肠梗阻导致肠功能障碍的中西医结合实验研究Ⅱ
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     肠梗阻导致肠功能障碍中肠上皮、肠免疫屏障及微生态的时相性研究
     实验一
     家兔可复性肠梗阻造模方式及材料的改良
     目的:在前期实验建立的家兔机械性肠梗阻的基础上进行梗阻方式和材料的改良,使模型操作更简便、更经济、效果更稳定。方法:改用“肠管外压迫”的方式,将输液器部件改造成体外牵拉式锁扣,在末段回肠肠系膜无血管区戳孔,套住肠管,引出切口旁腹壁外。手术1~2天后由体外牵拉锁扣固定,造成该部位肠管的闭塞梗阻。解除梗阻时只需剪断锁扣后抽出装置。同时对体外水囊充注式梗阻装置、塑封钢缆圈套器等方法也进行了尝试。结果:该方法在造成梗阻的安全性、确切性等方面较原模型更优,避免了原方法所存在的腹腔感染、肠粘连、肠套叠以及肠穿孔等意外情况,并且不存在装置脱落等不稳定因素。结论:在获得更确切稳定的梗阻效果的基础上,改良后的方法创伤更小、造模周期更短,操作简单且材料经济,是较为理想的可复性机械性完全性肠梗阻模型。
     实验二
     肠梗阻对小肠上皮细胞的损害及其增殖修复能力的影响
     目的:观察急性机械性低位小肠梗阻对于小肠上皮损害程度以及其自身再增殖、修复能力的影响。方法:选用健康大耳白兔,随机分为正常对照组(Norm)、假手术组(Sham)、梗阻1h组(H_1)、梗阻6h组(H_6)、梗阻12h组(H_(12))、梗阻24h组(H_(24))、梗阻48h组(H_(48))、梗阻72h组(H_(72)),每组6只。分别对各组动物血清瓜氨酸水平、生化、小肠组织鸟氨酸脱羧酶活性,以及小肠上皮内杯状细胞形态、数量变化进行检测和观察。结果:肠梗阻后早期肠上皮细胞存在保护性的增殖加速过程,表现为ODC活性在梗阻后6h开始增高(p<0.001),随着梗阻未解除,损害因素不断加重,ODC活性在梗阻24h下降,至72h甚至低于正常水平。对小肠上皮形态学观察中发现杯状细胞增多趋势,且形态发生时相性改变。以上指标在小肠不同部位发生变化的时相和程度并不一致,回肠较之空肠变化更显著。至梗阻48h-72h阶段,血清瓜氨酸水平低于正常水平(p<0.05)。另外在对生化指标的检测中发现CK发生显著变化较早,相对其它指标较为敏感(24h vs 48h-72h)。结论:①肠梗阻发生后的早期就已经存在上皮的修复,表现为小肠组织ODC活性增高;②另外杯状细胞可能参与了小肠粘膜的修复,并且可能是上皮修复的关键细胞;③在梗阻后期随着上皮增殖活性的降低,血清瓜氨酸水平这一间接指标也随之降低,说明其对判断小肠功能障碍严重程度具有一定参考价值;④在肠梗阻发生后,CK相对其他生化指标可能对肠实质性损害更具有敏感的诊断提示意义。
     实验三
     小肠梗阻后肠腔内环境及微生态变化
     目的:观察急性机械性低位小肠梗阻发生后肠道内环境及微生态的改变,以了解肠梗阻发生后肠道自稳态破坏与肠屏障破坏的时相性关系。方法:选用健康大耳白兔,随机分为正常对照组(Norm)、假手术组(Sham)、梗阻1h组(H_1)、梗阻6h组(H_6)、梗阻12h组(H_(12))、梗阻24h组(H_(24))、梗阻48h组(H_(48))、梗阻72h组(H_(72)),每组6只。观察梗阻后每一时段小肠内PH、含水量及采用平板计数法了解肠杆菌科与双歧杆菌菌群数量变化。另外在不同时段进行血内毒素水平、各脏器细菌移位阳性率等进行观察。结果:结果显示肠梗阻发生后末段回肠的PH值逐渐下降,肠内容物含水量进行性增加,两者均在梗阻12h-24h阶段出现显著变化(p<0.05,p<0.01)。在对该部位肠杆菌科和双歧杆菌的培养发现,在梗阻12h-24h阶段二者出现比例倒置,肠杆菌科成为优势菌种。另外,对脏器组织的培养和对血浆内毒素检测发现,同样也是在12h-24h阶段二者出现显著性变化。结论:肠梗阻后肠功能障碍是对方面因素的综合结果,其中肠道自稳态的破坏为之后的细菌大量增殖、细菌和内毒素移位提供了环境基础。肠梗阻较早期的12h-24h阶段可能是肠内环境、微生态发生剧烈转变的阶段,同时也可能是细菌和内毒素移位的开始。而此时肠道机械屏障往往并没有出现广泛破坏,这更说明机械屏障、生物屏障、化学屏障的破坏都是肠功能障碍的危险因素。
     实验四
     肠梗阻对肠上皮Claudin1 mRNA表达的影响
     目的:了解急性肠梗阻发生后肠道上皮细胞间紧密连接破坏的时相性特点。方法:选用健康大耳白兔,随机分为正常对照组(Norm)、假手术组(Sham)、梗阻1h组(H_1)、梗阻6h组(H_6)、梗阻12h组(H_(12))、梗阻24h组(H_(24))、梗阻48h组(H_(48))、梗阻72h组(H_(72)),每组6只。利用实时荧光定量RT-PCR技术,对动物末段小肠上皮的紧密连接相关蛋白Claudin_1的mRNA表达情况进行相对定量分析。结果:本实验显示,梗阻发生后6h已经发现Claudin_1 mRNA表达已经显著减少至正常表达量的一半左右(p<0.05),12h为18%(p<0.01),24h为11%,48h-72h阶段表达量很低。结论:肠梗阻发生后早期(6h)已经发生机械屏障的破坏,表现为紧密连接蛋白上游基因的低表达,随着梗阻进展,这种低表达更加显著,至梗阻48h-72h阶段,这一基因的表达水平已经很低。提示这一阶段肠上皮的完整性已经完全失去,肠道机械屏障破坏严重。
     实验五
     肠梗阻家兔小肠免疫屏障功能的变化
     目的:利用肠梗阻模型,观察急性机械性肠梗阻的发生对肠道免疫系统的影响。
     方法:选用健康大耳白兔,随机分为正常对照组(Norm)、假手术组(Sham)、梗阻1h组(H_1)、梗阻6h组(H_6)、梗阻12h组(H_(12))、梗阻24h组(H_(24))、梗阻48h组(H_(48))、梗阻72h组(H_(72)),每组6只。采用流式细胞术对梗阻近端低位回肠、高位空肠两个不同部位小肠派伊尔淋巴结(PP)的CD3~+、CD4~+、CD8~+淋巴细胞亚群进行分析,利用HE染色切片计数上述两个不同部位IEL和LPL的百分比于梗阻不同阶段的变化。另外ELISA法检测小肠内分泌型免疫球蛋白A(S-IgA)含量。结果:本实验显示肠梗阻发生后12h-24h阶段,动物小肠的PP在数量上和总面积上均增加(p<0.05),随着梗阻进展又逐渐减少,至梗阻72h阶段则显著低于正常水平(p<0.01)。流式细胞术对PP淋巴细胞CD3~+、CD4~+、CD8~+亚群的分析结果显示,肠梗阻解除后PP内CD3+亚群为增多趋势,低位回肠Sham组为29.44±2.54%,12h增加为35.92±2.08%(p<0.05),72h增至49.48±6.37%(p<0.01);CD4~+亚群同样在12h阶段明显高于Sham组(84.68±2.80%vs 80.5 1±2.22%,p<0.05),此后逐渐下降至72h则迅速减少显著低于Sham组(61.62±6.96%,p<0.01);CD8~+亚群变化趋势与CD4~+相反,在12h-24h阶段较Sham组下降(8.47±1.41%vs 11.52±1.04%,p<0.05),之后逐渐增高至72h达到最高(22.97±4.83%,p<0.05);CD4~+/CD8~+比值的变化趋势为早期阶段先增高,24h阶段明显高于Sham组(12.10±2.17 vs 7.97±1.40,p<0.01),后期逐渐下降至72h阶段则显著低于Sham组(3.35±1.03,p<0.01)。上述几项在高位空肠中观察到的结果要明显晚于低位回肠,并且变化不剧烈。通过HE染色对IEL和LPL的百分比计数结果显示,不同部位的IEL百分比随着梗阻时间变化未发现明显差异,而LPL百分比在梗阻6h阶段明显增多,其中空肠部位的较Sham组有统计学差异(p<0.05)。随着梗阻时间延长,两个部位的LPL百分比均呈下降趋势。肠腔内s-IgA的ELISA结果显示,梗阻发生后其肠内含量增高,24h阶段高于Sham组(p<0.05),随后下降至72h的最低水平,与24h水平有差异,但与Sham组间未发现统计学差异。结论:①肠梗阻发生后,小肠PP数量和总面积均增加,这可能与梗阻后受到更多炎性因素刺激有关,另外其内淋巴细胞亚群也出现相应变化,CD3~+呈不断增多趋势,CD4~+亚群比例、CD4~+/CD8~+均在早期增多,而后随着梗阻进展逐渐下降。反之,CD8~+亚群比例早期降低,后期增高,这些都预示着肠道免疫的一过性增强和之后的减弱;②通过对上皮内IEL、固有层LPL占总细胞数量百分比的统计,可以看出,IEL变化存在一定改变,但本实验尚未发现统计学的差异。而LPL百分比特点也是梗阻早期增大,后期下降,这可能是淋巴细胞归巢至固有层这一效应部位增多有关,后期随着淋巴细胞凋亡增多和其它大量炎性细胞浸润而至其比例下降;③s-IgA的量的变化进一步印证了上述现象,在早期肠腔内增多,至后期逐渐低于正常水平;④肠道免疫系统的激活是较早出现的,而且肠梗阻引发的肠免疫屏障改变可能存在部位上的差异,回肠更早、更强烈的出现免疫改变。而固有层效应部位上淋巴细胞可能这种差异并不明显,有待印证。
     第二部分
     四君子汤对肠梗阻解除后肠功能障碍的调节作用的实验研究
     实验六
     四君子汤对肠梗阻解除后小肠上皮修复的调理作用
     目的:利用可复性机械性完全性肠梗阻模型,观察比较肠梗阻梗阻解除后自然恢复与中药四君子汤对小肠上皮细胞增殖与修复的影响。方法:选用健康大耳白兔,随机分为假手术组(Sham)、梗阻48模型组(m_(48))、自然恢复48h组(S_(48))、中药治疗48h组(T_(48))、自然恢复96h组(S_(96))、中药治疗96h组(T_(96)),每组6只。对动物模型梗阻解除后48h、96h时肠杯状细胞形态学、小肠组织鸟氨酸脱羧酶活性、血清瓜氨酸水平、紧密连接相关蛋白Claudin_1 mRNA表达等分别进行检测和观察。结果:本实验显示,在肠梗阻解除后小肠上皮的杯状细胞数量逐渐减少,48h后已经出现明显差异,96h基本恢复正常中药治疗组较自然恢复组差异更明显。血清瓜氨酸水平逐渐恢复至正常水平,中药组要早于自然恢复组(48h,p<0.05),鸟氨酸脱羧酶活性明显增高,尤其是而中药治疗组明显高于自然恢复组(P<0.05)。另外发现中药四君子汤可以上调Claudin_1 mRNA的表达,高于自然恢复组水平。结论:①中药四君子汤可以促进肠梗阻解除后肠上皮细胞的再增殖和上皮完整性的修复过程,表现为其可以加速肠上皮内杯状细胞对肠上皮的重建的完成进度;②可以提高小肠组织ODC活性,提示四君子汤能提高上皮再生能力;③而上皮再生后的结果体现为血清瓜氨酸水平的提高;④四君子汤可以上调肠上皮紧密连接相关蛋白Claudin_1的上游基因表达,促进肠上皮完整性的修复⑤通过结果说明肠梗阻解除后的肠功能障碍在辨证上存在脾胃虚的情况,邪实已祛,正气受损的实质可能应该包括肠上皮的损害,而四君子汤的作用靶点之一可能是促进肠隐窝干细胞的增殖从而达到上皮完整性的修复。
     实验七
     四君子汤对肠梗阻解除后小肠免疫的调理作用
     目的:利用可复性机械性完全性肠梗阻模型,观察比较肠梗阻解除后自然恢复及中药四君子汤对肠道免疫屏障的影响。方法:选用健康大耳白兔,随机分为假手术组(Sham)、梗阻48模型组(M_(48))、自然恢复48h组(S_(48))、中药治疗48h组(T_(48))、自然恢复96h组(S_(96))、中药治疗96h组(T_(96)),每组6只。通过流式细胞术对动物模型梗阻解除后48h、96h时PP淋巴细胞亚群(CD3~+、CD4~+、CD8~+、CD4~+/CD8~+)进行分析、利用ELISA法对肠道内s-IgA含量进行检测以及通过病理切片对IEL、LPL百分比进行计数。结果:本实验显示,肠梗阻解除后中药干预的T48组、T96组较自然恢复的S48、S96组的PP淋巴细胞CD3+、CD4+、CD8+亚群及CD4+/CD8+比值具有调节作用,使之更快恢复或接近梗阻前水平;在对iIEL、LPL相对数量的观察中,四君子汤干预组的LPL更早的接近正常比例;各处理组s-IgA水平之间未发现统计学差异。结论:肠梗阻解除后小肠的免疫屏障功能紊乱并没有立即恢复,自然恢复48h后CD4+、CD4+/CD8+比值等指标并没有随之恢复,而却较M48组更趋下降,这可能提示肠功能的免疫状态并没有因肠梗阻解除而立即恢复,这可能是肠道内环境紊乱、肠道菌群失调以及肠上皮完整性的破坏不可能马上改善有关。而应用四君子汤可以明显促进小肠在梗阻解除之后存在的免疫屏障功能障碍。表现为,四君子汤干预组较自然恢复组的PP淋巴亚群更快恢复正常,并可能对肠效应部位的淋巴细胞分布或数量具有调节作用。肠梗阻解除后的脾胃功能受损的实质可能涵盖了肠上皮功能低下以及肠免疫系统的紊乱,而四君子汤健脾作用的靶点很可能包括对肠道免疫系统的调理作用。
PARTⅠ
     Phasic research of enterocyte,intestinal mucosal barrier andlumen flora of intestinal dysfunction induced by ileus
     ExperimentⅠ
     Improved methods and materials of reusable ileus model of rabbits
     Objects:In order to make models easier to operate,more economical and morestable results.The improved the methods and materials were taken on the basis ofEstablished in the pre-experimental rabbit's mechanical ileus.
     Methods:taking the methods of“Intestinal extrinsic oppression”,infusion set partswill be transformed into In vitro pull-type locking,made a hole in the Avascular zonemesenteric of the terminal ileum,trap tube,Leads to the incision of the abdominalwall next to the outside.1~2 days after operation was fixed by in vitro pull locking,resulting in the obstruction of the bowel.When the need to lift the obstruction onlyneed to cut the lock and withdrawing the device.At the same time,other methodssuch as in vitro-filled cystic obstruction device,plastic cable trap also have been tried.Results:This method is better than the original model in the safety,accuracy,etc.avoiding the existence of intra-abdominal infections,intestinal adhesion,intussusceptions,as well as intestinal perforation,and there is no Factors of instabilitysuch as Device off.
     Conclusion:on the basis of getting certainly more stable obstruction effect.theimproved methods has the advantage of trauma smaller,shorter-cycle model,simpleoperation and material economy,is a more satisfactory reusable mechanical model ofcomplete intestinal obstruction.
     ExperimentⅡ
