氯嘧磺隆降解及其对土壤微生态影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磺酰脲类除草剂氯嘧磺隆(Chlorimuron-ethyl)残留药害对农业产生巨大的影响,本研究针对这一问题做了系统的研究。从多年施用氯嘧磺隆的土壤中分离出具有较高降解效果的菌株,研究其生长特性和降解特性,通过模拟土壤环境研究其实际应用效果,还从土壤酶和土壤微生物类群方面研究了氯嘧磺隆对土壤微生态的影响。
     1、采用多年施用氯嘧磺隆的大豆田土壤作为研究材料,经过多次驯化培养后,最终得到菌株24株,其中细菌13株、真菌7株、放线菌4株,该菌种资源为氯嘧磺隆降解机制研究和商业化菌剂开发奠定了基础。在此基础上,采用高效液相色谱分析进一步测定其对氯嘧磺隆的降解率,获得了具有较高降解效率的菌株4个,降解率均达50%以上;并对其进行了菌种鉴定,D3为枯草芽孢杆菌(Bacillus subtilis)、L1为蜡样芽孢杆菌(Bacillus cereus)、L3巨大芽孢杆菌(Bacillus megaterium)和C4a为长枝木霉(Trichoderma longibrachiatum)。结合生物学方法,进一步分析了不同环境因子对生长和降解效率的影响,并且实验室模拟环境测定菌株L3对氯嘧磺隆污染改良的效果。
     2、以氯嘧磺隆降解菌株巨大芽孢杆菌L3为试材,研究显示该菌株氯嘧磺隆降解酶为胞内酶,酶促反应最适温度为35℃,最适pH值为7.5。在pH6-10之间均有较高的降解率。随着Cu2+、Ba2+和Ca2+浓度增大而降解率降低;K+和Mn2+对酶促反应影响较小;当Zn2+、Fe2+和Fe3+添加浓度为5mM时,其降解率突然下降。
     3、氯嘧磺隆对6种土壤酶活性均有一定的影响,过氧化氢酶、多酚氧化酶、蔗糖酶和脱氢酶菌表现出激活现象。过氧化氢酶与多酚氧化酶类似,都是实验的中期其激活作用最大,最后刺激作用消失。而蔗糖酶前期的激活作用达到顶峰,随后逐渐下降。蛋白酶和脲酶则表现出被氯嘧磺隆抑制的现象,都是前期具有较大的抑制效果,后期逐渐消失。总体来说,低浓度的氯嘧磺隆对各种酶的影响相对较小,试验后期都能恢复到与对照值一致,而高浓度处理并不是所有的处理都恢复到对照值的水平。
     4、变性梯度凝胶电泳结果显示,氯嘧磺隆的施加对土壤微生物种群结构有一定的影响。低浓度的氯嘧磺隆对土壤中微生物种群的影响较小,高浓度的氯嘧磺隆对土壤微生物群落影响比较显著;氯嘧磺隆对土壤中细菌菌群组成的影响是双向的,氯嘧磺隆可以抑制某些细菌的生长,也可以促进某类细菌的生长,或者对其生长没有影响。加入氯嘧磺隆后仍可快速生长的类群可能是能够降解氯嘧磺隆的种类,进一步分析可能获得更多的高效降解氯嘧磺隆的微生物类群。
Chlorimuron-ethyl, as one of the most versatile class of herbicides, was widely used in agricultural production. However, during the using process, the residual of the herbicide had badly effect on the soil, and it might cause serious problems in agricultural production process. The purpose of this study was to solve this problem by using a series of research. In our study, we isolated chlorimuron-ethyl degrading bacteria from herbicide-contaminating soil, the growth characteristics of the strains and the degradation characteristics of chlorimuron-ethyl were investigated and effects of various factors on the degradation were studied. We investigated the application effects of the strains by adding them into the herbicide-contaminating soil environment. Moreover, we studied the enzymes and microbial structures in the contaminated soil. The main results were as follows:
     (1)We used the soybean field soil, which was using chlorimuron-ethyl as herbicide, as research material. We gradually increased the chlorimuron-ethyl concentration in the soil to let the microbes adapt the contaminated substrate. After several domesticated culture,24strains were finally isolated, including3bacteria,7fungi and4actinomycetes. Those strains laid the groundwork for the further work. The degradation rate of chlorimuron-ethyl was mesured by using the HPLC analysis, and four strains, which had the most degradation efficiency, were further used in our study. All of the four strains could degrade more than50%of chlorimuron-ethyl. We used several methods to identify the strains, and the results showed that strain D3belong to Bacillus subtilis, strain L1belong to Bacillus cereus, strain L1belong to Bacillus megaterium, strain C4a belong to Bacillus megaterium, Trichoderma longibrachiatum. We investigated the degrading characteristics of the strains and studied the effects of various environmental factors on the degradation. Moreover, we detected the efficiency by using L3to degrade chlorimuron-ethyl in the improved conditions.
