青藏高原冰雪微生物多样性及其与气候环境关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰川由于其独特的地理环境特征蕴藏着大量具有独特遗传学和适应环境变化机制的微生物,是一个天然的微生物的“储存库”,记录着不同时期大气环流向冰川输送的微生物菌群数量和结构变化,是包含生物进化以及地球上生物生存环境变化信息的优良介质。所以研究冰川中的微生物不仅是极端环境下生物生态研究的重点,也是研究全球气候变暖背景下微生物对气候环境变化响应的重要方面。本研究应用先进的流式细胞技术和建立16S rRNA基因文库的方法以敦德冰芯,慕士塔格冰芯以及西藏枪勇冰川现代雪冰为介质,分析和讨论了我国青藏高原冰川细菌菌群数量和结构变化的特征及其与气候环境的关系,菌群的地理学分布特征以及与微粒和氧同位素代用指标的关系,并获得了以下主要结果:
     1.不同大气环流影响造成了冰川生物量不同。应用先进的流式细胞技术测定发现细菌总数以敦德冰芯数量最多,枪勇冰川次之,慕士塔格冰芯数量最少。这可能是因为青藏高原北部慕士塔格和敦德冰川受到西风环流的影响而南部枪勇冰川主要受印度洋的暖湿气流影响,位于青藏高原最西端祁连山的敦德冰川相比其他冰川更加干旱,周围被沙漠和戈壁包围的地理环境特征。但是活细菌的数量在三个冰川中的变化则不大,说明同样极端冷的微环境使特定的一些适应冷环境的菌群能够保持一定的活力,具有相对稳定的数量。
     2.冰川细菌数量的变化是气候环境变化的指示。菌群数量随冰芯深度呈波动性的变化,与微粒数量波动性的变化基本一致,在污化层对应的冰层中有着相对更多的细菌,说明冰川中的细菌与大气中的尘埃有密切联系。从δ180随深度的变化曲线分析,记录到的峰值所对应的时期与细菌以及微粒含量较高的时期是基本对应的,说明冰川中细菌的分布具有明显的季节性分布现象,揭示了冷干期微粒和细菌数量高暖湿期数目低与大气温度负相关的对应关系。冷期强劲风不仅为冰川输送了大量粉尘微粒,也带来了大量的细菌源。但这也并非是一一对应的关系,在一些微粒含量较低的冰层也发现了较高的细菌数量,这也提示了冰川中的细菌并非只来源于尘埃颗粒,还可以是通过高空气溶胶和水蒸气输送等方式进入冰川。
     3.分析冰川细菌16S rRNA基因文库发现,敦德冰芯中所有克隆到的16SrRNA序列代表的原核生物形成的类群以及优势菌群与慕士塔格冰芯有很大不同。说明不同地理气候环境冰川对细菌类群的组成有重要影响。这些菌群与在土壤、湖水、大气溶胶中发现的菌属有很高的相似度,提示冰川中的细菌主要来源于周围环境的输送。
     4.冰川细菌菌群的结构和多样性反映了气候环境变化特征。从各类群在冰芯剖面上的分布状况分析来看,敦德冰芯细菌菌群中,以Proteobacteria, HGC以及CFB为主要组成部分,分别占到40.3%,26%和24.9%,而在慕士塔格冰芯中Proteobacteria(51.4%), CFB(20.2%)和LGC(20.2%)为主要组成部分。这种分布的差异特征都反映了不同时期的气候变化对于细菌菌群在冰川中分布的影响。慕士塔格冰芯中细菌多样性指数(H)最高达到4.01,而敦德冰芯中H值最高仅为3.64,说明了慕士塔格冰芯中细菌类群有着更好的多样性,这可能与该冰川生态系统的复杂化以及生物资源的多样性有关。
     5.通过四个不同位置的冰川基于16S rRNA序列对比分析发现,冰川中的细菌种类与从极地的冰川、海冰、以及其他冷环境中分离的细菌有很高的相似度,遗传距离很近,这是相似的冷环境对于细菌类群的选择性以及这些菌群对环境的适应性长期进化的结果。同一冰川中细菌16S rRNA序列具有很近的遗传距离,集中聚合在一起,而与其他不同位置冰川中的细菌16S rRNA序列遗传距离较远,尤其体现在优势菌属中。可能是因为不同地理环境位置的冰川对细菌长期的进化选择造成的。同时还发现根据冰芯深度的不同,广泛分布种属在不同层面冰芯中的比例不同,证明了细菌类群具有季节性分布的特点。这说明,冰川中细菌种群具有区域分布的特点,细菌类群生物地理分布具有时空特征。
     以上研究都揭示了气候环境变化对于冰川细菌的数量以及种类分布具有重要的影响,菌群组成结构的变化是气候环境变化的响应,长期环境的选择使冰川细菌具有生物地理划分区域的特点。为冰川细菌多样性的分类模式以及不同环境下菌群类别发生变化可能的影响因素做了有益探讨。
Glaciers on the TIbetan Plateau contain a great deal of microogranisms with particular genetic characteristics due to the unique geological and environmental characteristics.Then the glaciers, therefore, become the nature huge repositories of viable microogranisms.The assemblages of airborne microorganisms immured chronolgically within glacier ice are species that were atmospheric constituents origianating from a variety of ecological scouces. So research on microogranisms of glacier on Tibetan Plateau is very important not only to stduy in extreme environments, but also to study how the microbe response the globe warmer change. This research would lead to the establishment of bio-indicator of gradual and repair climate change, and other physical phenonena.In this research, the bacteria were recovered from Dunde, Muztag ice cores and Qiangyong glacier from Tibetan Plateau by cultivation independent method and investigated by means of 16S rRNA sequence analysis.Their vertical quantiatitative changes were compared with the cariations in concentrations of mineral particles and oxygen isotope. The following major conclusions were obtained:
     1. Compare total cell count within three glaciers we can see the largest count occur in Dunde ice core. This result maybe has relationship with the climatic and surrounding of Dunde ice cap. This region locates the Qilian Mountain on the northersten margin of plateau.and the arid and semi-arid areas arround area. According to proxy record, dust storms was frequently than other two area. But the count of live cell from three glaciers is stable than total cell count show that speical speices such as some psychrophilic could grow in the ice core.
     2. The total cell count showed change along with depth of ice core,which corresponded to change of mineral particles andδ180 values. This study demonstrated that more bacteria accompanied with cold periods while less bacteria accompanied with warm periods at a large time scale. The further observation reflected the coincidence of abundant bacteria with rich micro-particles deposited in ice layer.
     3. In order to get a comprehensive picture of bacteria population diversity in Dunde and Muztag ice core, the bacteria DNA diversity were analyzed by 16S rDNA cloning library. Based on their 16S rDNA sequence,40.3%bacteria were Proteobacteria cluster,26%were HGC,24.9%were CFB in Dunde ice core. Whereas in Muzatg ice core,51.4%bacteria were Proteobacteria,24.9%were CFB and 24.9% were LGC. These differences suggested the evidence of the effect of climate and envirment on change of total bacteria.
     4. Based on 16S rRNA sequence, the determined sequences of the isolates in Dunde ice core were difference from the Muzatg ice core. All sequence wre similar to the sequence form other envirment such as soil, water and atmosphere. So the bacteria of ice core from the surrounding envirment of glacier. We also found the Shannon-Wiener index H’were 3.64 in Dunde ice core which was lower than 4.01 in Muzatg ice core. This result suggested that bacteria in Dunde ice core was more diversity than in Muztag which possibly due to its most complexity of ecosystem and diversity of biologic resource.
     5. Compare the sequence of four ice cores from the Muztag Ata Glacier (38 017'N,375 014'E,2006), Dunde ice cap (38 06'N,96024'E,2009), Puruogangri ice cap (33 044'N,34 004'E,89020'N,86050'E,2009), and Malan ice cap (33806'N,96 024'E,2004), respectively. The sequcence is similar with sequence from other cold envirment such as glacier and sea of polar. Which is due to strengthens the concept of adaptation and acclimation of microorganisms to the extremely cold glacier environments. Bacterial communities from the same location or similarly aged ice formed a cluster, and were clearly separate from those from other geographically isolated glaciers. This findings providepreliminary evidence of zone distribution of microbial community.which suggested the spatial and temporal biogeography of dominant bacteria across four geographically isolated glaciers.
