–phosphatase expression in rainbow trout (Oncorhynchus mykiss) [J]. Nutr. Biochem., 2000, 11 (1): 22–29.
    [459] Panserat S, Médale F, Brèque J, et al. Hepantic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp[J]. Am. J. physilo. Regual. Integr. Comp. Physiol., 2000, 278: 1164–1170.
    [460] Panserat S, Cap illa E, Gutierrez J, et al. Glucokinase is highly induced and glucose–6–phosphatasepoorly rep ressed in liver of rainbow trout (Oncorhynchus mykis) by a single meal with glucose [J]. Comp. Biochem. Physiol., 2001, 128B: 275–283.
    [461] Kirchner S, Kaushik S, Panserat S, et al. Effect of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid on hepatic glucosemetabolism in rainbow trout (Oncorhynchus mykiss) [J]. Comp Biochem and Physiol, 2003, 134A (2): 337–347.
    [462] Wilson R P. Utilization of dietary carbohydrate by fish [J]. Aquaculture, 1994, 124: 67–80.
    [463]田丽霞.草鱼的糖代谢研究[D].广州:中山大学, 2003: 10–44.
    [464] Brauge C, Medale F, Corraze G. Effect of dietary carbohydrate levels on growth, body composotion and glycaemia in rainbow trout, Oncorhynchus mykiss, reared in seawate [J]. Aquaculture, 1994, 123 (1/2): 109–120.
    [465] Furuichi M, Yone Y. Effect of dietary dextrin levels on growth and feed efficiency, the chemical composition of liver and dorsalmuscle, and the absorp tion of dietary p rotein and dextrin in fishes [J]. Bull. Jpn. Soc. Sci. Fish., 1980, 46: 225–229.
    [466] Fynn–Aihins K, Hung S S O, Liu W, Li H. Growth of juvenile white sturgeon fed different levels of D–glucose, lipogenesis and liver composition[J]. Aquaculture, 1992, 105: 61–72.
    [467] Hutchins C G, Rawles S D, GatlinⅢD M.Effects of dietary carbohydrate kind and level on growth, body composition and glycemic response of juvenile sunshine bass (Morone chrysops♀×M.saxatilis♂) [J].Aquaculture, 1998, 161: 187–199.
    [468] Rawels S D, GatlinⅢD M.Carbohydrate utilization in striped bass (Morone saxatilis) and sunshine bass (M. chrysops♀×M. saxatilis♂) [J]. Aquaculture, 1998, 161: 201–212.
    [469] Ali M Z, Jauncey K. Optimal dietary carbohydrate to lipid ratio in African catfish Clarias gariepinus (Burchell 1822) [J]. Aquacult. Int., 2004, 12: 169–180.
    [470] Moon TW, Foster GD. Tissue carbohydrate metabolism, gluconeogenesis and hormonal and evironmental influences [A], In: Hochachka P W. Metabolic Biochemistry[M]. New York: Elsevier, 1995: 65–100
    [471] Tranulis M A, Christophersen B, Blom K A, et al. Glucose dehydrogenase, glucose–6–phosphate dehydrogenase and hexokinase in liver of rainbow trout (Salm ogairdneri). Effects of starvation and temperature variations [J]. Comp. Biochem. Physiol., 1991, 99B: 687–691.
    [472] Borrebaek B, Christophersen B. Hepatic glucose phosphorylating activities in perch DK (Perca fluviatilis) fter different dietary treatments [J]. Comp. Biochem. Physiol., 2000, 125B: 387–393.
    [473] Girard J, Perdereau D, NarkewiczM, et al. Hormonal regulation of liver phosphoenolpyruvate carboxykinase and glucokinase gene exp ression at weaning in the rat [J]. Biochimie., 1991, 73 (1): 71-76.
    [474] Ai Q H, Mai K S, Li H T, Zhang CH X, Zhang L, Duan Q Y, Tan B P, Xu W, Ma H M, Zhang W B, Liu fu, Zh G. Effects of dietary protein to energy ratios on growth and body composition of juvenile Japanese seabass, L ateolabrax japonicus [J]. Aquaculture, 2004, 230: 507–516.
    [475] Catacutan M R, Coloso R M. Effect of dietary protein to energy ratios on growth, survival and body composition of juvenile Asian seabass (lates calarifer) [J]. Aquaculture, 1995, 208: 113–123.
    [476] Erfanullah, Jafri A K. Effect of dietary carbohydrate–to–lipid ratio on growth and body composition of walking catfish (Clarias batrachus) [J]. Aquaculture, 1998, 161: 159–168.
    [477] Keembiyehetty C N, Wilson R P. Effect of water temperature on growth and nutrient utilization of sunshine bass (Morone chrysops×Morone saxatilis) fed diets containing different energy to protein ratios [J]. Aquaculture, 1998, 166: 151–162.
    [478] Arzel J. Effect of dietary lipid on growth performance and body composition of brown trout Salm otrutta reared in seawater [J]. Aquaculture, 1994, (123): 361–375.
    [479] Skalli A, Hidalgo M C, Abellán E, et al. Effects of the dietary protein/lipid ratio on growth and nutrient utilization in common dentex (Dentex dentex L.) at different growth stages [J]. Aquaculture, 2004, 235: 1–11.
    [480] Luquet P. Tilapia, Oreochromis spp [A]. In: Wilson R P. Handbook of Nutrient Requirements of Finfish [M]. CRC Press, Boca Raton, FL, 1991: 169–179.
    [481] Hemre G L. Studies on Carbohydrate Nutrition in Cod (Gadus morhua) [D]. Dr. Scientiarum Thesis. Institute of Nutrition, University of Bergen, Norway. 1992:
    [482] Maynard L A., Loosli J K, Hintz H F ,Warner R G. Animal Nutrition[M]. McGraw–Hill, New York, N Y, 1979: 283–355.