     (2) We used the most effective degradation strain-L3to investigate the degrading details of chlorimuron-ethyl. The results showed that the enzyme, which was responsible for chlorimuron-ethyl degrading, was intracellular enzyme. With chlorimuron-ethyl as substrate, the optimal temperature and pH for the enzyme were35℃and7.5, respectively. The enzyme was stable and high activity was maintained from pH6to10. The activity of the enzyme was inhibited by Cu2+, Ba2+and Ca2+, when the concentration of these three ions increased, the enzyme activity decreased. The enzyme activity appeared to be almost unaffected by K+and Mn2+. When the concentration of Zn2+, Fe2+and Fe3+was increased to5mM, the degrading rate decreased suddenly.
     (3) Chlorimuron-ethyl had great effect on all the six kinds of enzyme from the soil, and it could activate catalase, polyphenol oxidase, saccharase, dehydrogenase activity. Both catalase and polyphenol oxidase showed the highest activity at the medium term of the test, and then the stimulation effect disappeared. Saccharase got the highest activity when it was first stimulated by chlorimuron-ethyl, and then the stimulation effect decreased. Both protease and urease were inhibited by chlorimuron-ethyl. The two kinds of enzyme could be inhibited greatly at the earlier stage of the test. However, the inhibition effect disappeared at the later stage of the test. In conclusion, low concentration of chlorimuron-ethyl had little effect on the enzyme in the soil, most of the enzyme activity could be recovery at the end of the test. However, when the system contained high concentration of chlorimuron-ethyl, the enzyme activities were not easy to recover.
     (4) PCR-DGGE analyses indicated that the microbial community had changed significantly with adding chlorimuron-ethyl to the soil. Comparatively speaking, the low concentration of chlorimuron-ethyl had small effect on microbial community, while high concentration of chlorimuron-ethyl had great influence on microbial community. With adding chlorimuron-ethyl to the soil, the changes of relative quantities of various microbes were detected in the profiles. The quantities of some microbes increased, whereas others decreased. Some microbes maintained their populations. The consortia which could grow quickly might be responsible for chlorimuron-ethyl degradation, and more degrading strains could be found after the consortia be further analysed.