     All research showed that bacteria compositions at different depths appear to be a reflection of the prevalent climate and individual events that occured at the time of deposition. We attempted to interpret the taxonomic diversity pattern of microorganisms across the mountain glaciers and provide information about possible driving forces of microbial community shift in glacier ice at a large spatial scale.
引文
Abyzov S.S., Bobin N.E., and Kudriashov B.B. Microbiological analysis of glacial series of central Antarctica. Akademiia nauk SSSR. Izvestia. Seriia biologicheskaia,1979,6:828-836
    Abyzov S.S., Bobin N.E., and Kudriashev B.B. Quantitative assessment of microorganisms in microbiological studies of Antarctic glaciers. Akademia nauk SSSR Investia Seriia biologicheskaia,1982a,6:897-905
    Abyzov S.S., Bobin N.E., Koudryashov B.B. Quantitative assessment of microorganisms in microbiological studies of Antarctic glaciers. Biol Bull Acad Sci USRR,1982b,9:558-564
    Abyzov S.S., Bobin N. E., and Kudriashov B.B. Central antarctic glacier as an object of investigations of prolonged anabiosis of microorganisms in nature. Antarktiki; doklady komissii,1986,25:202-208
    Abyzov S.S. Microorganisms in the Antarctic ice. In:Friedman E I ed. Antarctic Microbiology. John Wiley & Sons, Inc. New York,1993,634.
    Abyzov S.S., Barkov N.I., Koudryashov B.B., et. al., The ice sheet of central Antarctica as an object of study of past ecological events on the earth. Izv Akad Nauk USSR Ser Biol,1998, 5:610-616
    Abyzov S.S., Poglazova M.N., Mitskevich I.N., Ivanov M.V. Common features of microor ganisms in ancient layers of the Antarctic ice sheet. In:Castello J.D., Rogers S.O. eds. Life in ancient ice. Princeton University Press, Princeton,2005,240-250
    Aitchison C.W. The effect of snow cover on small animals. In:Jones H.G., Pomeroy J.W., Walker D.A., et. al., eds. Snow Ecology. Cambridge:Cambridge university press,2001,229-265
    Berger F., Morellet N., Menu F., et. al. Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis S155. Journal of Bacteriology,1996,178: 2999-3007
    Blixt Y., Knutsson R., Borch E., et. al. Inter laboratory by random amplified polymorphic DNA typing of Yersinia enterocolitica and Y. enterocolitica-like bacterial. Inter J Food Microbiol, 2003,83:15-26
    Brinkmeyer R., Knittel K., Jrgens J., et. al. Diversity and structure of bacterial communities in arctic versus Antarctic pack ice. Appllied and Environmental Microbiology,2003,69: 6610-6619
    Bodhaine B.A., Deluisi J.J., Harris J.M., et. al., Aerosol measurements at the south pole. Tellus, 1986,38:223-235
    Bowman J.P., Mccammon S.A., Brown M.V., et. al., Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol,1997,63:3068-3078
    Bowman J.P., McCammon S.A., Gibson. Prokaryotic Metabolic Activity and Community Structure in Antarctic Continental Shelf Sediments. Appl. Environ. Microbiol,2003,69 (5): 2448-2462
    Buzzini P, Turchetti B, Diolaiuti G, et al. Culturable yeasts in meltwaters draining from two glaciers in the Italian Alps. Annals of Glaciology,2005,40(1):119-122
    Castello J.D., and Rogers S.O. Life in ancient ice:Princeton university press,2005, Princeton, NJ. 300
    Castello J.D., Lakshman D.K., Tavantzis S.M., et. al., Detection of infectious tomato mosaic tobamovirus in fog and clouds. American phytopathological society,1995,1409-1412
    Castello J.D., Rogers S.O., Starmer W.T., et. al., Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. In:Springer,1999,207-212
    Catranis C, and Starmer W.T. Microorganisms entrapped in glacial ice. Antarctic Journal of the United States,1991,26:234-236
    Chansiripornchai N., Ramasoota P. Differentiation of avian pathogenic Escherichia coli (APEC) strains by random amplified polymorphic DNA analysis. Vete Microbiol,2001,80:75-83
    Chattopadyay M K,J agannadham M V, Vairamani M, et al. Carotenoid pigments of an Antarctic psychrotrphic bacterium Micrococcus roseus:Temperature dependent biosynthesis, structure, and interaction with synthetic membranes[J]. Biochemical and biophysical Research Communications,1997,239:85-90