    [483] Pike R H, Brown M L. Nutrition: An Integrated Approach [M].John Wiley and Sons, New York, N Y. 1984: 84–136.
    [484] Serrini G, Zhang Z, Wilson R P. Dietary riboflavin requirement of fingerling channel catfish (Ictalurus punctatus) [J]. Aquaculture, 1996, 139: 285–290.
    [485] Soliman A K, Wilson R P. Water–soluble vitamin requirements of tilapia. 2. Riboflavin requirement of blue tilapia, Oreochromis aureus [J]. Aquaculture, 1992a, 104: 309–314.
    [486] Soliman A K, Wilson R P. Water–soluble vitamin requirements of tilapia. 1. Pantothenic acid requirement of blue tilapia, Oreochromis aureus [J]. Aquaculture, 1992b, 104, 121–126.
    [487] Fickeisen D H, Brown G W. D-amino acid oxidase in various fishes [J]. Journal of Fish Biology, 1977, 10(5): 457–465.
    [488] Mattivi F, Monetti A, Tonon D, Andrés–Lacueva C. High–performance liquid chromatographic determination of the riboflavin concentration in white wines for predicting their resistance to light [J]. Journal of Chromatography, 2000A, 888: 121–127.
    [489] Chen H Y, wang G. Estimation of the dietary riboflavin required to maximize tissue riboflavin concentraction in juvenile shrimp (Penaeus monodon) [J]. Nutr., 1992, 122: 2474–2478.
    [490]朱伟.皱纹盘鲍B族维生素营养生理及营养需要的研究[D].青岛:中国海洋大学研究生学位论文, 2001.
    [491] Peterson W H, Peterson M S. Relationship of bacteria to vitamins and the other growth factor [J]. Bacteriol. Rev., 1945, 9: 49–86.
    [492] Shiau S Y, Hsu C W. Dietary pantothenic acid requirement of juvenile grass shrimp, Penaeus monodon [J]. J. Nutr., 1999, 129:718–721.
    [493] Martinez C D, Escobar B L, Olvera–novoa M A. The requirement of Cichlasoma urophthalmus (Cunther)fry for pantothenic acid and the pantothenic signs of deficiency [J]. Aquacult. Fish. Manag., 1990, 21: 145–156.
    [494]李爱杰,张道波,任泽林.牙鲆幼鱼对水难溶性维生素B3需要量的研究[J].饲料工业, 2001, 22: 26–27.
    [495] Blaxhall P, Daisley K W. Routine haemotological methods for use with fish blood [J]. Fish. Biol., 1973, 5: 771–781.
    [496] Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of Official Analytical Chemists International, 16th edn[M]. Association of Official Analytical Chemists. Arlington, VA, 1995:
    [497] Wirtschafter Z T, Walsh J R. Hepatocellular Lipoid Changes in Pantothenic Acid Deficiency [J]. Am. J. Clin. Nutr., 1962, 10: 25–30.
    [498] Smith C M, Song W O. Comparative nutrition of pantothenic acid [J]. J. Nutr .Biochem., 1996, 7: 312–321.
    [499] Masumoto T, Hardy R W, Stickney R R. Pantothenic acid deficiency detection in rainbow trout (Oncorhynchus mykiss) [J]. J. Nutr., 1994, 124: 430–435.
    [500] Roth–Maier D A, Kirchgessner M. Studies on the optimal pantothenic acid requirement of market pigs [J]. Z. Tierphysiol. Tierernahrung. Futtermittelkde., 1977a, 38: 121–131.
    [501] Roth–Maier D A, Kirchgessner M. Selected problems of B vitamins in animal nutrition Livestock production [J]. Sci., 1977b, 4:177–189.
    [502] Abiko Y. Metabolism of coenzyme A [A]. In: D Greenberg. Metabolism of sulphur compounds metabolic pathways[M]. Academic press, New York, NY, USA, 1975: 1–25.
    [503] Brass E P, Ruff L J. Rat hepatic coenzyme A is redistributed in response to mitochondrial acyl–coenzyme A accumulation [J]. Nutr., 1992, 122: 1094–2100.
    [504] Marks J. A guide to the vitamins. Their role in health and disease[M]. Medical and Technical Publ. lancaster, England, 1975: 73–82.
    [505] Lim C, LeaMaster B R, Brock J A. Pyridoxine requirement of fingerling red hybrid tilapia growth in seawater [J]. Appl. Aqualt., 1995, 5: 49–60.
    [506] Shiau S Y, Hsieh H L. Vitamin B6 requirements of tilapia Oreochromis niloticus×O. aureus fed two dietary protein concentrations [J]. Fisheries Sci., 1997, 6: 1002–1007.
    [507] Woodward B. Dietary vitamin B6 requirements of young rainbow trout (Oncorhynchus mykiss) [J]. FASEB J., 1990, 4: 3748.
    [508] Lall S P, Weerakoon D C M. Vitamin B6 requirement of Atlantic salmon (Salmo salar) [J]. FASEB, 1990: 912.
    [509] Takeda T, Yone Y. Studies of nutrition red seabream. 2. Comparison of vitamin B6 requirement level between fish fed a synthetic diet and fish fed beef liver during prefeeding period Rep [J]. Fish. Res. Lab. Kyushu Univ., 1971, 1: 37–47.
    [510] Adron J W, Knox D, Cowey C B. Studies on the nutrition of marine flatfish. The pyridoxine requirements of turbot (Scophthalmus maximus) [J]. Br. J. Nutr., 1978, 40: 261–268.
    [511] Sakaguchi H, Takeda F, Tange K. Studies on vitamin requirements by yellowtail I. Vitamin B6 and vitamin C deficiency symptoms [J]. Bull. Jpn. Soc. Sci. Fish., 1969, 35: 1201–1206.