引文
[1]尹乐斌,刘勇,张德咏等.磺酰脲类除草剂残留的微生物降解研究进展.微生物学通报,2010,37(4):594-600
    [2]张敏恒.磺酰脲类除草剂的发展现状、市场与未来趋势.农药,2010,49(4):235-240
    [3]张一宾.磺酰脲类除草剂的世界市场、品种及主要中间体上海:2009年中国磺酰脲类除草剂360。产业论坛,2009
    [4]甄英琴,垢敬,李葳等.浅谈磺酰脲类除草剂的发展现状.天津农林科技,2004,181(5):22-24
    [5]SARRI L L. Mechanism of Sulfonylurea Herbicide Resistancein the Broadleaf Weeds Kochia Scoparia Plant Physiol,1990,93(1):55-61
    [6]刘长令.磺酰脲类除草剂开发的新进展.农药科学与管理,2000,21(6):35-39
    [7]王贵启,李香菊,李秉华.甲磺隆残留生物测定研.第六次全国杂草科学学术研讨会论文集.南宁:广西民族出版社,1999:416-420
    [8]祝春强,陈会柱,刘明熙等.皖南稻田除草剂药害发生现状及其预防对策.农药科学与管理,2005,26(5):25-27
    [9]李秉华,王贵启,李菊香.长残效磺酰脲除草剂土壤残留危害的综合治理技术研究.云南农业大学学报,2005,6(20):835-839
    [10]姚东瑞.麦田后茬作物对甲磺隆残留敏感性的研究[J].江苏农业学报,1997,13(3):171-175
    [11]JAMES V. Chem is Try of Sulfonylurea Herbicides[J]. PesticideScience,1990,29:247-254
    [12]KEYINL A. Pesticide Hydroxyl Radical Rate Constants:Measurementsand Estimates of Their Importance in AquaticEnvironments[J]. Environmental Toxicology and Chemistry,2000,19(9):2175-2180
    [13]HOLLAWAY K L, KOOKANA R S, NOY D M. Persistence andLeaching of Sulfonylurea Herbicides over a 4-Year Period in the HighlyAlkalineSoilsofSouth-easternAustralia[J]. Australian Journal of Experimental Agriculture,2006,46(8):1069-1076
    [14]闻长虹.磺酰脲类除草剂的微生物降解与转化.池州师专学报,2004,5(18):43-45
    [15]宋文华,丁峰,胡卫萱等.磺酰脲类除草剂定量结构—生物降解性关系(QSBR)研究.计算机与应用化学,2005,22(2):121-124
    [16]POLUBESOVA T. Adsorption of Sulfometuron and OtherAnions on Pillared Clay Journal of Environmental Quality,2000,29(3):948-954
    [17]PONS N, BARRIUBO E. Fate of Metsulfuron-methyl in Soilsin Relation to Pedo-climatic Conditions. Pesticide Science,1998,53:311-323
    [20]BLAIR A M. Martin Areview of the Activity:Fate and Mode ofAction of Sulfonylurea Herbicides. Pestic Sci,1988,22:195-219
    [21]MATOCHA M A, KRUTZ L J, REDDY K N. Foliar WashoffPotential and Simulated Surface Runoff Losses of Trifloxysulfuron in Cotton. Journal of Agricultural and FoodChemistry,2006,54(15):5498-5502
    [22]邓金保.浅谈磺酰脲类除草剂的发展现状.世界农药,2003,25(3):24-32
    [23]刘祥英,柏连阳.磺酰脲类除草剂及其安全剂研究进展.杂草科学,2005,1:1-4
    [24]姚东瑞,陈杰.磺酰脲类除草剂残留与降解研究进展.农药,1997,36(7):32-37
    [25]马勉.磺酰脲类除草剂抗性杂草的出现及其抗性机理.杂草科学,1994,4:8-10
    [26]Bhowmik P C. Herbicide resistance:A global concern//Med. Fac. Landbouww. Univ. Gent.,65/2a,2000:19-27
    [27]SIMINSZKY B, CORBIN F T, SHELDON Y. Nicosulfuron Resistance and Metabolism in Terbufos and Naphthalic Anhydride Treated Corn. Weed Sci,1995,43:163-168
    [28]FRAZIER T L, NISSEN S J. Inference of Crop Safeners on the Interaction of Primi-sulfuron and Terbufos in Corn (Zea mays)[J]. Weed Sci,1994,42:168-171
    [29]魏福香,刘学.磺酰脲类除草剂合理使用准则的几点说明[J].农药科学与管理,2005,26(5):28-31
    [30]Zheng W, Yates SR, Papiernik SK. Transformation kinetics and mechanism of the sulfonylurea herbicides pyrazosulfuronethyl and halosulfuron methyl in aqueous solutions.J Agric Food Chem,2008,56(16):7367-7372
    [31]Boschin G, Agostina AD, Antonioni C, et al. Hydrolytic degradation of azimsulfuron, a sulfonylurea herbicide.Chemosphere,2007,68(7):1312-1317
    [32]Joshi MM, Brown HM, Romesser JA. Degradation of chlorsulfuron by soil microorganisms. Weed Science,1985,33(6):888-893