    Chen Y. C., Hseu R. S., Cheng K. J. The genetic similarity of different generations of Neocallimastix frontalis S K. FEMS Microbiol Letter,2003,221:227-231
    Christner, B.C., Mosley-Thompson E., Thompson L.G., et. al., Recovery and identification of viable bacteria immured in glacial ice. Icarus,2000,144:479-485
    Christner B.C., Mosley-Thompson E., Thompson L.G., and Reeve J.N. Bacterial recovery from ancient glacial ice. Environ. Microbiology,2003,5 (5):433-436
    Claus W.G. Understanding microbes. Freeman W.H., (Ed.). New York,1989,51-77
    Dancer S. J., Shears P., and Platt D.J. Isolation and characterization of coliform from glacial ice and water in Canada's high arctic, J. A pp l. M icrobiol,1997,82:597-609
    Dunbar J., Ticknor L.O., Kuske C.R., Assessment of microbial diversity in four southwestern United States soils by 16s rRNA gene terminal restriction fragment analysis. Appl Environ Microbiol,2000,66:2943-2950
    Eichner C. A., Erb R. W., Timmis K. N., et. al. Thermal gradient gelelectrophoresis analysis of bioprotection from pollutants shocks in the activated sludge microbial community. Appl Environ Microbiol,1999,65:102-109
    Foght J., Aislabie J., Turner S., et. al., Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol,2004,47:329-340
    Fritsen C.H., Adams E.E., McKay C.M., et. al. Permanent ice covers of the McMurdo Dry Valley Lakes, Antarctica:Liquid water content. Priscu J.C. ed. Ecosystem Dynamics in a Polar Desert:The McMurdo Dry Valleys, Antarctica. Antarctic Research Series,1998,72:269-280
    Fulco A.J. and Fujii D.K., Biophysical technique and cellular regulation. In:Kates M. and Kuksis A.(Ed). Membrane Fluidity, New Jersey, Humana Press,1980,77
    Fuzzi G., Mandrioli P., and Perfetto A. Fog droplets-an atmospheric source of secondary biological aerosol articles. Atmosph. Environ,1997,31:287-290
    Gelsomino A., Keilzer Wolters A. C, Cacco G., et. al. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Micbiol Methods,1999,38:1-15
    Goncalves R. B., Vaisanen M. L., Van S. T. J. Et. al. Genetic relatedness between oral and intestinal isolates of Porphyromonas endodontalis by analysis of random amplified polymorphic DNA. Res Microbiol,1999,150:61-68
    Gordon D.A., Priscu J., and Giovannoni S.. Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb. Ecol,2000,39:197-202
    Goodman D., Ecological investigations of ice worms on Casement Glacier, southeastern Alaska. The ohio state university research foundation, institute of polar studies report,1971,39:59
    Gounot A.M. and Russell N.J., Physiology of cold-adapted microorganisms. In:Margesin R. and Schinner F.(ED). Cold-adapted organisms:ecology, physiology, enzymology, and molecular biology. Berlin, Springer,1999,33-35
    Hoham R.W., Roemer S.C., Mullet J.E. The life history and ecology of the snow algae Chloromonas brevispina comb. Nov. (Chlorophyta, Volvocales). Phycologia,1979,18:55-70
    Hoham R. W., Yatsko C. P., Germain L., et. al. Recent discoveries of snow algae in upstate New York and Que'bec Province and preliminary reports on related snow chemistry. Proceedings 46th Annual Eastern Snow Conference,1989,196-200
    Hoham R.W., Duval B. Microbial ecology of snow and freshwater ice with emphasis on snow algae. In Jones H.G., et. al. Snow ecology:an interdisciplinary examination of snow-covered ecosystems. Cambridge, Cambridge University press.2001,168-228
    Horton T.R.., and Bruns T.D., The molecular revolution in ectomycorrhizal ecology:Peeking into the black box. Molecular Ecol,2001,10:1855-1877
    Jones H.G. The ecology of snow-covered systems:a brief overview of nutrient cycling and life in the cold. Hydrol Process,1999,13:2135-2147
    Jouzel I., Petit J.R., Souchez R., et. al., More than 200 meters of lake ice above subglacial vostok lake, Antarctic, Science,1999,286:2138-2141
    Julseth C R, Inniss W E. Induction of protein synthesis in response to cold shock in the psychrotrophic yeast Trichosporon pullulans[J]. Can J Microbio,1990,36:519-524