    [512] Casillas E , Sundquist J , Ames W E. Optimization of assay conditions for, and the selected tissue distribution of, alanine aminotransferase and aspartate aminotransferase of English sole, Parophrys vetulus Girard [J]. Fish Boil., 1982, 21: 197–204.
    [513] Agrawal N K, Mahajan C L. Pathology of vitamin B6 deficiency in Channa punctatus Bloch [J]. Journal of Fish Diseases, 1983a, 6: 439–450.
    [514] Agrawal N K, Mahajan C L. Haematological and haematopoietic studies in pyridoxine deficient fish, Channa punctatus Bloch [J]. Journal of Fish Biology, 1983b, 22: 91–103.
    [515] Giri I N A , Teshima S I , Kanazawa M. Effect of dietay pyridoxine and protein levels on growth ,vitamin B6 content ,and free amino acid profile Penaeus japonicus [J]. Aquac., 1997, 157: 263–275.
    [516] Coburn S P , Mahuren J D, Schaltenbrand W E, Wostmann B S, Madsen D. Effects of vitamin B6 deficiency and 49–deoxypyridoxine on pyridoxal phosphate concentrations, pyridoxine kinase and other aspects of metabolism in the rat[J]. Nutr, 1981, 111: 391–398.
    [517] Meisler N T, Thanassi J W. Pyridoxine kinase, pyridoxine phosphate phosphatase and pyridoxine phosphate oxidase activities in control and B–6–deficient rat liver and brain [J]. Nutr., 1980, 110: 1965–1975.
    [518] Lim C, Klesius P H. Effect of dietary levels of protein and pyridoxine on hematology and immune response of channel catfish [J]. Aquaculture, 1998: 328–329.
    [519] Stokstad E L R, Koch J. Folic acid metabolism [J]. Physiol Rev., 1967, 47: 83–116.
    [520] Smith C E. Hematological changes in coho salmon fed a folic acid deficient diet [J]. J. Fish. Res. Board Can., 1968, 25: 151–156.
    [521] Smith C E, Halver J E. Folic acid anemia in coho salmon [J]. J. Fish. Res. Board Can., 1969, 26: 111–114.
    [522] Aoe H, Masuda I, Saito T, Komo A. Water–soluble vitamin requirements of carp. 5. Requirement for folic acid [J]. Bull. Jpn. Soc. Sci. Fish., 1967d, 33: 1068–1071.
    [523]苗淑彦.皱纹盘鲍叶酸营养生理的研究[D].青岛:中国海洋大学研究生学位论文, 2005:
    [524] Lovelace F E, Podoliak H A. Absorption of radioactive calcium by brook trout [J]. Prog. Fish. Cult., 1952, 14: 154–158.
    [525] Ichikawa R, Oguri M. Metabolism of radionucleotides in fish: I Strontium–calcium discrimination in gill absorption [J]. Bull. Jpn. Soc. Sci. Fish., 1961, 27: 351–357.
    [526] Love R M. Absorption of radioactive calcium by brook trout [A]. In: Lovelace F E, Podoliak H A. The Chemical Biology of Fishes, Vol. 2 [M]. Academic Press, NY, 1980: 943.
    [527] Hardy R W, Shearer K D. Effect of dietary calcium phosphate and zinc supplementation on whole body zinc concentration of rainbow trout (Salmo gairdneri) [J]. Can. J. Fish. Aquat. Sci., 1985, 42: 181–184.
    [528] Vielma J, Lall S P. Phosphorus utilization by Atlantic salmon (Salmo salar) reared in freshwater is not influenced by higher dietary calcium intake [J]. Aquaculture, 1998, 160: 117–128.
    [529] Sugiura S H, Hardy R W, Roberts R J. The pathology of phosphorus deficiency in fish—a review [J]. Fish. Dis., 2004, 27: 255–265.
    [530] Oliva T A, Pimentel R A. Phosphorus requirement of European sea bass (Dicentrarchus labrax L.) juveniles[J]. Aquac. Res., 2004, 35: 636–642.
    [531] Roy P K, Witten P E, Hall, B K. Effects of dietary phosphorus on bone growth and mineralization of vertebrae in haddock (Melanogrammus aeglefinus L.) [J]. Fish. Physio. Biochem., 2002, 27: 35–48.
    [532] Brown M L, Jaramillo F, Gatlin D MⅢ. Dietary phosphorus requirements of juvenile sunshine bass Morone chrysops×M. saxatilis [J]. Aquaculture, 1993, 113: 355–363.
    [533] Borlongan I G, Satoh S. Dietary phosphorus requirement of juvenile milkfish, Chanos chanos (Forsskal) [J]. Aquac. Res., 2001, 32: 26–32.
    [534] Templeton W L, Brown V M. Accumulation of calcium and strontium by brown trout from waters in the United Kingdom [J]. Nature, 1963, 198: 198–200.
    [535] Shim K F, Ho C S. Calcium and phosphorus requirements of guppy Poecilia reticulate [J]. Nippon Suisan Gakkaishi, 1989, 55: 1947–1953.
    [536] Hossain M A, Furuichi M. Necessity of dietary calcium supplement in black sea bream [J]. Fish Sci., 1999, 65: 893–897.
    [537] Tacon A G J. Nutritional fish pathology [J]. FAO Fish Tech Pap, 1992, 330: 75.
    [538] Cross H S, Deviec H, Peterlic M. Mechanism and regulation of intestinal phosphate absorption [J]. Miner. Electrolyte Metab., 1990, 16: 115–124.
    [539] Lovell R T, Limsuwan T. Intestinal synthesis and dietary nonessntiality of vitamin B12 for Tilapia nilotica [J]. Tran. Amer. Fish. Soc., 1982, 111: 485–490.