    [33]邵劲松,沈标,洪青等.一株氯磺隆降解菌的分离鉴定及其特性研究.土壤学报,2003,40(6):52-956
    [34]Boschin G, D'Agostina A, Arnoldi A, et al. Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger laboratory conditions. Journal of Environmental Science and Health. Part B, Pesticides, Food Contaminants and Agricultural Waters,2003, 38(6):737-746
    [35]Kulowski K, Zirbes EL, Thede BM, et al. Microbialtransformations of prosulfuron. J Agric Food Chem,997,45(4):1479-1485
    [36]Dietrich RF, Reiser RW, Stieglitz B. Identification of microbial and rat metabolites of triflusulfuron methyl, a new sugar beet herbicide. J Agric Food Chem,1995,43(2):531-536
    [37]丁伟,杨薇,白赫等.长残留除草剂氯嘧磺隆降解菌的筛选、鉴定和降解特性.作物 杂志,2007(4):88-91
    [38]沈东升,方程冉,周旭辉.土壤中降解甲磺隆除草剂的微生物的分离与筛选.上海交通大学学报(农业科学版),2002,20(3):186-189
    [39]沈东升,方程冉,周旭辉.一株甲磺隆降解真菌(Penicillium sp.)的降解特性研究.浙江大学学报(农业与生命科学版),2002,28(5):542-546
    [40]沈东升,方程冉,周旭辉.土壤中结合残留态甲磺隆的微生物降解研究.土壤学报,2002,39(5):715-719
    [41]黄星,何健,潘继杰,等.甲磺隆降解菌FLDA的分离鉴定及其降解特性研究.土壤学报,2006,43(5):821-827
    [42]Brown HM, Joshi MM, Van AT, et al. Degradation of thifensulfuron methyl in soil:Role of microbial carboxyesteraseactivity. J Agric Food Chem,1997,45(3):955-961
    [43]王哲,孙纪全,马吉平等.氯嘧磺隆降解菌株LW-3的分离及生物学特性研究.微生物学通报,2008,35(12):1899-1904
    [44]滕春红,陶波.氯嘧磺隆高效降解真菌F8的分离和鉴定.土壤通报,2008,39(5):1160-1163
    [45]杨亚君,刘顺,武丽芬等.可降解水体中烟嘧磺隆微生物的分离与筛选.农药学学报,2007,9(3):275-279
    [46]张松柏,张德咏,罗香文,等.一株降解苄嘧磺隆光合细菌的分离鉴定及其降解特性.生态环境,2008,17(5):1774-1777
    [47]Zheng W, Yates SR, Papiernik SK. Transformation kineticsand mechanism of the sulfonylurea herbicides pyrazosulfuronethyl and halosulfuron methyl in aqueous solutions.J Agric Food Chem,2008,56(16):7367-7372
    [48]高瑞英,王玉生,卢佳宁等,土壤有机农药微生物修复及降解菌基因工程研究进展,甘蔗糖业,2007(2):12-17
    [49]Chowdhury A, Pradhan S, SahaM, et all Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. In-dian Journal ofMicrobiology,2008, 48(1):114-127
    [50]Afyuni M M, Wagger M G, Leidy R B. Runoff of two sulfonylureaherbicides in relation to tillage system and rainfall intensity. Journal of Environmental Quality,1997,26:1318-1326
    [51]Liu W P, Ji J. One of the most important factors affecting the fate of pesticide in soil-water environmental:sorption and desorption. China Environmental Science,1996,16(1):25-30.
    [52]Dick,R.P. Soil enzyme activities as integrative indicators of soil health.Biological indicators of soil health.1997,121-156
    [53]林玉锁,龚瑞忠,朱忠林.农药与生态环境保护.北京:化学工业出版社,1999:174-176
    [54]Zabik J M, Van Wesenbeeck I J, Peacock A L, et al. Terrestrial field dissipation of diclosulam at four sites in the United States J Agric Food Chem,2001,49:3284-3290
    [55]Wolt J D, Duebelbeis D O. Products and kinetics of cloramsulam-methyl aerobic soil metabolism[J]. J Agric FoodChem,1996,44:324-332
    [56]Kerry K, Eric L Z, Bruce M T. Microbial transformation of prosulfuron. Agric Food Chem,1997,45:1479-1485
    [57]Gigliotti C, Allievi L, Salardi C, et al. Microbial ecotoxicity and persistence in soil of the herbicide bensulfuron-methyl. Environ Sci Health B,1998,33(4):381-398.