     Influence of acute intestinal obstruction on damage and proliferativeand repair ability of intestinal epithelial cells
     Objective:To observe the acute mechanical low small bowel obstruction for extentof intestinal epithelial damage,as well as the effects of their own re-proliferation,repair capacity.
     Methods:Healthy rabbits were randomly divided into normal control group(Norm),sham-operated group(Sham),obstruction lh group(H1),obstruction 6h group(H6),obstruction 12h group(H12),obstruction 24h group(H24),obstruction 48h group(H48),obstruction 72h group(H72),n = 6.Animals of each group were detected andanalyzed in serum citrulline levels,biochemical,intestinal tissue ornithinedecarboxylase activity,as well as in intestinal epithelial goblet cell morphology,changes in the number.
     Results:Early intestinal obstruction after the existence of the protection of intestinalepithelial cells to accelerate the process of proliferation,ODC activity showedincreased when 6h after the beginning of obstruction(p<0.001),the damage factorsincreasing with the obstruction is not lifted,ODC activity decreased in obstructive24h,to 72h or even lower than normal level.Morphological observation of intestinalepithelial goblet cells found an increase in the trend,and patterns of phase changeoccured.Indicators over different parts of the small intestine changes in the degree ofphase and is not consistent,ileum more significant than changes in the jejunum.48h-72h to the obstructive phase,lower than the normal level of serum citrullinelevels(p<0.05).In addition to biochemical indicators in detection of CK found in asignificant change in the earlier,more sensitive than other indicators(24h vs48h-72h).
     Conclusion:①Intestine epithelial repair has existed early after the obstructionoccurred,manifested as increased activity of intestinal tissue ODC;②Goblet cells may be involved in the repair of small intestinal mucosa,and may be the key cell toepithelial cell repair;③Late in the obstruction With the reduction of epithelialproliferative activity,serum citrulline levels which is a indirect indicators decreasedon their dysfunction,and it has a certain reference value on determining the severityof the small intestine;④After the intestinal obstruction,CK may be more sensitiveto the meaning of the diagnosis tips compared with other biochemical indicators ofmaterial injury to the intestine.
     ExperimentⅢ
     Phase relationship among Intestinal Environment andmicro-ecological changes and bacteria and endotoxin translocationafter intestinal obstruction
     Objective:To observe the changes of Intestinal Environment and Microecologyafter the occurrence of the acute mechanical low small bowel obstruction in order tounderstand homeostasis after intestinal damage and intestinal barrier damage phase ofthe relationship.
     Methods:Healthy rabbits were randomly divided into normal control group(Norm),sham-operated group(Sham),obstruction l h group(H1),obstruction 6h group(H6),obstruction 12h group(H12),obstruction 24h group(H24),obstruction 48h group(H48),obstruction 72h group(H72),n = 6.Observation of small bowel obstructionwithin hours of each PH,water content and understanding of the use of plate countand Enterobacteriaceae bacteria change in the number of Bifidobacteria.Also bloodendotoxin levels,the organs of the rate of bacterial translocation was observed atdifferent times.
     Results:The results showed that the PH value of terminal ileum was graduallydeclined while the water content in intestinal contents was gradually increases afterthe intestinal obstruction,both groups showed significant changes in the 12h-24hphase obstruction(p<0.05,p<0.01).Enterobacteriaceae in the site and found the cultivation of bifidobacteria,in the 12h-24h stage of obstruction there the ratio of thetwo inverted,Enterobacteriaceae become dominant bacteria.In addition,thecultivation of tissues and found that plasma endotoxin detection,also showedsignificant changes in the 12h-24h phase of the obstruction.
     Conclusion:Intestinal dysfunction after intestinal obstruction is the result of manyfactors,the destruction of intestinal homeostasis provides the basis for theenvironment for a large number of bacteria proliferation and of bacteria andendotoxin translocation.Obstruction compared to the earlier stages of 12h-24h maybe the intestinal environment,drastic changes microecological stage,but also may bestart of bacterial and endotoxin translocation.And gastro-intestinal mechanical barrierat this time often did not show extensive damage,it has also said that,mechanicalbarriers,biological barriers,chemical barriers intestinal damage are risk factors fordysfunction.
     ExperimentⅣ
     The changes of intestinal epithelial Claudin1 mRNA expression inthe occurrence after intestinal obstruction
     Objective:To understand the characteristics of phase of destruction of tightjunctions in intestinal epithelial cells after the occurrence of acute intestinalobstruction.
     Methods:Healthy rabbits were randomly divided into normal control group(Norm),sham-operated group(Sham),obstruction l h group(H1),obstruction 6h group(H6),obstruction 12h group(H12),obstruction 24h group(H24),obstruction 48h group(H48),obstruction 72h group(H72),n = 6.the relative quantitative analysis of theanimals of the last paragraph of the intestinal epithelial tight junction-associatedprotein Claudinl's mRNA's expression were made through the real-time fluorescencequantitative RT-PCR technology.
     Results:The experiments showed that after 6h obstruction Claudinl mRNA expression has been found to have significantly reduced levels to normal about half(p<0.05),12h to 18%(p<0.01),24h to 11%,48h-72h phase expression was very low.
     Conclusions:mechanical barriers have been destroyed at Early stage after theoccurrence of intestinal obstruction(6h),the manifestation was lowly expressedgenes for the tight junction protein upstream gene expression,with the obstruction ofprogressing,the low expression was more prominent at 48h-72h phase of obstruction.Indicated that this stage of intestinal epithelial integrity is completely lost,seriouslydestruction of intestinal mechanical barrier.
     ExperimentⅤ
     Changes of the immune barrier function in small bowel obstructionin rabbits
     Objective:To observe the impact of the immune system when occurrence of acutemechanical intestinal obstruction by making use of intestinal obstruction model
     Methods:Healthy rabbits were randomly divided into normal control group(Norm),sham-operated group(Sham),obstruction lh group(H1),obstruction 6h group(H6),obstruction 12h group(H12),obstruction 24h group(H24),obstruction 48h group(H48),obstruction 72h group(H72),n = 6.By flow cytometry of low obstruction ofproximal ileum,two different parts of high jejunal Peyer intestinal lymph nodes(PP)of CD3+,CD4+,CD8+lymphocyte subsets in the analysis,using HE stainingsections in different parts of the two counts the percentage of IEL and LPL indifferent stages of obstructive changes.Another ELISA assay endocrine intestinalimmunoglobulin A(S-IgA)content.