    [540]刘学剑.饲用微生物在动物生产中的应用[J].国外畜牧学饲料, 1998, 4: 32–33.
    [541] Gatesoupe F J, Lesel R. An environmental approach to intestinal microflora in fish [J]. Agric., 1998, 7 (1): 29–35.
    [542]杨洁彬.乳酸菌生物学基础及应用[M].北京:中国轻工业出版社, 2001: 197–198.
    [543] Heyman M, Me′narT S. Probiotic microorganisms: how they affect intestinal pathophysiology [J]. Cellular and Molecular Life Sciences, 2002, 59: 1–15.
    [544] Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture [J]. Microbiology and Molecular Biology Reviews, 2000, 64: 655–671.
    [545]闫凤兰.肉仔鸡饲喂枯草芽饱杆菌效果的研究[J].动物营养学报, 1996, 8 (40): 34–38.
    [546] Buenrostro J L. Effects of Lactobacillus inoculation and antibiotic feeding of chickens on availability of dietary biotin [J]. Poultry Science, 1983, 62: 2022–2029.
    [547] March BE. The host and its microflora: an ecological unit [J]. Anim. Sci., 1979, 49: 857–867.
    [548] Stutz M W. Effects of diet and antimicrobials on growth, feed efficiency, intestinal Clostridium Perfringens, and ilea weight of broiler chicks [J]. Poul. Sci., 1984, 63: 2036–2042.
    [549] Rengpipat S, Phianphak W, Piyatiratitivorakul S, Menasveta P. Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth [J]. Aquaculture, 1998, 167: 30l–313.
    [550] Salinas I, Cuesta A, Esteban M A, Meseguer J. Dietary administration of Lactobacillus delbrueckii and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses [J]. Fish&Shellfish Immunology, 2005, 19: 67–77.
    [551] Wang Y B, Xu Z. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities [J]. Animal Feed Science and Technology, 2006, 127: 283–292.
    [552]陈营,王富强,蒲红宇,杜强.牙鲆肠道乳酸菌的分离和鉴定[J].中国微生态学杂志, 2002, 14(2): 70–72.
    [553] RingφE, Gatesoupe F J. Lactic acid baceria in fish: A review [J]. Aquacultrue, 1998, 160(3–4): 177–203.
    [554] Delneste Y, Donnet H A, Schiffrin E J. Functional foods: echanisms of action on immunocompetent cells [J]. Nutrition Reiews, 1998, 56(1): 93–98.
    [555] Gildberg A, Mikkelseh H, Sandaker E, Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua) [J]. Hydrobiologia, 1997, 352(1–3): 279–285.
    [556] Gildberg A, Mikkelsen H, Effects of supplementing the feed to Atlantic cod(Gadus morhua) fry with lactic acid bacteria and immuno–stimulating peptides during a challenge trial with Vibrio anguillarum [J]. Aquaculture, 1998, 167(1/2): 103–ll3.
    [557] Lara–Flores M, Olvera–Novoa M A, Guzman–Mendez B E, Lopez–Madrid W. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus) [J]. Aquaculture, 2003, 216: 193–201.
    [558] Noh–SH, Han–LK, et al. Effect of antibiotics, enzyme, yeast culture and probiotics on the growth performance of Israeli carp [J]. Korean Journal of Animal Sciences, 1994, 36: 5.
    [559] Henderickx H K. Influece of the gut flora and of some growth 2p romoting feed additives on nitiogen metabolism in pigs [J]. Livestock Production Science, 1986, 14: 161–176.
    [560] Gatesoupe F J. The use of probiotics in aquaculture [J]. Aquaculture, 1999, 180: 147–155.
    [561] Ghosh K, Sen S K, RayA K, et al. Characterization of Bacillus isolated from the gut of rohu, Labeo rohita, fingerlings and its significance in digestion [J]. Journal of App lied Aquaculture, 2002, 12(3): 33–42.
    [562]余成瑶,郑黎,周毅,等.肉鸡饲喂益生素后小肠粘膜上皮细胞、肝细胞超微结构功能研究[J].四川农业大学学报,1996, 14(1): 61~66.
    [563]王红宁,胡延秀,何明清,等.微生物添加剂饲喂鲤鱼肠道菌群的变化研究[J].四川农业大学学报, 1994, 12(增刊): 654–657.
    [564]杨汉博.地衣芽孢杆菌BL15和BL19对黄鸡的营养、微生态效应研究[D].雅安:四川农业大学, 2002.
    [565] Gatesoupe F J, Arakawa T, Watanabe T. The effect of bacterial additives on the production rate and dietary value of rotifers as food for Japanese flounder, Paralichthys olivaceu[J]. Aquaculture, 1989, 83:39–44.
    [566] Gatesoupe F J. The effect of three strains of lactic bacteria on the production rate of rotifers, Brachionus plicatilis, and their dietary value for larval turbot, Scophthalmus maximus [J]. Aquaculture, 1991, 96: 335–342.
    [567]张锦华,倪学勤,何后军,等.不同益生素对鲤鱼肠道蛋白酶、淀粉酶活力的影响[J].江西农业大学学报, 2005, 27(4): 297–310.
    [568]沈锦玉,沈智华,尹文林,等.饲喂枯草芽孢杆菌对银鲫等水生动物肠道菌群及消化酶活性的影响[J].水产学报(增刊), 2004, 28: 297–310.
    [569] Moriarty D J W. Control of luminous Vibrio species in penaeid aquaculture ponds [J]. Aquaculture, 1998, 164: 351–358.
    [570]潘康成,何明清,刘克林.微生物添加剂对鲤鱼生长和消化酶活性的影响研究[J].饲料工业, 1997, 18(10): 41-42.
    [571]江萍,夏先林,王忠.两种微生态调节剂对网箱鲤鱼生产效果的影响[J].中国微生态学杂志, 1997, 9(3): 26–28.