    Karl D.M., Bird D.F., et. al., Microorganisms in the accreted ice of lake vostok, antarctica. Science, 1999,286:2144-2147
    Kikuchi Y, Glaciella, a new genus of freshwater canthocampyidae(copepoda harpacticoida) from a glacier in Nepal, Himalayas. Hydrobiologia,1994,292:59-66
    Kohshima S. A novel cold-tolerant insect found in a Himalayan glacier. Nature,1984,310: 225-227
    Kohshima S. Glacial biology and biotic communities. In Kawano S., J. H. Connell, and T. Hidaka. (eds.), Evolution and Coadaptation in Biotic Communities. Kyoto:Faculty of Science, Kyoto University.1987,77-92
    Kohshima S. Glaciologiccal importance of microorganisms in the surface mud-like materials and dirt layer particles of the chongce ice cap and gozha glacier, west kunlun mountains, China. Bull Glacier Res,1989,7:59-65
    Kohshima S., Seko K. and Yoshimura Y. Biotic acceleration of glacier melting in Y ala Glacier, langtang region, Nepal himalaya. International Association of Hydrological Science Publication,1993,218:309-316
    Lai Z.M., and Huang M.H., Numerical classification to the glaciers in China. In:Corpus of the fourth symposium on glaciology and cryopedology (glaciology). Beijing, Science Press,1990, 25-33
    LaPara T.M., Zakharova T., Nakatsu C.H., and Konopka A. Functional and Structural Adaptations of Bacterial Communities Growing on Particulate Substrates under Stringent Nutrient Limitation. Microbial Ecology,2001,44:317-326
    Li Z., Yao T.D., Tian L.D., et. al. variation of 18o in precipitation from the Muztagata glacier. Sci China D.,2006,49(1):36-42
    Liang W., Qiu D. R., Xiong L., et. al. The process of FISH and its applicationsin the environmental microbiology (In Chinese). Chinese Bulletin of Life Sciences,2002, 14:186-187
    Ling H.U. Snow algae of the Windmilll sland region, Antarctica. Hydrobiologia,1996,336: 99-106.
    Ling H.U., Seppelt R.D. Snow algae of the Windmill Islands,continental Antarctica:Mesotaenium berggreniii (Zygnematales, Chlorophyta), the alga of gray snow. Antarctic Science,1990,2: 143-148
    Ma L., Catranis C., Starmer W.T., et. al. Revival and characterization of fungi from ancient polar ice. Mycologist,1999,13:70-73
    Ma L., Rogers S.O., Catranis C., et. al. Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia,2000,92:286-295
    Ma X.J. Studies on detection, recovery, isolation and characterization of bacteria in low temperature extreme environment. Lanzhou University,2004
    Margesin R. and Schinner F., Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol,1994,33:1-14
    Medeiros D., Farber J. M. A single-step polymerase chain reaction for combined gene detection and epide miological typing of Listeria monocytogenes. Food Microbiol,2001,18:375-386
    Medicharla V and Jagannadham M K. Carotenoids of an Antarctic psychrotole rant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingo bacterium multivorum[J]. Archives of Microbiology,2001,173(5-6):418-424
    Medicharla V. and Jagannadham M. K. Carotenoids of an Antarctic psychrotole rant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingo bacterium multivorum[J]. Archives of Microbiology,2001,173(5-6):418-424
    Miteva V.I., Sheridan P.P., Brenchley J.E. Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier ice core. Appl Environ Microbiol, 2004,70:202-213
    Morita R.Y. Psychrophilic bacteria. Bacteriol Rev,1975,39:144-167
    Nagashima H. Characterization and habitats of bacteria and yeasts isolated from Lake Vanda in Antarctic[J]. Proc NIRPSymp Polor Biol,1990,3:190-200
    Neidleman S.L. Enzyme reactions under stress conditions. Crit Rev Biotechnol,1990,9:273-286
    Panoff J. M., Thammavongs B., Gueguen M., et. al. Cold stress responses in mesophilic bacteria. Cryobiology,1998,36:75-83
    Priscu J.C., Adams E.E., Lyons W.B., et. al. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science,1999,286:2141-2144
    Priscu, J.C., Adams E.E., Pearlei H.W.. Perennial Antarctic lake ice:A refuge for cyanobacteria in and extreme environment,2002, In J. Castello and S. Rogers, (eds.) Life in Ancient Ice. Princeton Press.