     Results:The experiments showed that intestinal obstruction after 12h-24h stage,thesmall intestine of animals in the number of PP and the total area increased(p<0.05),with the progress and gradually reduce obstruction to obstruction 72h significantlylower than the normal stage level(p<0.01).PP lymphocytes by flow cytometry onCD3+,CD4+,CD8+sub-group analysis showed that after the lifting of PP within intestinal obstruction CD3+subpopulations for the increase in the trend of low ilealSham group was 29.44±2.54%,12h increased to 35.92±2.08%(p<0.05),72h to49.48±6.37%(p<0.01);CD4+subsets in the 12h stage of the same wassignificantly higher than Sham group(84.68±2.80% vs 80.51±2.22%,p<0.05),Been steadily declining since then to a rapid decline in 72h was significantly lowerthan Sham group(61.62±6.96%,p<0.01);CD8+subsets and CD4+Trends Incontrast,12h-24h phase of decline than the Sham group(8.47±1.41% vs 11.52±1.04%,p<0.05),after 72h was gradually increased to the highest(22.97±4.83%,p<0.05);CD4+/ CD8+ratio of the change in the trend of first increase for the earlystages,24h stage was significantly higher than Sham group(12.10±2.17 vs 7.97±1.40,p<0.01),the late phase of gradual decline to 72h was significantly lower thanSham group(3.35±1.03,p<0.01).Campylobacter high above in the results observedsignificantly later than the low ileum,and the changes are not dramatic.Through theHE staining of the percentage of IEL and LPL counting results showed that thepercentage of IEL in different parts of the time with the obstruction found nosignificant difference,and LPL in the percentage of obstruction increased 6h stage,inwhich parts of the jejunum than the Sham group,significant difference(p<0.05).With prolonged obstruction,the percentage of the two sites decreased LPL.Mesocaval s-IgA in the ELISA results showed that after the occurrence of theintestinal obstruction content increased,24h stage higher than the Sham group(p<0.05),then dropped to the lowest level in 72h,and 24h are different levels,but withthe Sham group found no significant difference between.
     Conclusions:①when obstruction occurred,the number of the small intestine andthe total area of PP increased,which may be related to obstruction by inflammatoryfactors stimulate more relevant,while its lymphocyte subsets is also a correspondingchange,CD3+showed increasing trend,the proportion of CD4+subsets,CD4+/CD8+were increased in the early days,and then gradually decreased with theprogress obstruction.In contrast,CD8+subsets to reduce the proportion of earlystage,the latter increased,which indicates that intestinal immunity and transientenhanced after the decline;②By intraepithelial IEL,lamina propria LPL percentage of the total cell number of statistics,can be seen,IEL changes in a certain change,butthis experiment has not yet found the difference statistically.LPL is characterized bythe percentage of early obstruction increased,the latter decline,this may belymphocyte homing to the lamina part of the effect of the increase,and the latter withthe increase in lymphocyte apoptosis and other inflammatory cell infiltration anddecreased to its;③s-IgA changes in the amount of further verify theabove-mentioned phenomenon,with an increase in the early mesocaval to graduallylower than the level of the latter;④intestinal immune system activation occursearlier,and intestinal obstruction caused by changes in the immune barrier there maybe differences between sites,ileum earlier,the emergence of a stronger immune tochange.The effect of position on the lamina propria lymphocytes Such differencesmay not be apparent,to be confirmed.
     PARTⅡ
     Phasic research of enterocyte,intestinal mucosal barrier andlumen flora of intestinal dysfunction induced by ileus
     Experiment VI
     Repair of intestinal epithelial role of Sijunzi tang After theobstruction was removed
     Objective:To use reusable mechanical model of complete intestinal obstruction,tocompare and observe the natural recovery and influence of traditional Chinesemedicine Sijunzitang on the impact of intestinal epithelial cell proliferation andrepair.
     Methods:Healthy rabbits were randomly divided into sham operation group(Sham),obstruction of 48 model group(M48),natural recovery 48h group(S48),Chinese medicine treatment of 48h group(T48),natural recovery 96h group(S96),Chinese medicine treatment of 96h group(T96),each group 6.The lifting of ananimal model of obstruction after 48h,96h.Making intestinal goblet cell morphology,organization of small intestinal ornithine decarboxylase activity and serum citrullinelevels of tight junction-associated protein expression Claudinl mRNA's detection andobservation,respectively.
     Results:The experiments showed that the number of goblet cells of small intestineepithelium was gradually decline after the lifting of the obstruction,the significantdifferences have emerged 48h later,96h returned to normal level,traditional Chinesemedicine treatment group was more effectively.Serum citrulline levels graduallyreturned to normal levels,the Chinese Medicines Board was earlier than the natural recovery group(48h,p<0.05),omithine decarboxylase activity was significantlyincreased,especially in Chinese medicine the treatment group was significantlyhigher than the natural recovery group(P<0.05).Also found in traditional Chinesemedicine Sijunzitang Claudinl mRNA can increase the expression level higher thanthe natural recovery group.
     Conclusions:①Sijunzi tang medicine can promote intestinal obstruction intestinalepithelial cells after the lifting of the re-proliferation and epithelial integrity of therepair process,can accelerate the performance of their intestinal intraepithelial gobletcells of the intestinal epithelium of the completion of the reconstruction progress;②itcan improve ODC activity in intestinal tissue,suggesting Sijunzitang the ability toincrease epithelial regeneration;③epithelial regeneration and the results reflected inserum citrulline levels,④Sijunzitang can increase intestinal epithelial tightjunction-associated protein gene expression in the upper reaches of the Claudinl,andpromote the integrity of intestinal epithelial repair⑤The results showed throughafter the lifting of the intestinal obstruction dysfunction exist in the differentiation ofthe spleen and stomach empty,the evil is already Qu,the essence of righteousnessmay be damaged,including damage to intestinal epithelium,and the role ofSijunzitang one target may be the promotion of intestinal crypt stem cell proliferationso as to achieve the integrity of epithelial repair.
     ExperimentⅦ
     Intestinal immune opsonization role of Sijunzi tang After theobstruction was removed
     Objective:To use reusable mechanical model of complete intestinal obstruction,tocompare and observe the natural recovery and influence of traditional Chinesemedicine Sijunzitang on the impact of intestinal immune barrier.