    [572]刘延贺,苑会珍.不同营养及铜水平条件下芽孢杆菌微生物添加剂对猪免疫性能的影响[J].饲料工业, 1998, 19(10): 28–29.
    [573]华雪铭,周洪琪,邱小琮,等.饲料中添加芽孢杆菌和硒酵母对异育银鲫的生长及抗病力的影响[J].水产学报, 2001, 25(5): 448–453.
    [574]王爱民.外源酶对内源酶活性、肠道组织及生产性能的影响研究[D].南京:南京农业大学, 2003:
    [575]刘迎春.饲用复合酶对产蛋鸡低蛋白饲粮氨基酸可利用率的影响[D].南京:南京农业大学, 1996:
    [576]杜宣,周国勤,茆健强. 3种微生态制剂的氨基酸组成及对鲤鱼消化酶活性的影响[J].云南农业大学学报, 2006, 21(3): 351–359.
    [577]刘小刚,周洪琪,华雪铭,邱小琮,曹丹,张登沥.微生态制剂对异育银鲫消化酶活性的影响[J].水产学报, 2002, 26(5): 448–450.
    [578]丁贤,李卓佳,陈永青,等.芽孢杆菌对凡纳滨对虾生长和消化酶活性的影响[J].中国水产科学, 2004, 11(6): 580–584.
    [579] Balcázar J L, Blas I de, Ruiz–Zarzuela I, et al. Review: The role of probiotics in aquaculture [J]. Veterinary Microbiology, 2006, 114: 173–186.
    [580]王红宁,何明清,柳苹,等.鲤鱼肠道正常菌群的研究[J].水生生物学报, 1994, 18(4): 354–359.
    [581] Himanen J P.Biological activities of Lipoteichoic Acid and Peptido–glyean–teichoic Acid of Bacillus subtilis 168 (Muxbuxg) [J]. Gen Micxobiol, 1993, 39: 26–59.
    [582] Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P.Immunity enhancement on black tiger shrimp(Penaeus monodon)by a probiont bacterium (Bacillus S11) [J]. Aquaculture, 2000, 191:271–288.
    [583] Sugita H, Hirose Y, et al. Production of the antibaeterial substance by Bacillus sp. strain NM12, an Intestinal bacterium of Japanese coastal fish [J]. Aquaculture, 1998, 165: 3–4.
    [584]胡东兴.鲤体内地衣芽抱杆菌对气单抱菌生物拮抗及鱼免疫功能、酶活性影响的研究[D].雅安:四川农业大学硕士论文, 1996:
    [585] Schiffrin E J, Rochat F, Link–Amster H, et al. Immunomodulation of human blood cells following the ingestion of lactic acid bacteria [J]. J. Dairy Sci., 1995, 78: 491–497.
    [586] Mccracken V J, Gaskins H R. Probiotics and the immune system [A]. In: Tannock G W, Norfolk U K. Probiotics: A Critical Review [M]. Horizon Scientific Press, 1999, 85–111.
    [587] Hooper L V, Wong M H, Thelin A, Hansson L, Falk P G, Gordon J I. Molecular analysis of commensal host–microbial relationships in the intestine [J]. Science, 2001, 291: 881–884.
    [588] Christensen H R, Frokiaer H, Pestka J J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in marine dendritic cells [J]. Immunol, 2002, 68: 171–178.
    [589] Kim H S, Ahn B S, Chung S G, Moon Y H, Ha J K, Seo I J, Ahn B H, Lee S S. Effect of yeast culture, fungal fermentation extract and non–ionic surfactant on performance of Holstein cows during transition period [J]. Animal Feed Science and Technology, 2006, 126: 23–29.
    [590] Pirarat N, Kobayashi T, Katagiri T ,Maita M, Endo M. Protective effects and mechanisms of a probiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus) [J]. Veterinary Immunology and Immunopathology, 2006, 113: 339–347.
    [591]刘克琳,何明清.益生菌对鲤鱼免疫功能影响的研究[J].饲料工业, 2000, 6: 24–25.
    [592] Joborn A, Olsson J C, Westerdahl A. Colonisation in the Fish. Intestinal tract and production of inhibitory substances in intestinal mucus and faecal extracts by carnobacterium Sp K1 [J]. Fish. Dis., 1997, 20: 383–392.
    [593] Byun J W,Park S C, Benno Y. Probiotic effect of Lactobacillus sp.DS–12 in flounder (Paralichthys olivaceus) [J]. Gen. App1. Microbto1, 1997, 43(5): 305–308.
    [594] Gram L, Melchiorsen J, Spanggard B. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2 a possible probiotic treatment of fish [J]. Appl. Envi. Microbio., 1999, 65: 969–973.
    [595] Kennedy S B, Tucker J W, Thoresen M, Sennett D G. Current methodology for the use of probiotic bacteria in the culture of marine fish larvae [J]. World Aquaculture Society , 1999: 286.
    [596] Cheng–Kuang Hsu, iunn–Wang Liao, Yun–Chin Chung, Chia–Pei Hsieh, Yin–Ching Chan. Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats [J]. Nutr., 2004, 134: 1523–1528.
    [597] Kontula P, von Wright A, Manila–Sandholm T. Oat bran I3–gluco and xylooligosaccharides as fermentative substrates for lactic acid bacteria [J]. Int. Food Microbiol, 1998, 45(2): 163–169.
    [598] Yasuhiro Kimura, Yasuo Nagata, Carron W, Bryant, Randal K Buddington. Nondigestible oligosaccharides do not increase accumulation of lipid soluble environmental contaminants by mice [J]. Nutr., 2002, 132: 80–87.
    [599]熊沈学,刘文斌,方星星.低聚木糖梯度添加对异育银鲫生长及肠道消化酶活性的影响[J].畜牧与兽医, 2005, 37(10): 23–24.