    Ranasoota P., Chansiripomchai N., Kallenius G., et. al. Comparison of Mycobaterium avium complex (MAC) strains from pigs and humans in Sweden by random amplified polymorphic DNA using standardized reagents. Vete Microbiol,2001,78:251-259
    Ranjard L., Poly F., Nazaret S. Monitoring complex bacterial communities using culture independent molecular techniques:application to soil environment. Res Microbiol,2000,151: 167-177
    Sattler B., Puxbaum H., and Psenner R. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett.,2001,28(2):239-242
    Segawa T, Miyamoto K, Ushida K, et. al. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and realtime PCR. Appl Environ Microbiol,2005,71(1):123-130
    Seghers D., Verthe K., Reheul D., et. al. Effect of long term herbicide application son the bacterial community structure and function in an agricultural soil. FEMS Microbiol Ecol,2003,46: 139-146
    Shain D., Mason T., A. Farrell, and L. Michalewicz. Distribution and behavior of ice worms (Mesenchytraeus solifugus) in south-central Alaska. Cana. J. Zool.,2001,79:1813-1821
    Sharp M., Parkes J., Cragg B., et. al. Wide spread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology,1999,27:107-110
    Shivaji. Bacteria and yeast of Schirmacher Oasis, Antarctic; Taxonomy, biochemistry and molecular bilogy[J]. Proc NIRPSymp Polor Biol,1994,7:173-184
    Takeuchi N., Kohshima S., Fujita K. Snow algae community on a Himalayan glacier, Glacier AX010 East Nepal:Relationship with glacier summer mass balance. Bulletin of Glacier Research,1998,16:43-50
    Takeuchi N. The altitudinal distribution of snow algae on an Alaska glacier Gulkana Glacier in the Alaska Range. Hydrological Processes,2001,15:3447-3459
    Takeuchi N. and Kohshima S.. A snow algal community on Tyndall Glacier in the southern Patagonia Icefield, Chile. Arctic, Antarctic, and Alpine Research,2004,36(1):92-99
    Takeuchi N, Matsuda Y, Sakai A, et. al. A large amount of biogenic surface dust (Cryoconite) on a glacier in the Qilian Mountains, China. Bulletin of Glaciological Research,2005,22:1-8
    Thieringer H. A., Jones P. G., Inouye M. Cold shock and adaptation. Bio. Essays,1998,20:49-57
    Thomas W.H., and Duval B., Sierra Nevada, California, USA, snow algae:snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arct. Alp. Res.1995,27: 389-399
    Tiedje J.M., Asuming-Brempong S., Marsh T.L., et. al., Opening the black box of soil microbial diversity. Appl Soil Ecol,1999,13:1109-1122
    Ogram A., Discussion soil molecular microbial ecology at age 20:Methodological challenges for the future. Soil Biol Biochem,2000,32:1499-1504
    Paul B., and Spoonerl B., Soil fungi:Diversity and detection. Plant and Soil,2001,232:147-154
    Poglazova M.N., Mitskevich I.N., Abyzov Z.Z., et. al., Microbiological characterization of the accreted ice of subglacial lake Vostok. Antarctica. Mikrobiologiia,2001,70(6):838-846