     Methods:Healthy rabbits were randomly divided into sham operation group(Sham),obstruction of 48 model group(M48),natural recovery 48h group(S48), Chinese medicine treatment of 48h group(T48),natural recovery 96h group(S96),Chinese medicine treatment of 96h group(T96),each group 6.after the lifting of ananimal model of obstructive 48h,96h,getting PP-lymphocyte subsets(CD3+,CD4+,CD8+,CD4+/ CD8+)for analysis Through flow cytometry,s-IgA in intestinalcontent were detected by using ELISA method as well as through the biopsy of IEL,LPL percentage count.
     Results:The experiments showed that after the Chinese intervention in intestinalobstruction to lift the T48 group,T96 group than in the natural restoration of the S48,S96 Group PP lymphocytes CD3+,CD4+,CD8+subsets and CD4+/ CD8+ratiohas a regulatory role,so that faster restoration of or close to the former level ofobstruction;in iIEL,LPL relative number of observation,Sijunzitang LPL earlierintervention group the proportion of the near normal;the treatment group the level ofs-IgA did not find significant difference among them.
     Conclusion:the barrier function of the immune disorder was not restored withoutdelay,after 48h natural CD4+,CD4+/CD8+ratio and other indicators have notrecovered,and has declined more than the M48 group,which may indicate theimmune status of intestinal function has not been affected by intestinal obstructionand an immediate resumption of disarmament,it may be gastro-intestinal disorderwithin the environment,imbalance of intestinal flora,as well as the integrity ofintestinal epithelial damage can not be immediately improved.Sijunzitang andapplications can be in the promotion of small bowel obstruction after the lifting of theexistence of dysfunction of the immune barrier.Reflected in the intervention groupSijunzitang more natural restoration of the PP group Vallarta leaching faster return tonormal group,and may be part of the intestinal effects of the distribution or thenumber of lymphocytes with a regulatory role.Obstruction after the lifting of thesubstance of the spleen and stomach function may be covered by the intestinalepithelial dysfunction,as well as the immune system,intestinal disorders,and the roleof Sijunzitang strengthening spleen's target is likely to include the intestinal immunesystem opsonization.
引文
[1]殷铭,周振理,杨涛.中西医结合治疗急性肠梗阻——附325例临床病例分析.天津中医药.2002.(03):22-23.
    [2]黎介寿.对肠功能障碍的再认识.肠外与肠内营养.2008.(06):321-322.
    [3]周振理,殷铭,李伟,杨强,陈鄢津.小肠内置管排列术治疗肠梗阻35例分析.中国实用外科杂志.2003.(08):47-48.
    [4]周振理,殷铭,李伟,杨强,陈鄢津.复杂性肠梗阻的治疗难题和中西医结合的优势.中国中西医结合急救杂志.2004.(03):151-153.
    [5]马军宏,周振理.复杂性肠梗阻49例分析.天津医药.2007.(04):308-309.
    [6]陈孝平.外科常用实验方法及动物模型的建立.2003.北京.人民卫生出版社.176-177.
    [7]Liu T,She R,Wang K,et al.Effects of rabbit sacculus rotundus antimicrobial peptides on the intestinal mucosal immunity in chickens.Poult Sci.2008.87(2):250-4.
    [8]Gieldanowski J,Blaszczyk B,Teodorczyk J.Immunologic reactivity in rabbits remotely deprived of the sacculus rotundus.Arch Immunol Ther Exp (Warsz).1974.22(2):175-206.
    [9]吴咸中.腹部外科实践.2004.第三版.天津.天津科学技术出版社.866-869.
    [10]Courtney M.Townsend J,MD RDB,MD BME,MD and Kenneth L.Mattox MD.“Small Bowel.”in Sabiston Textbook of Surgery.2008.18th edition.Philadelphia.PA:W.B.Saunders Company.
    [11]Yamamoto M,Plessow B,Koch HK,Oehlert W.Electron microscopic studies on the small intestinal mucosa of rats after mechanical intestinal obstruction and ischemia.Virchows Arch B Cell Pathol Incl Mol Pathol.1980.32(2):157-64.
    [12]陈蔚文.健脾益气中药的小肠隐窝细胞药理靶点探讨.广州中医药大学学报.2004.(05):356-360.
    [13]Wang JY.Polyamines and mRNA stability in regulation of intestinal mucosal growth.Amino Acids.2007.33(2):241-52.
    [14]Wang B,Bobe G,LaPres JJ,Bourquin LD.High sucrose diets promote intestinal epithelial cell proliferation and tumorigenesis in APC(Min) mice by increasing insulin and IGF-I levels. Nutr Cancer. 2009. 61(1): 81-93.
    [15] Maran RR, Thomas A, Roth M, et al. Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development.J Pharmacol Exp Ther. 2009. 328(2): 469-77.
    [16] Kaushik S, Kaur J. Effect of chronic cold stress on intestinal epithelial cell proliferation and inflammation in rats. Stress. 2005. 8(3): 191-7.
    [17] Okazawa A, Kanai T, Nakamaru K, et al. Human intestinal epithelial cell-derived interleukin (IL)-18, along with IL-2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes. Clin Exp Immunol.2004. 136(2): 269-76.
    [18] MacDonald TT. Epithelial proliferation in response to gastrointestinal inflammation. Ann N Y Acad Sci. 1992. 664: 202-9.
    [19] Freeman HJ. Crypt region localization of intestinal stem cells in adults. World J Gastroenterol. 2008. 14(47): 7160-2.
    [20] Edlich RF, Woods JA. Wangensteen's transformation of the treatment of intestinal obstruction from empiric craft to scientific discipline. J Emerg Med.1997. 15(2): 235-41.
    [21] 3rd BAE, Diebel LN, Liberati DM, Dulchavsky SA, Brown WJ, Diglio CA. The synergistic effects of hypoxia/reoxygenation or tissue acidosis and bacteria on intestinal epithelial cell apoptosis. J Trauma. 2003. 55(2): 241-7; discussion 247-8.
    [22] Ikeda H, Yang CL, Tong J, et al. Rat small intestinal goblet cell kinetics in the process of restitution of surface epithelium subjected to ischemia-reperfusion injury. Dig Dis Sci. 2002. 47(3): 590-601.
    [23] Chang JX, Chen S, Ma LP, et al. Functional and morphological changes of the gut barrier during the restitution process after hemorrhagic shock. World J Gastroenterol. 2005. 11(35): 5485-91.
    [24] Taupin DR, Kinoshita K, Podolsky DK. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. Proc Natl Acad Sci U S A. 2000. 97(2):799-804.
    [25] Kinoshita K, Taupin DR, Itoh H, Podolsky DK. Distinct pathways of cell migration and antiapoptotic response to epithelial injury: structure-function analysis of human intestinal trefoil factor. Mol Cell Biol. 2000. 20(13): 4680-90.
    [26] Madara JL, Trier JS. Structure and permeability of goblet cell tight junctions in rat small intestine.J Membr Biol.1982.66(2):145-57.
    [27]Conour JE,Ganessunker D,Tappenden KA,Donovan SM,Gaskins HR.Acidomucin goblet cell expansion induced by parenteral nutrition in the small intestine of piglets.Am J Physiol Gastrointest Liver Physiol.2002.283(5):G1185-96.
    [28]Masuda K,Ikeda H,Kasai K,et al.Diversity of restitution after deoxycholic acid-induced small intestinal mucosal injury in the rat.Dig Dis Sci.2003.48(10)2108-15.
    [29]Vidrich A,Buzan JM,Barnes S,et al.Altered epithelial cell lineage allocation and global expansion of the crypt epithelial stem cell population are associated with ileitis in SAMP1/YitFc mice.Am J Pathol.2005.166(4):1055-67.
    [30]Zhang AH,Rao JN,Zou T,et al.p53-dependent NDRG1 expression induces inhibition of intestinal epithelial cell proliferation but not apoptosis after polyamine depletion.Am J Physiol Cell Physiol.2007.293(1):C379-89.
    [31]Haxhija EQ,Yang H,Spencer AU,Sun X,Teitelbaum DH.Intestinal epithelial cell proliferation is dependent on the site of massive small bowel resection.Pediatr Surg Int.2007.23(5):379-90.