    [600]林青,李中军,于三科.低聚糖对肉鸡生产性能的影响[J].家畜生态学报, 2005, 26(6): 48–50.
    [601]蒋正宇,周岩民,许毅,等.低聚木糖、益生菌及抗生素对肉鸡肠道菌群和生产性能的影响[J].家畜生态学报, 2005, 26(2): 11–15.
    [602]吴媛媛,呙于明,王忠,聂伟.木低聚糖对肉仔鸡生长性能、肠道生理学和形态学指标的影响[J].中国农业大学学报, 2006, 11(4): 42–46.
    [603]王继成,潘灵辉,李淑云,等.低聚木糖对断奶仔猪生产性能、肠道菌群及免疫水平影响的研究[J].中国畜牧兽医, 2006,33(5): 3–7.
    [604]胡彩虹,占秀安.果低聚糖对肉鸡消化机能的影响[J].中国粮油学报, 2003, (2): 49–54.
    [605] Thompson F L, Abreu P C, Cavalli R. The use of microorganisms as food source for Penaeus paulensis larvae [J]. Aquaculture, 1999, 174: 139–153.
    [606] Lidestri1 M, Agosti1 M, Marini1 A, Boehm G. Oligosaccharides might stimulate alcium absorption in formula–fed preterm infants [J]. Acta P diatr suppl, 2003, 441: 91–92.
    [607]王晓霞,易中华,计成,等.果低聚糖和枯草芽孢杆菌对肉鸡肠道菌群数量、发酵粪中氨气和硫化氢散发量及营养素利用率的影响[J].畜牧兽医学报, 2006, 37(4): 337–341.
    [608] Mour?o J L, Pinheiro V, Alves A, Guedes C M, et al. Kocher Effect of mannan oligosaccharides on the performance, intestinal morphology and cecal fermentation of fattening rabbits [J]. Animal Feed Science and Technology, 2006, 126: 107–120
    [609]占秀安,胡彩虹,许梓荣.果低聚糖对肉鸡生长、肠道菌群和肠形态的影响[J].中国兽医学报, 2003, (3): 196–198.
    [610] Tang Z R,Yin Y L, Nyachoti, Charles M, et al. Effect of dietary supplementation of chitosan and galacto–mannan–oligosaccharide on serum parameters and the insulin–like growth factor–I mRNA expression in early–weaned piglets [J]. Domestic Animal Endocrinology, 2005, 28: 430–441.
    [611] Mikkelsen L L, Jakobsen M, Jensen B B. Effects of dietary oligosa ccharides on microbial diversity and fructo–oligosaccharide degrading bacteria in faeces of piglets’post–weaning [J]. Animal Feed Science and Technology, 2003, 109: 133–150.
    [612] Houdijk J G M, Bosch M W, Verstegen M W A, et al. Effects of dietary oligosaccharides on the growth performance and faecal characteristics of young growing pigs [J]. Animal Feed Science Technology, 1998, 71: 35–48.
    [613] Marinho M C, PinhoM A, Mascarenhas R D, Silva F C, Lordelo M M. Effect of prebiotic or probiotic supplementation and ileo rectal anastomosis on intestinal morphology of weaned piglets [J]. Livestock Science, 2007, 108: 240–243.
    [614] Roller M, Rechkemmer G, Watzl B. Prebiotic Inulin Enriched with Oligofructose in Combination with the Probiotics Lactobacillus rhamnosus and Bifidobacterium lactis Modulates Intestinal Immune Functions in Rats [J]. The Journal of Nutrition , 2004, 134(1): 153–158.
    [615]韩玉洁,徐冬,徐忠,孔琪.低聚木糖降脂作用研究[J].哈尔滨商业大学学报(自然科学版), 2006, 22(2): 44–46.
    [616]郑建仙.功能性低聚糖[M].北京:化学工业出版社, 2004:
    [617]屠友金,胡彩虹.低聚果糖和丙酸钠对肥育猪胆固醇代谢的影响[J].中国粮油学报, 2005, 20(1): 65–68.
    [618]李大军.低聚糖的功能及对断奶仔猪生产性能和非特异性免疫功能的影响[D].哈尔滨:东北农业大学, 2003:
    [619] Francis R J, Bornet M D, Fred Brouns. Immune–stimulating and Gut Health–promoting Properties of Shortchain Fructo–oligosaccharides [J]. Nutrition Reviews, 2002, 60(11): 326–334.
    [620]黄俊文,林映才,冯定远,郑春田,丁发源,余德谦.益生菌、甘露低聚糖对早期断奶仔猪生长、免疫和抗氧化机能的影响[J].动物营养学报, 2005, 17(4): 16–20.
    [621]杨桂芹,李玲.益生菌剂、异麦芽低聚糖对肉仔鸡免疫和生产性能的影响[J].动物营养学报, 2005,17(1): 34–38.
    [622]何四旺,许国焕,吴月嫦.低聚异麦芽糖和低聚果糖对罗非鱼生长和非特异性免疫的影响[J].中国饲料, 2003, (23):14–15.
    [623]单黎然,龚月桦,贾建光,罗瑛婕. 4种重要功能性低聚糖的研究进展[J].西北农林科技大学学报(自然科学版), 2006, 34(7): 96–100.
    [624] Kelly–Quagliana K A, Nelson P D, Buddington R K. Dietary oligofructose and inulin modulate immune functions in mice[J]. Nutrition Research, 2003, 23: 257–267.
    [625]Yoshida T R, Kruger and V Inglis. Augmentation of non–specific prolcclion of African catfish, Claries gariepinus (liurch), by the long–term oral administration of immuneos timulants [J]. Journal of Fish Diseases, 1995, 18: 195–198.