    Potier P., Drevet P., Gounot A.M., et. al., Temperature-dependent changes in proteolytic activities and protein composition in the psychrotrophic bacterium Arthrobacter globiformis S 55. J Gen Microbiol,1990,136:283-291
    Price P.B. A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA,2000,97: 1247-1251
    Priscu J.C., Adams E.E., Lyons W.B., et. al., Geomicrobiology of subglacial ice above lake vostok, Antarctica. Science,1999,286:2141-2144
    Priscu J.C., and Christner B.C., Earth's icy biosphere. Microbial diversity and Bioprospecting, 2004,130-145
    Priscu J.C., Fritsen C.H., Adama E.E., et. al., Perennial Antarctic lake ice:an oasis for life in a polar desert. Science,1998,280:2095-2098
    Russell N.J., Fukunaga N.A. Comparison of thermal adaptation of membrane lipids in psychrophilic and thermophlilic bacteria. FEMS Microbiol Rev,1990,75:171-182
    Richardson S. G., Salisbury F. B. Plant responses to the light penetrating snow. Ecology,1977,58: 1152-1158
    Vishnivetskaya T., Kathariou S., McGrath J., et. al., Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles,2000,4:165-173
    Wake C.P., Dibb J.E., Mayewski P.A., et. al., The chemical composition of aerosols over the eastern Himalayas and Tibetan Plateau during low dust periods. Atmos Environ,1994,28: 695-704
    Wang Y.Q., Pu J.C., Zhang Y.L. et. al., Characteristic of present warming change recorded in Malan ice core, central Tibetan Plateau. J Glaciology and Geocryology,2003,25(2):130-134
    Xiao CD., Kang S.C., Qin D.H., et. al., Transport of atmospheric impurities over the Qinghai-Xizang (Tibetan) Plateau as shown by snow chemistry. J Asian Earth Sci,2002,20: 231-239
    Xiang S.R., Yao T.D., An L.Z. et. al., Vertical quantitative and dominant population distribution of the bacteria in the Muztagh Ata ice core. Sci China D,2005a,48(10):1728-1739
    Xiang S.R., Yao T.D., An L.Z. et. al.,16s rRNA sequences and differences in bacteria isolated from the Muztagata glacier at increasing depths. Appl Environ Microbiol,2005b,71(8):4619-4627
    Xiang, S. R., Shang T. C., Chen Y., Jing Z. F, and Yao T. D. Dominant bacteria and biomass in the Kuytun 51 Glacier, Applied and Environment Microbiology,2009,75,7287-7290.
    Xie S.C., Yao T.D., Kang S.C., et. al. Climatic and environmental implications from organic matter in Dasuopu glacier in Xixiabangma in Qinghai-Tibetan Plateau. Science in China (Series D),1999,42(4):383-391
    Xie S.C., Yao T.D., Kang S.C., et. al. Geochemic alanalyses of a Himalayan snow pit profile: implications for atmospheric pollution and climate. Oraganic Geochemistry,2000,31:15-23
    Xu J.Z. Research on microparticle's record of east rongbuk ice cores. Lanzhou:cold and arid regions environmental and engineering research institute, Chinese academic of sciences