    [32]Pappas PA,Saudubray JM,Tzakis AG,et al.Serum citrulline as a marker of acute cellular rejection for intestinal transplantation.Transplant Proc.2002.34(3):915-7.
    [33]Santarpia L,Catanzano F,Ruoppolo M,et al.Citrulline blood levels as indicators of residual intestinal absorption in patients with short bowel syndrome Ann Nutr Metab.2008.53(2):137-42.
    [34]Miceli E,Poggi N,Missanelli A,Bianchi P.Moratti R,Corazza GR.Is serum citrulline measurement clinically useful in coeliac disease.Intern Emerg Med.2008.3(3):233-6.
    [35]Blijlevens NM,Lutgens LC,Schattenberg AV,Donnelly JP.Citrulline:a potentially simple quantitative marker of intestinal epithelial damage following myeloablative therapy.Bone Marrow Transplant.2004.34(3):193-6.
    [36]刘放南,谭力,罗楠等.血清瓜氨酸测定方法的建立及在小肠移植中的应用.中华器官移植杂志.2005.(07):430-432.
    [37]Herbers AH,Blijlevens NM,Donnelly JP de Witte TJ.Bacteraemia coincides with low citrulline concentrations after high-dose melphalan in autologous HSCT recipients.Bone Marrow Transplant.2008.42(5):345-9.
    [38] Crenn P, Messing B, Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr. 2008. 27(3): 328-39.
    [39] Steven C.Kazmlerczak JAL, James HC. Acute intestinal infarctionor obstruction:search for better laboratory tests in an animal model. 1988. 34(2):281-288.
    [40] Zimmerman NP, Vongsa RA, Wendt MK, Dwinell MB. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflamm Bowel Dis. 2008. 14(7): 1000-11.
    [41] Zaph C, Troy AE, Taylor BC, et al. Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature. 2007. 446(7135): 552-6.
    [42] Iweala OI, Nagler CR. Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora.Immunol Rev. 2006. 213: 82-100.
    [43] Sagar PM, MacFie J, Sedman P, May J, Mancey-Jones B, Johnstone D. Intestinal obstruction promotes gut translocation of bacteria. Dis Colon Rectum. 1995.38(6): 640-4.
    [44] Samel S, Keese M, Kleczka M, et al. Microscopy of bacterial translocation during small bowel obstruction and ischemia in vivo~a new animal model.BMC Surg. 2002. 2: 6.
    [45] Sagar PM, MacFie J, Sedman P, May J, Mancey-Jones B, Johnstone D. Intestinal obstruction promotes gut translocation of bacteria. Dis Colon Rectum. 1995.38(6): 640-4.
    [46] Plusczyk T, Bolli M, Schilling M. [Ileus disease]. Chirurg. 2006. 77(10):898-903.
    [47] Papanicolaou G, Ahn YK, Nikas DJ, Fielding LP. Effect of large-bowel obstruction on colonic blood flow. An experimental study. Dis Colon Rectum.1989. 32(8): 673-9.
    [48] Papanicolaou G, Ahn YK, Nikas DJ, Fielding LP. Effect of large-bowel obstruction on colonic blood flow. An experimental study. Dis Colon Rectum.1989. 32(8): 673-9.
    [49] Mirkovitch V, Blanc D, Macarone-Palmieri R, Mosimann F, Robinson JW,Menge H. Lack of effect of bile in pathogenesis of secretion in mechanical small bowel obstruction. Digestion. 1978. 17(3): 204-10.
    [50] Mirkovitch V, Robinson JW, Mosimann F, Macarone-Palmieri R, Blanc D. [Role of the bile in lesions of the intestinal mucosa above a mechanical occlusion]. Helv Chir Acta. 1978. 45(1-2): 125-7.
    [51] Magalhaes JG, Tattoli I, Girardin SE. The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens. Semin Immunol. 2007.19(2): 106-15.
    [52] Manjarrez-Hernandez HA, Baldwin TJ, Aitken A, Knutton S, Williams PH.Intestinal epithelial cell protein phosphorylation in enteropathogenic Escherichia coli diarrhoea. Lancet. 1992. 339(8792): 521-3.
    [53] Quigley EM. Bacteria: a new player in gastrointestinal motility disorders—infections, bacterial overgrowth, and probiotics. Gastroenterol Clin North Am. 2007. 36(3): 735-48, xi.
    [54] Borriello SP. Bacteria and gastrointestinal secretion and motility. Scand J Gastroenterol Suppl. 1984. 93: 115-21.
    [55] Lutgendorff F, Akkermans LM, Soderholm JD. The role of microbiota and probiotics in stress-induced gastro-intestinal damage. Curr Mol Med. 2008. 8(4):282-98.
    [56] van MLP, Timmerman HM, Lutgendorff F, et al. Modification of intestinal flora with multispecies probiotics reduces bacterial translocation and improves clinical course in a rat model of acute pancreatitis. Surgery. 2007. 141(4):470-80.
    [57] P. Sannomiya FLZ, S. Benabou KVG, A.C. Moreno JWMCC, F.P. Filgueira MBM, L.F. Poli de Figueiredo MReS. Mesenteric microcirculatory dysfunction associated with indigenous bacterial translocation after intestinal obstruction and ischemia in rats. Journal of Critical Care. 23(2) ,2008. 270.
    [58] Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998. 141(7): 1539-50.
    [59] Tang VW, Goodenough DA. Paracellular ion channel at the tight junction.Biophys J. 2003. 84(3): 1660-73.
    [60] Yu D, Turner JR. Stimulus-induced reorganization of tight junction structure: the role of membrane traffic. Biochim Biophys Acta. 2008. 1778(3): 709-16.
    [61] Mrsny RJ. Modification of epithelial tight junction integrity to enhance transmucosal absorption. Crit Rev Ther Drug Carrier Syst. 2005. 22(4): 331-418.
    [62] Costantini TW, Loomis WH, Putnam JG, et al. Burn-induced gut barrier injury is attenuated by phosphodiesterase inhibition: effects on tight junction structural proteins. Shock. 2009. 31(4): 416-22.
    [63] Yoshida Y, Ban Y, Kinoshita S. Tight junction transmembrane protein claudin subtype expression and distribution in human corneal and conjunctival epithelium. Invest Ophthalmol Vis Sci. 2009. 50(5): 2103-8.
    [64] Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004. 286(6): C1213-28.
    [65] Thuijls G, de Haan JJ, Derikx JP, et al. Intestinal cytoskeleton degradation precedes tight junction loss following hemorrhagic shock. Shock. 2009. 31(2):164-9.
    [66] Dokladny K, Moseley PL, Ma TY. Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability.Am J Physiol Gastrointest Liver Physiol. 2006. 290(2): G204-12.
    [67] Lambert GP. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J Anim Sci. 2009. 87(14 Suppl): E101-8.
    [68] O'Hara JR, Buret AG. Mechanisms of intestinal tight junctional disruption during infection. Front Biosci. 2008. 13: 7008-21.
    [69] Li Q, Zhang Q, Wang C, Li N, Li J. Invasion of enteropathogenic Escherichia coli into host cells through epithelial tight junctions. FEBS J. 2008. 275(23):6022-32.
    [70] Kim KP, Loessner MJ. Enterobacter sakazakii invasion in human intestinal Caco-2 cells requires the host cell cytoskeleton and is enhanced by disruption of tight junction. Infect Immun. 2008. 76(2): 562-70.
    [71] Kutayli ZN, Domingo CB, Steinberg SM. Intestinal failure. Curr Opin Anaesthesiol. 2005. 18(2): 123-7.
    [72] Zapata-Sirvent RL, Marzullo MV, Pinate S, et al. [Bacterial translocation in a model of intestinal obstruction. II. Bacteriological study and role of cellular immunity]. G EN. 1991. 45(4): 273-80.
    [73] Mythen MG, Barclay GR, Purdy G, et al. The role of endotoxin immunity,neutrophil degranulation and contact activation in the pathogenesis of post-operative organ dysfunction. Blood Coagul Fibrinolysis. 1993. 4(6):999-1005.
    [74] Brandtzaeg P, Halstensen TS, Kett K, et al. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology. 1989. 97(6): 1562-84.