    [626] Hughes K P, Soares J H. Effucacy of phytase on phosphorus utilization in practical diets fed to striped bass Monroe saxatilis [J]. Aquac. Nutr., 1998, 4: 130–140.
    [627] Oliva–Teles A.,Pereira J, GouveiaA.,Gomes E. Utilisation of diets supplemented with microbial phytase by seabass (Dicentrarchus labrax) juveniles [J]. Aquat Living Resow, 1998, 11: 255–259.
    [628] Schafer A, Koppe W M, Meyer–Burgdorff K H, Gunter K D. Effect of a microbial phytase on the utilization of native phosphorus by carp in a diet based on soybean meal [J]. Water Science and Technology (United Kingdom), 1995: 149–155.
    [629] Forster I, Higgs D A, Dosanjh B S, Rowshandeli M, Parr J. Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout Oncorhynchus mykiss held in 11C fresh water [J]. Aquaculture, 1999, 179: 109–125.
    [630] Kaushik S J, Cravedi J P, Lalles J P, Sumpter J, Fauconneau B, Laroche M. Partial or total replacement of fish meal by soybean protein on growth,protein utilization,potential estrogenic or antigenic effects,cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 1995, 133: 257–274.
    [631] Refstie S, Storebakken T, Baeverfjord G, Roem A J. Long–term protein and lipid growth of Atlantic salmon Salmo Salar fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level [J]. Aquaculture, 2001, 193: 91–106.
    [632] Reigh R C, Ellis S C. Effects of dietary soybean and fish–protein ratios on growth and body composition of red drum (Sciaenop ocellaus) fed isonitrogenous diets [J]. Aquaculture, 1992, 104: 279–292.
    [633] Ai Q H, Xie X J. Effects of dietary soybean protein levels on energy budget of the southern catfish, Silurus meridionalis [J]. Comparative Biochemistry and Physiology, 2005a, 141: 461–469.
    [634] Chou R L,Her B Y, Su M S, Hwang G., Wu Y H, Chen H Y, Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum[J]. Aquaculture, 2004, 229: 325–333.
    [635] Tantikitti C, Sangpong W, Chiavareesajja S. Effects of defatted soybean protein levels on growth performance and nitrogen and phosphorus excretion in Asian seabass (Lates calcarifer) [J]. Aquaculture, 2005, 248: 41–50.
    [636] Mundheim H, Aksnes A, Hope B. Growth, feed efficiency and digestibility in salmon (Salmo salar L.) fed different dietary proportions of vegetable protein sources in combination with two fish meal qualities [J]. Aquaculture, 2004, 237: 315–331.
    [637] Opstvedt J, Aksnes A, Hope B, Pike IH. Efficiency of feed utilization in Atlantic salmon (Salmo salar L.) fed diets with increasing substitution of fish meal with vegetable proteins. Aquaculture, 2003, 221: 365–379.
    [638] Ostaszewska T,Dabrowski K, Palacios M E, Olejniczak M, Wieczorek M.Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins [J]. Aquaculture, 2005, 245: 273–286.
    [639] Fagbenro O A. Comparative evaluation of heat–processed Winged bean Psophocarpus tetragonolobus meals as partial replacement for fish meal in diets for the African catfish Clarias gariepinus [J]. Aquaculture, 1999, 170: 287–305.
    [640] Gouveia A, Davies S J. Inclusion of an extruded dehulled pea seed meal in diets for juvenile European sea bass Dicentrarchus labrax [J]. Aquaculture, 2000, 182: 183–193.
    [641] Pereira O, Rosa E, Pires M A., Fontainhas–Fernandes A.Brassica by–products in diets of rainbow trout (Oncorhynchus mykiss) and their effects on performance, body composition, thyroid status and liver histology [J]. Animal Feed Science and Technology, 2002, 101: 171–182.
    [642] Richter N, Siddhuraju P, Becker K. Evaluation of nutritional quality of moringa (Moringa oleifera Lam) leaves as an alternative protein source for Nile tilapia (Oreochromis niloticus L) [J]. Aquaculture, 2003, 217: 599–611.
    [643] Webster C D, Tiu LG, Tidwell, J H, Grizzle J M. Growth and body composition of channel catfish (Zctalurus punctatus) fed diets containing various percentages of canola meal [J]. Aquaculture, 1997, 150: 103–112.
    [644] Borlongan I G, Eusebio P S, Welsh T. Potential of feed pea (Pisum sativum) meal as a protein source in practical diets for milkfish (Chanos chanos Forsskal) [J]. Aquaculture, 2003, 225: 89–98.
    [645] Elangovan A, Shim K F. The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb Barbodes altus [J]. Aquaculture, 2000, 189: 133–144.
    [646] Miller W E, Maloney T E, Greene J C. Algal productivity in 49 lake waters as determined by algal assays [J]. Water Res, 1974, 8: 667–679.
    [647] Ketola H G, Harland B F. Influence of phosphorus in rainbow trout diets on phosphorus discharges in effluent water [J]. Trans. Am. Fish. Soc., 1993, 122: 1120–1126.
    [648] Liebert F, Portz L. Nutrient utilization of Nile tilapia Oreochromis niloticus fed plant based low phosphorus diets supplemented with graded levels of different sources of microbial phytase[J]. Aquaculture, 2005, 248: 111–119.
    [649] Cheng Z J, Hardy R W. Effects of extrusion and expelling processing,and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full–fat soybeans for rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 2003, 218: 501–514.
    [650] Bransden M P, Carter C G. Effect of processing soybean meal on the apparent digestibility of practical diets for the greenback flounder Rhombosolea tapirina (Gqnther) [J]. Aquac. Res., 1999, 30: 719–723.
    [651] Masumoto T, Tamura B, Shimeno S. Effects of phytase on bioavailability of phosphorus in soybean meal–based diets for Japanese flounder (Paralichthys olivaceus) [J]. Fish. Sci., 2001, 67: 1075–1080.