    YaoT.D., Xiang S.R., Zhang X., et. al. Microorganisms in the Malan ice core and their relation to climatic and environment alchanges. Global Biogeochemical Cycle.2006,20(1):B1004-1-10
    Yoshimura Y., Kohshima S., Ohtani S. A community of snow algae on a Himalayan glacier: change of algal biomass and community structure with altitude. Arctic, Antartic, and Alpine Resarch,1997,29:126-137
    Yoshimura Y, Kohshima S., Takeuchi N., et. al. Himalayan ice-core dating with snow algae. Journal of Glaciology,2000,46:335-340
    Yoshimura Y., Kohshima S., Takeuchi N., et. al. Snow algae in a Himalayan ice core:new environmental markers for ice-core analyses and their correlation with summer mass balance, Annals of Glaciology,2006,43:148-153
    Yunlin Wei, Matsuno M., Hayashi M., et.al., Construction of a protein expression system using a cold-adapted bacterium, Asinetobacter sp. DWC6(strain no.6). Nippon Seikagaku,2003, 75(8):1091
    Zhang S.H., Hou S.G., Ma X.J., et. al., Culturable bacteria in Himalayan ice in response to atmospheric circulation. Biogeosciences,2007,4:1-9
    Zhang X.J., Yao T.D., Ma X.J., et. al., Analysis of the characteristics packed in the ice core of Malan glacier Tibet China. Sci China Ser D,2001,44:369-374
    Zhang X.J., Yao T.D., Ma X.J., et. al., Microorganisms in a high altitude glacier ice in Tibet. Folia Microbiologica,2002,47(3):241-245
    Zhang X.J., Ma X.J., Yao T.D., et. al., Diversity of 16s rDNA and environmental factor influencing bacteria in Malan ice core. China Sci Bull,2003,48(11):1146-1150
    胡克,吴东辉,杨德明等。远源沙尘暴对城市生态环境影响的初步研究。长春科技大学学报,2001,31(2):176-179
    胡庆轩,车凤翔,陈振生等。大风对大气细菌粒子浓度和粒度分布的影响。中国环境监测, 1991,7(6):58
    胡庆轩,鹿建春,车凤翔。降雪对大气细菌粒子的影响。环境保护科学,1992,18(4):59-62
    胡庆轩,车凤翔,徐秀芝。大气细菌粒子与飘尘粒子的关系。上海环境科学,1993,12(1):20-23
    霍文冕,姚檀栋,敦德冰芯19世纪中叶以来的环境记录。地球化学,2001,30(3):203-206
    李真,姚檀栋,田立德等。慕十塔格冰川海拔7000m处冰芯钻孔温度。冰川冻土,2004,26(3):284-288
    林学政,边际,何培青,极地微生物低温适应性的分子机制。极地研究,2003,15(1):75-82
    刘勇勤,姚檀栋,康世昌,等。珠穆朗玛峰地区东绒布冰川冰雪微生物群落及其季节变化.科学通报,2006,51(11):1287-1296
    刘勇勤。博十论文:青藏高原现代冰雪和冰川融水中微生物特征及其气候环境意义。科学院寒区旱区环境与工程研究所,兰州,2008
    蒲建晨,姚檀栋,段克勤。墓士塔格峰洋布拉克冰川消融的观测分析。冰川冻土,2003,25(6):680-684
    汪君霞,姚檀栋,徐柏青等,慕士塔格冰芯中的甲酸、乙酸记录及其变化特征。2004,49(15):1542-1546
    邬光剑,姚檀栋,徐柏青等,墓士塔格冰芯钻孔温度测量结果。冰川冻土,2003,25(6):676-679
    向述荣,姚檀栋,乌尽光剑等,慕十塔格冰芯可培养细菌的数量分布和主要菌群结构随深度的变化。中国科学,D辑,2005,5:252-262
    向述荣。博士论文:青藏高原冰川细菌菌群的时空变化及其与气候环境的关系。科学院寒区旱区环境与工程研究所,兰州,2005
    辛明秀,周培瑾,低温微生物研究进展。微生物学报,1998,38(5):400-403
    曾胤新,陈波,南极低温微生物研究及其应用前景,极地研究,1999,11(2):143-151
    张淑红,侯书贵,秦翔等,青藏高原冰川雪细菌与气候环境的关系。环境科学研究,2007a,20(5):39-44
    张淑红,侯书贵和秦大河,青藏高原冰川雪冰微生物研究进展。应用与环境生物学报,2007b,13(4):592-596
    张晓君,姚檀栋,马晓军。极地深层冰川微生物研究的现状与意义。极地研究,2000,12(4):269-274
    张晓君。博十论文:青藏高原冰芯微生物与多样性及其环境效应。中国科学院寒区旱区环境 与工程研究所,兰州,2002
    张新芳。博士论文:普研岗日冰芯微生物多样性及其与环境关系的研究。中国科学院寒区旱区环境与工程研究所,兰州,2006
    张哓君,马晓军,章高森等。马兰冰芯16S rDNA的多样性与影响冰芯中微生物环境因素。科学通报,2003,48:947-951

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700