    [75] Mowat AM, Viney JL. The anatomical basis of intestinal immunity. Immunol Rev. 1997. 156: 145-66.
    [76] Shreedhar VK, Kelsall BL, Neutra MR. Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T- and B-cell areas of Peyer's patches. Infect Immun. 2003. 71(1): 504-9.
    [77] Iwata M. Retinoic acid production by intestinal dendritic cells and its role in T-cell trafficking. Semin Immunol. 2009. 21(1): 8-13.
    [78] Borghesi C, Taussig MJ, Nicoletti C. Rapid appearance of M cells after microbial challenge is restricted at the periphery of the follicle-associated epithelium of Peyer's patch. Lab Invest. 1999. 79(11): 1393-401.
    [79] Blaschke V, Micheel B, Pabst R, Westermann J. Lymphocyte traffic through lymph nodes and Peyer's patches of the rat: B- and T-cell-specific migration patterns within the tissue, and their dependence on splenic tissue. Cell Tissue Res. 1995. 282(3): 377-86.
    [80] Kunisawa J, Takahashi I, Kiyono H. Intraepithelial lymphocytes: their shared and divergent immunological behaviors in the small and large intestine.Immunol Rev. 2007. 215: 136-53.
    [81] Konopliannikova OA, Konopliannikov AG, Vacek A. [Radiobiological aspects of increased radioresistance of murine epithelial stem cells from patches of Peyer].Radiats Biol Radioecol. 1994. 34(4-5): 514-9.
    [82] Corthesy B. Roundtrip ticket for secretory IgA: role in mucosal homeostasis. J Immunol. 2007. 178(1): 27-32.
    [83] Allez M, Mayer L. Regulatory T cells: peace keepers in the gut. Inflamm Bowel Dis.2004. 10(5): 666-76.
    [84] Machado CS, Rodrigues MA, Maffei HV. Gut intraepithelial lymphocyte counts in neonates, infants and children. Acta Paediatr. 1994. 83(12): 1264-7.
    [85] Christ AD, Blumberg RS. The intestinal epithelial cell: immunological aspects.Springer Semin Immunopathol. 1997. 18(4): 449-61.
    [86] Inagaki-Ohara K, Dewi FN, Hisaeda H, et al. Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun. 2006. 74(9): 5292-301.
    [87] Wurbel MA, Malissen M, Guy-Grand D, Malissen B, Campbell JJ. Impaired accumulation of antigen-specific CD8 lymphocytes in chemokine CCL25-deficient intestinal epithelium and lamina propria. J Immunol. 2007.178(12): 7598-606.
    [88] Agace WW. T-cell recruitment to the intestinal mucosa. Trends Immunol. 2008.29(11): 514-22.
    [89] Kantele A, Arvilommi H, Iikkanen K, et al. Unique characteristics of the intestinal immune system as an inductive site after antigen reencounter. J Infect Dis. 2005. 191(2): 312-7.
    [90] Mayer L. Review article: Local and systemic regulation of mucosal immunity. Aliment Pharmacol Ther. 1997. 11 Suppl 3: 81-5; discussion 85-8.
    [91] Mason KL, Huffnagle GB, Noverr MC, Kao JY. Overview of gut immunology.Adv Exp Med Biol. 2008. 635: 1-14.
    [92] Romano S, Bartone G, Romano L. Ischemia and infarction of the intestine related to obstruction. Radiol Clin North Am. 2008. 46(5): 925-42, vi.
    [93] Saurer L, Mueller C. T cell-mediated immunoregulation in the gastrointestinal tract. Allergy. 2009. 64(4): 505-19.
    [94] Boirivant M, Amendola A, Butera A. Intestinal microflora and immunoregulation. Mucosal Immunol. 2008. 1 Suppl 1: S47-9.
    [95] Guzy C, Schirbel A, Paclik D, Wiedenmann B, Dignass A, Sturm A. Enteral and parenteral nutrition distinctively modulate intestinal permeability and T cell function in vitro. Eur J Nutr. 2009. 48(1): 12-21.
    [96] MacFie J. Current status of bacterial translocation as a cause of surgical sepsis.Br Med Bull. 2004. 71: 1-11.
    [97] Wildhaber BE, Yang H, Spencer AU, Drongowski RA, Teitelbaum DH. Lack of enteral nutrition—effects on the intestinal immune system. J Surg Res. 2005.123(1): 8-16.
    [98] Goldstein RM, Hebiguchi T, Luk GD, et al. The effects of total parenteral nutrition on gastrointestinal growth and development. J Pediatr Surg. 1985.20(6): 785-91.
    [99] Hachenberg T, Grundling M. [Acute failure of the intestinal barrier—pathophysiology, diagnosis, prophylaxis and therapy]. Anaesthesiol Reanim. 1999. 24(1): 4-12.
    [100] Flanigan TL, Owen CR, Gayer C, Basson MD. Supraphysiologic extracellular pressure inhibits intestinal epithelial wound healing independently of luminal nutrient flow. Am J Surg. 2008. 196(5): 683-9.
    [101] Karam SM. Lineage commitment and maturation of epithelial cells in the gut.Front Biosci. 1999. 4: D286-98.
    [102] Freeman HJ. Crypt region localization of intestinal stem cells in adults.World J Gastroenterol. 2008. 14(47): 7160-2.
    [103] Vidrich A, Buzan JM, Barnes S, et al. Altered epithelial cell lineage allocation and global expansion of the crypt epithelial stem cell population are associated with ileitis in SAMP 1 /YitFc mice.Am J Pathol.2005.166(4):1055-67.
    [104]Jarboe MD,Juno RJ,Stehr W,et al.Epidermal growth factor receptor signaling regulates goblet cell production after small bowel resection.J Pediatr Surg.2005.40(1):92-7.
    [105]Haxhija EQ,Yang H,Spencer AU,Sun X,Teitelbaum DH.Intestinal epithelial cell proliferation is dependent on the site of massive small bowel resection.Pediatr Surg Int.2007.23(5):379-90.
    [106]彭成,曹小玉,周智科,田述缓,杨智梅.四君子颗粒对脾虚动物胃肠细胞保护作用的机理研究.成都中医药大学学报.2001.(01):32-34.
    [107]谭兴贵,瞿岳云.中医虚实理论的反思.中国中医基础医学杂志.2002.(11):6-8.
    [108]樊春华,吕永慧.中医药治疗肠黏膜屏障功能障碍研究近况.河北中医.2008.(02):209-211.
    [109]刘远梅,胡月光,孙有成.黄芪对幼兔肠缺血-再灌注肠黏膜屏障的保护作用.实用儿科临床杂志.2006.(23):1617-1618.
    [110]张子理,陈蔚文.党参、黄芪、白术、甘草提取部位对小肠上皮细胞增殖的影响.中药药理与临床.2002.(01):10-12.
    [111]张子理,陈蔚文.黄芪注射液和白术提取部位对小肠上皮细胞移行的影响.中草药.2002.(10):50-53.
    [112]蒋灵芝,熊平,蒋任才.四君子汤修复烧伤后肠黏膜屏障的超微结构变化.中医药临床杂志.2004.(01):80-81.
    [113]刘放南,谭力,罗楠等.血清瓜氨酸测定方法的建立及在小肠移植中的应用.中华器官移植杂志.2005.(07):430-432.
    [114]李茹柳.白术黄芪方对溃疡性结肠炎及紧密连接相关蛋白影响的实验研究.广州中医药大学博士学位论文.2006.1(1):1.
    [115]孟震,崔乃强.中西医结合治疗肠源性多器官功能障碍综合征探讨.山东中医杂志.2007.(06):371-373.
    [116]姜树民,王哲.脓毒症中医药治疗探讨.中医药通报.2007.(04):30-32.
    [117]张淑文,王宝恩.中医药配合西医疗法治疗感染性多脏器功能不全患者225例临床观察.中医杂志.2001.(01):25-27.
    [118]周永坤,张云杰,朱勇,宋爱莉.腹膜炎所致全身炎症反应综合征的中医药研究进展.山东中医药大学学报.2007.(02):169-171.
    [119]崔乃强,傅强,邱奇等.通里攻下法对SIRS/MODS的治疗价值——多中心临床分析.中国中西医结合外科杂志.2007.(01):3-7.
    [120]傅强,崔乃强,喻文立.严重腹腔感染机体免疫失衡与中医虚实证型关系的研究.中国中西医结合杂志.2009.(02):120-125.
    [121]傅强,崔乃强,王娜,崔乃杰.严重腹腔感染所致多脏器功能障碍综合征中医辨证规律研究.中国中西医结合外科杂志.2009.(01):3-7.
    [122]沈震,钱静华.香砂六君子汤加减治疗危重病胃肠功能障碍.浙江中医药大学学报.2008.(05):621-622.
    [123]曹书华,王今达,李银平.从“菌毒并治”到“四证四法”——关于中西医结合治疗多器官功能障碍综合征辨证思路的深入与完善.中国危重病急救医学.2005.(11):7-9.
    [124]冯浩江,付强,侯杰军.胃术后早期运用健脾益气中药配合肠内营养治疗的临床观察.陕西中医学院学报.2008.(05):25-27.
    [125]陆敏.健脾益气法对晚期胃肠癌患者生活质量及细胞免疫功能的影响.陕西中医.2008.(09):1130-1131.
    [126]李雅飞,尤可.脓毒症中医病机及治则探讨.河南中医.2009.(03):236-237.
    1.Tappenden KA.Inflammation and intestinal function:where does it start and what does it mean? JPEN J Parenter Enteral Nutr.2008;32(6):648-650.
    2.Fasano A.Physiological,pathological,and therapeutic implications of zonulin-mediated intestinal barrier modulation:living life on the edge of the wall._Am J Pathol.2008;173(5):1243-1252.
    3.Marshall JC,Nathens AB.The gut in critical illness:evidence from human studies.Shock.1 996:6:S10-S16,
    4.Swank G M, Deith E A. Role of the gut in multiple organ failure: bacterial translocation and permeability changes.World J Surg ,1996,20(4):411-417
    