    [652] Sajjadi M, Carter C G. Dietary phytase supplementation and the utilization of phosphorus by Atlantic salmon (Salmo salar L.) fed a canola–meal–based diet [J]. Aquaculture, 2004, 240: 417–431.
    [653] Yan W, Reigh R C, Xu Z. Effects of fungal phytase on utilization of dietary protein and minerals, and dephosphorylation of phytic acid in the alimentary tract of channel catfish Ictalurus punctatus fed an all–plantprotein diet [J]. World Aquac Soc, 2002, 33: 10–22.
    [654] Yoo Gwang–Yeol, Wang Xiaojie, Choi Semin, et al. Dietary microbial phytase increased the phosphorus digestibility in juvenile korean rockfish Sebastes schlegeli fed diets containing soybean meal[J]. Aquaculture, 2005, 243: 315–322.
    [655] Escaffre A M, Zambonino Infante J L, Cahu C L, Mambrini M, Bergot P, Kaushik S J. Nutritional value of soy protein concentrate for larvae of common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities [J]. Aquaculture, 1997, 153: 80–87.
    [656] Hoffmann E M, Muetzel S, Becker K. The fermentation of soybean meal by rumen microbes in vitro reveals different kinetic features for the inactivation and the degradation of trypsin inhibitor protein [J]. Animal Feed Science and Technology, 2003, 106: 189–197.
    [657] Giri S S, Sahoo S K, Sahu A K, Mukhopadhyay P K. Nutrient digestibility and intestinal enzyme activity of Clarias batrachus (Linn.) juveniles fed on dried fish and chicken visceraincorporated diets [J]. Bioresource Technology, 2000, 71: 97-101.
    [658] Robaina L, Izquierdo M S, Moyanob F J, Socorro J, Vergara J M, Monteroc D, Fenundez–Palacios H. Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata):nutritional and histological implications [J]. Aquaculture, 1995, 30: 219–233.
    [659] Romarheim O H, krede A, Gao Y, et al. Comparison of white flakes and toasted soybean meal partly replacing fish meal as protein source in extruded feed for rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 2006, 354-364
    [660] Burel C, Boujard T, Tulli F, Kaushik S J. Digestibility of extruded peas,extruded lupin, and rapeseed meal in rainbow trout Oncorhynchus mykiss and turbot Psetta maxima [J]. Aquaculture, 2000, 188: 285–298.
    [661] Regost C, Arzel J, Kaushik S J. Partial or total replacement of fish meal by corn gluten meal in diet for turbot Psetta maxima [J]. Aquaculture, 1999, 180: 99–117.
    [662] Refstie S, Korsoen O, Storebakken T, et al. Differing nutritional responses to dietary soybean meal in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar [J]. Aquaculture, 2000, 190: 45–63.
    [663] Brunty J L , Bucklin R A, Davs J, Baird C D, Nordstedt R A. The influence of feed protein intake on tilapia ammonia production [J]. Aquacultural Engineering, 1997, 16: 161–166.
    [664]郭本恒.益生菌[M].北京:化学工业出版社, 2004:
    [665] Kaneko T, Yokoyama A, Suzuki M. Digestibility characteristics of isomalto oligosaccharides in comparison with several saccharides using the rat jejunum loop method [J]. Biosci Biotechnol Biochem, 1995, 59(7): 1190-1194.
    [666] Mart?′nez–Villaluenga Cristina, Rosario Go′mez. Characterization of bifidobacteria as starters in fermented milk containing raffinose family of oligosaccharides from lupin as prebiotic [J]. International Dairy Journa, 2007, l17: 116–122.
    [667] Mussatto Solange I andMancilha Ismael M. Non–digestible oligosaccharides: A review Carbohydrate Polymers [J]. 2007, 68: 587–597.
    [668] Schiffrin E J, Haller D, Delneste Y, Donnet–H A, Blum S. Probiotics and intestinal immune functions [J]. Gastro Int., 1998, 11: 116–121.
    [669]陈代文,张克英,王万祥,丁雪梅.酸化剂、益生菌和低聚糖对断奶仔猪粪中微生物菌群和免疫功能的影响及其互作效应研究[J].动物营养学报, 2006, 18(3): 172–178.
    [670] Lovell R T. Use of soybean products in diets for aquaculture species [J]. Aquat., Prod., 1988, 2: 27–52.
    [671] Gomes E F, Rema P, Kaushik S J. Replacement of fish meal by plant proteins in the diets of rainbow trout (Oncorhynchus mykiss):digestibility and growth performance [J]. Aquaculture, 1995, 130: 177–186.
    [672] Gomes E, Ma P, Kaushik S J. Replacement of fish meal by plant proteins in diet of rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture 1995, 113: 339–353.
    [673] McCurdy S M, March B E. Processing of canola meal for incorporation in trout and salmon diets [J]. JAOCS, 1992, 69: 213–220.
    [674] Mohsen A A, Lovell R T. Partial substitution of soybean meal with animal protein sources in diets for channel catfish [J]. Aquaculture, 1990, 90: 303–311.
    [675] Reinitz G. Soybean meal as a substitute for herring meal in practical diets for rainbow trout [J]. Prog. Fish–Cult., 1980, 42: 103–106.
    [676] Vivyakarn V, Watanabe T, Aoki H, et al. Use of soybean meal as a substitute for fish meal in a newly developed soft–dry pellet for yellowtail[J]. Nippon Suisan Gakkaishi, 1992, 58: 1991–2000.
    [677] Jackson A J, Capper B S, Matty A J. Evaluation of some plant proteins in complete diets for the Tilapia Sarotherodon mossambicus [J]. Aqaculture, 1982, 27: 97–109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700