    5.Wilmore DW, Smith RJ, O'Dwyer ST, et al. The gut: a central organ after surgical stress. Surgery; 1988,104(5): 917-923
    
    6.Clark JA, Coopersmith CM.Intestinal crosstalk: a new paradigm for understanding the gut as the "motor"of critical illness. Shock. 2007;28(4):384-393.
    
    7.Fruhwald S, Holzer P, Metzler H. Gastrointestinal motility in acute illness. Wien Klin Wochenschr. 2008;120(1-2):6-17.
    
    8.Soffer EE. Small bowel motility: ready for prime time?Curr Gastroenterol Rep.2000 ;2(5):364-369.
    
    9.Won.k-j,Suzuki.t,Hori,et al.Motility disorder in experimentally obstructed intestine:relationship between muscularis inflammation and disruption of the ICC network.Neurogastroentero Motil, 2006;18(1):53-61
    
    10.Shafik A, Shafik AA, el-Sibai O. Study of the effect of jejuno-ileal distension on the motor activity of the stomach with evidence of "entero-gastric inhibitory reflex".Hepatogastroenterology. 2003;50(54):1966-1969.
    
    11.Samis AJ.Delayed gastric emptying in critical illness: is enhanced enterogastric inhibition with cholecystokinin and peptide YY involved?Crit Care Med.2008;36(5):1655-1656.
    
    12.Rosa-E-Silva L, Gerson L, Davila M, Triadafilopoulos G. Clinical, radiologic, and manometric characteristics of chronic intestinal dysmotility: the Stanford experience.Clin Gastroenterol Hepatol. 2006;4(7):866-873.
    
    13.Hansen M.B.Small Intestinal Manometry.Physiol Res.2002;51: 541-556
    
    14.Stanghellini V, Cogliandro R, Cogliandro L, et al. Clinical use of manometry for the diagnosis of intestinal motor abnormalities.Dig Liver Dis. 2000;32(6):532-541.
    
    15.Haruma K, Kusunoki H, Manabe N,et al.Real-time assessment of gastroduodenal motility by ultrasonography. Digestion. 2008;77(Suppl 1):48-51.
    
    16.Matsumoto Y, Ito M, Kamino D,et al. Relation between histologic gastritis and gastric motility in Japanese patients with functional dyspepsia: evaluation by transabdominal ultrasonography. J Gastroenterol. 2008;43(5):332-337.
    
    17.La Brooy SJ, Male PJ, Beavis AK, et al. Assessment of the reproducibility of the lactulose H2 breath test as a measure of mouth to caecum transit time._Gut.1983;24(10):893-896.
    
    18. Romagnuolo J, Schiller D, Bailey RJ. Using breath tests wisely in a gastroenterology practice: an evidence-based review of indications and pitfalls in interpretation.Am J Gastroenterol. 2002 ;97(5):1113-1126.
    
    19.Hinton JM, Lennard-Jones JE, Young AC. A new method for studying gut transit times using radio-opaque markers .Gut. 1969, 10(10):842-847
    
    20.Zaslavsky C,da Silveira T R,Maguilnik I. Total and segmental colonic transit time with radio-opaque markers in adolescents with functional constipation.J-Pediatr-Gastroenterol-Nutr. 1998; 27(2): 138-142
    
    21.Johnson PA, Miner PB Jr, Geier D, Harrison LA. Value of radiopaque markers in identifying partial small bowel obstruction.Gastroenterology.1996;110(6):1958-1963.
    
    22.Hennigs S, Jager H, Gissler M, et al. Small intestinal transit with radio-opaque markers to localize intermittent small bowel obstruction.Rofo.2000 ;172(12):1000-1005
    
    23.Rossi Z, Forlini G, Fenderico P, Electrogastrography. Eur Rev Med Pharmacol Sci.2005 ;9(5 Suppl 1):29-35.
    
    24.Koenig JB, Martin CE, Nykamp SG,et al. Use of multichannel electrointestinography for noninvasive assessment of myoelectrical activity in the cecum and large colon of horses. Am J Vet Res. 2008;69(6):709-715.
    
    25.Zhen-Bin Mu, Yu-Xin Huang, Bao-Min Zhao,et al. Effect of explosive noise on gastrointestinal transit and plasma levels of polypeptide hormones. World J Gastroenterol.2006; 12(114): 2284-2287.
    
    26.R Sidhu, D S Sanders, A J Morris, et al. Guidelines on small bowel enteroscopy and capsule endoscopy in adults. Gut 2008;57 (1) :125-136
    
    27.Malagelada C, De Iorio F, Azpiroz F, et al. New insight into intestinal motor function via noninvasive endoluminal image analysis.Gastroenterology.2008 ;135(4):1155-1162.
    
    28.R. Sidhu, DS Sanders, ME McAlindon.Gastrointestinal capsule endoscopy: from tertiary centres to primary care. BMJ, 2006; 332(7540): 528 -531.
    
    29.Barthe L, Woodley JF, Kenworthy S, Houin G. An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestine. Eur J Drug Metab Pharmacokinet. 1998 ;23(2):313-323.
    
    30.Xu YA, Fan G, Gao S, Hong Z. Assessment of intestinal absorption of vitexin-2"-o-rhamnoside in hawthorn leaves flavonoids in rat using in situ and in vitro absorption models. Drug Dev Ind Pharm. 2008 ;34(2):164-170.
    
    31.Lawrence XY, Lipka E, Crison JR, et al.Transport approaches to the biopharmaceutical design of oral drug delivery system:prediction of intestinal absorption.Adv Drug Del Rev.1996;19(3):359-367.
    32.Hogenauer C,Hammer HF Maldigestion and Malabsorption.In:Feldman M,Friedman LS,Sleisenger MH,eds.Sleisenger&Fordtran's Gastrointestinal and Liver Disease.8th ed.Philadelphia,Pa:WB Saunders;2006:chap 98.
    33.Nejdfors P,K(o|¨)nyves J,Davidsson T,et al.Permeability of intestinal mucosa from urinary reservoirs in man and rat.BJU Int.2000;86(9):1058-1063.
    34.Pappas PA,Saudubray JM,Tzakis AG,et al.Serum citrulline as a marker of acute cellular rejection for intestinal transplantation.Transplant Proc.2002;34(3):915-917
    35.Gondolesi G.E.;Kaufman S.S.;Sansaricq C.;et al.Defining Normal Plasma Citrulline in Intestinal Transplant Recipients.American Journal of Transplantation,2004,4(3):414-418
    36.Santarpia L,Catanzano F,Ruoppolo M,et al.Citrulline Blood Levels as Indicators of Residual Intestinal Absorption in Patients with Short Bowel Syndrome.Ann Nutr Metab.2008;53(2):137-142.
    37.刘放南,谭力,罗楠,等.血清瓜氨酸测定方法的建立及在小肠移植中的应用.中华器官移植杂质.2005,26 (7):430-432
    38.Herbers AH,Blijlevens NM,Donnelly JP,et al.Bacteraemia coincides with low citrulline concentrations after high-dose melphalan in autologous HSCT recipients.Bone Marrow Transplant.2008;42(5):345-349.
    39.Crenn P,Messing B,Cynober L.Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction.Clin Nutr.2008;27(3):328-339.
    40.Utech M,Bruwer M,Nusrat A.Tight junctions and cell-cell interactions._Methods Mol Biol.2006;341:185-195.
    41.Mengheri E.Health,probiotics,and inflammation.J Clin Gastroenterol.2008 Sep;42 Suppl 3 Pt 2:S177-8.
    42.Moorthy G,Murali MR,Devaraj SN.Lactobacilli facilitate maintenance of intestinal membrane integrity during Shigella dysenteriae 1 infection in rats._Nutrition.2008 Nov 24.[Epub ahead of print]
    43.Wang JY.Polyamines and mRNA stability in regulation of intestinal mucosal growth.Amino Acids.2007;33(2):241-252.
    44.Ray RM,Bhattacharya S,Johnson LR.EGFR plays a pivotal role in the regulation of polyamine-dependent apoptosis in intestinal epithelial cells.Cell Signal.2007;19(12):2519-2527.
    45.Hoshino Y, Terashima S, Teranishi Y, et al. Ornithine decarboxylase activity as a prognostic marker for colorectal cancer.Fukushima J Med Sci. 2007 Jun;53(1):1-9.
    
    46.Vaishnava S, Hooper LV. Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell Host Microbe. 2007;2(6):365-367.
    
    47.Geddes K, Philpott DJ.A new role for intestinal alkaline phosphatase in gut barrier maintenance.Gastroenterology. 2008; 135(1):8-12.
    
    48.Goldberg RF, Austen WG Jr, Zhang X, et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci U S A.2008;105(9):3551-3556.
    
    49.Maddalena Generoso M, Rosa M.D, Rosa R.D,et al. Cellobiose and lactulose coupled with mannitol and determined using ion-exchange chromatography with pulsed amperometric detection, are reliable probes for investigation of intestinal permeability. J Chromatography B. 2003,783(2): 349-357
    
    50.Xu CP, Liu J, Liu JC, Han DW,et al. Dynamic changes and mechanism of intestinal endotoxemia in partially hepatectomized rats. World J Gastroenterol.2007;13(26):3592-3597.
    
    51.Murray MJ , Gonze MD , Nowak LR , et al. Serum D(-)-lactate levels as an aid to diagnosing acute intestinal ischemia. Am J Surg ,1994; 167 (6) :575-578
    
    52.Wells, Carol L, Hess,et al. Impact of the indigenous flora in animal models of shock and sepsis. Shock.2004;22(6):562-568.
    
    53.Ljungdahl M, Lundholm M, Katouli M, etal.Bacterial translocation in experimental shock is dependent on the strains in the intestinal flora. Scand J Gastroenterol.2000;35(4):389-397.
    
    54.Stotzer PO, Kilander AF. Comparison of the 1-gram (14)C-D-xylose breath test and the 50-gram hydrogen glucosebreath test for diagnosis of small intestinal bacterial overgrowth. Digestion,2000,61(3):165-171.
    
    55.E1-Naggar MM, Khalil el-SA, El-Daker MA, et al. Bacterial DNA and its consequences in patients with cirrhosis and culture-negative, non-neutrocytic ascites.J Med Microbiol. 2008;57(Pt 12):1533-1538.
    
    56.Aldazabal P, Garcia Urkia N, Asensio AB, et al. Detection of bacterial translocation by polymerase chain reaction in an experimental short bowel model._Cir Pediatr. 2008;21(3):121-124.
    
    57.Frances R, Benlloch S, Zapater P, et al. A sequential study of serum bacterial DNA in patients with advanced cirrhosis and ascites .Hepatology,2004;39(2) :484-491
    58.Deitch EA. Simple intestinal obstruction causes bacterial translocation in man .Arch Surg, 1989;124 (6) :699-701
    
    59.Van Leeuwen PA, Boermeester MA, Houdijk AP, et al. Clinical significance of translocation.Gut. 1994;35(Suppl 1):S28-S34.
    
    60.Kong WM, Gong J, Dong L,et al. Changes in tight junction of intestinal mucosa in patients with irritable bowel syndrome: a study with tracing electron microscope. Nan Fang Yi Ke Da Xue Xue Bao. 2007 Aug;27(8):1167-1170, 1172
    
    61.Chiu CJ, McArdle AH, Brown R, et al. Intestinal mucosal lesion in low-flow states.I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg,1970,101(4):478-483
    
    62.Rupani B, Caputo FJ, Watkins AC, et al. Relationship between disruption of the unstirred mucus layer and intestinal restitution in loss of gut barrier function after trauma hemorrhagic shock.Surgery. 2007; 141(4):481-489.
    
    63.Chang JX, Chen S, Ma LP, et al. Functional and morphological changes of the gut barrier during the restitution process after hemorrhagic shock.World J Gastroenterol.2005;11(35):5485-5491.
    
    64.Stallmach A, Zeitz M. The intestine as an immunological organ.Wien Klin Wochenschr. 1998;110(3):72-78.
    
    65.Brandtzaeg P, Halstensen TS, Kett K, et al.Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes.Gastroenterology 1989;97(6): 1562-1584
    
    66.Man AL, Lodi F, Bertelli E, et al.Macrophage migration inhibitory factor plays a role in the regulation of microfold (M) cell-mediated transport in the gut.J Immunol.2008;181(8):5673-5680.
    
    67.Corthesy B. Roundtrip ticket for secretory IgA: role in mucosal homeostasis?_J Immunol. 2007;178(1):27-32
    
    68.Mason KL, Huffnagle GB, Noverr MC,et al. Overview of gut immunology.Adv Exp Med Biol. 2008;635:l-14
    1.韩红,王厚力,于学忠,等.胃肠功能障碍/衰竭与危重病.中国医学科学院学报.2008;30(2):224-227
    2.Swank G M,Deith E A.Role of the gut in multiple organ failure:bacterial translocation and permeability changes.World J Surg,1996;20(4):411-417
    3.Daugherty AL,Mrsny RJ.Regulation of the intestinal epithelial paracellular barrier.Pharm Sci Technolo Today,1999;2(7):281-287
    4.名倉宏.肠管粘膜的免疫机制.日本医学介绍.1998;19 (9):418-419
    5.Brandtzaeg P,Halstensen TS,Kett K,et al.Immunobiology and immunopathology of human gut mucosa:humoral immunity and intraepithelial lymphocytes.Gastroenterology.1989;97(6):1562-1584
    6.Allan MIM,Joanne LV.The anatomical basis of intestinal immunity.Immunolo Rev.1997;156:145-151
    7.Shreedhar KVKelsall BL,Neutra MR.Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T-and B-cell areas of Peyer's patches.Infect Immun,2003;71(1):504-509
    8.Borghesi C,Taussig MJ,Nicoletti C.Rapid appearance of M Cells after microbial challenge is restricted at the periphery of the follicle-associated epithelium of Pager's patch.Lab Invest,1999;79(11):1393-1401
    9.Rescigno M,Martino M,Sutherland C,et al.Dendritic cell survival and maturation are regulated by different signaling pathways.J Exp Med.1998;188(11):2175-2180.
    10.Neutra MR,Kraehenbuhl JP.Mucosal immunization via M cells for production of protective secretory IgA antibodies.Am J trop Med Hyg.1994;50(5 Suppl):10-13.
    11.Kucharzik T,Lugering N,Rautenberg K,et al.Role of M cells in intestinal barrier function.Ann N YAcad Sci.2000;915:171-183.
    12.Kantele A,Arvilommi H,Likkanen K,et al.Unique characteristics of the intestinal immune:system as an inductive site after antigen reencounter.J Infect Dis.2005;191 (2):312-317.
    13.Gorbach SL.Function of the normal human microflora[J].Scand J Infect Dis,1986,49(supple):17-30
    14.Wells,Carol L,Hess,et al.Impact of the indigenous flora in animal models of shock and sepsis.Shock.2004;22(6):562-568
    15.于晓明,金宏,糜漫天.肠屏障功能的损伤与营养素防护[J].解放军预防医学杂志,2006,24 (1):68-70
    16.牛豫洁.中医药防治胃肠菌群与毒素移位理论与方法的探讨.上海中医药大学学报.2001;15 (3):28-30
    17.樊春华,吕永慧.中医药治疗肠黏膜屏障功能障碍研究近况.河北中医.2008;30(2):209-211
    18.黄文利.中医中药救治多器官功能障碍综合症治则探讨.四川中医.2001;19 (6):12-13
    19.曹书华,王今达,李银平.从菌毒并治到四证四法——关于中西医结合治疗多器官功能障碍综合症辨证思路的深入与完善.中国中西医结合急救杂志.2005;17 (11):641-643
    20.彭成,曹小玉,周智科,等.四君子颗粒对脾虚动物胃肠细胞保护作用的机理研究.成都中医药大学学报.2001;24 (1):32-34
    21.刘远梅,胡月光,孙有成.黄芪对幼兔肠缺血-再灌注肠粘膜屏障的保护作用.实用儿科临床杂志.2006;21 (23):1617-1618
    22.李茹柳.白术黄芪方对溃疡性结肠炎及紧密连接相关蛋白影响的实验研究.广州中医药大学博士学位论文,2006
    23.姚永莉,宋于刚,张万岱.四君子汤治疗实验性脾虚证对胃肠粘膜细胞增殖动力学的影响.世界华人消化杂志.1999;7 (6):550
    24.Zhou Wang,Wei-WenChen,Ru-liu Li,Bin Wen,Jing-Bo Sun.Eeffct of gasrtin on diefferntiation of art intestinal epithelial cells in vitro.World J Gasortenetor1.2003;9(8):1786-1790
    25.Zi-Li Zhnag,Wei-Wen Chen.Proliefartion of inetstinal crypt eells by gastrin-induced ornithine decarboxylase.World J Gastroenterol.2002;8(l):153-157
    26.ZHANG Zili,CHEN Weiwen.Plating densities,a1Pha-difluoromethy-lornithine effects and time dependence on the proliferation of IEC-6 cells.Chnia Medical Journal.2002;115(4):518-520
    27.Iweala,O.I,Nagler,C.R.Immune privilege in the gut:the establishment and maintenance of nonresponsiveness to dietary antigens and commensal flora.Immunol Rev.2006;213:82-100.
    28.刘良,周华,王培训,等.四君子汤复方总多糖对小鼠肠道粘膜相关淋巴组织的影响.中国免疫学杂志.2000;17 (4):204-206
    29.鞠宝玲,毕蕾,杨景云.四君子汤改善抗生素脱污染小鼠肠道菌群失调的研究.牡丹江医学院学报,2003,24(1):4-6
    30.任光友,张贵林,卢素琳,等.四君子汤对动物肠菌群失调及正常胃肠功能的药理研究.中成药.2007;22 (7):504-506
    31.丁维俊,周邦靖,冯立秀,等.脾虚造模及参苓白术散的真菌菌群调整功能.成都中医药大学学报,2004;27(1):24-25.
    32.杨景云.中药扶正口服液对肠道正常菌群影响的研究.微生物学杂志.1999;19 (3):32-33
    33.冯兴忠,张娅南,姜欣,等.加味补中益气汤促进肠道益生菌生长的实验研究.中国微生态学杂志.2008;20 (2):159-160
    34.王汝俊,胡英杰,杜群,等.四君子汤对胃肠运动双向调节作用的物质基础研究(Ⅰ).中药药理与临床.2001;17 (6):3-4
    35.张曼,陈蔚文,叶富强,等.四君子汤A、B成分双向调2节大鼠胃运动的M受体作用机制.河南中医药学刊,2002,17 (4):9-11.
    36.叶富强,陈蔚文,李茹柳,等.四君子汤提取物对大鼠胃肠活动的影响.中药药理与临床,2002,18 (3):2-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700