    [58]Andersen SM, Hertz PB, Holst T, et al. Mineralisation studies of 14C-labelled metsulfuron-methyl, tribenuronmethyl,chlorsulfuron and thifensulfuron one Danish soil and groundwater sediment profile. Chesphere,2001,45:775-782
    [59]张蓉,岳永德,花日茂等.磺酰脲类除草剂在环境中的转归和影响.安徽农业科学,2003,31(6):1007-1009
    [60]姚东瑞,陈杰,宋小玲.磺酰脲类除草剂残留与降解研究进展.农药,1997,36(7):32-36.
    [61]Joshi M M, Brown H M, Romesser J A. Degradation of chlorsulfuron by soil microorganisms. Weed Sci,1985,33:888-893
    [62]Sabadie J. Hydrolyse chimique acide dumetslfuron methyle. Weed Res,1990,30:413-419
    [63]Hemmamda S, Calmon M, Calmon JP. Kinetics and hydrolysis mechanism of chlorsulfuron and metsulfuronmethyl. Weed Sci,1994,40:71-76
    [64]Cambon JP, Bastide J. Hydrolysis kinetics of thifensulfuron methyl in aqueous buffer solutions.Agric Food Chem,1996,44:333-337
    [65]李德平.磺酰脲除草剂在土壤中的物理化学行为.土壤,1996,3:128-133
    [66]Singles SK, Dean GM, Dirkpatrick DM, et al. Fate and behavior of flupyr-sulfuron-methyl in soil and aquatic systems. Pestic Sci,1999,55:288-300
    [67]Dinelli G, Vicari A, Bonetti A, Catizone P. Hydrolytic dissipation of four sulfonylurea herbicides. Journal of Agricultural and Food Chemistry,1997,4 (45):1940-1945
    [68]杨小红,李浚,葛诚等.微生物降解农药的研究新进展.微生物学报,2003,30(6):93-96
    [69]Aim D W, Zheng D, Raskin L. The Presence of Humic Substances and DNA in RNA Ext ract s Affect s Hybridization Result s. Applied and Environmental Microbiology, 2000,66:4547-4557
    [70]Ruifu Zhang, Zhongli Cui, Jiandong Jiang, et al.Diversity of organophosphorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Canadian Journal of Microbiology.2005,51(4):337-343
    [71]Naoki Harada,Kazuhiro Takagi,Kunihiko Fujii et al Transformation of methylthio-s-triazines via sulfur oxidation by strain JUN7, a Bacillus cereus species.Soil Biology and Biochemistry.2006(38):2952-2957
    [72]Oliver D P, Baldock J A, Kookana R S, Grocke S. The effect of land use on soil organic carbon chemistry and sorption of pesticides and metabolites. Chemosphere,2005,60:531-541
    [73]刘建平,王银善,曹志方等.甲基营养细菌No1甲胺脱氢酶的纯化和性质研究。武汉大学学报(自然科学版)1997,43(2):243-248
    [74]钞亚鹏,赵永芳,刘斌斌等. 甲基营养菌WB-1甲胺磷降解酶的产生、部分纯化及性质.微生物学报.2000,40(5):523-527
    [75]Bernard L, Courties C,Duperray C. A New Approach to Determine the Genetic Diversity of Viable and Active Bacteria in Aquatic Ecosystems. Cytomet ry,2001,43 (4):314-321
    [76]Pinna M V, Pusino A, Gessa C. Sorption and degradation of azimsulfuron on iron (Ⅲ)-rich soil colloids. Journal of Agricultural and Food Chemistry,2004,52:8081-8085
    [77]Vigna C R.M, Morais L S.R, Collins C H, Jardim I C S F. Poly (methyloctysiloxane) immobilized on silica as a sorbent for solid-phase extraction of some pesticides. Journal of Chromatography A,2006,1114:211-215
    [78]Schmalenberger A,Tebbe C C.Bacterial Diversity in Maize Rhizospheres:Conclusions on the Use of Genetic Profiles Based on PCR2amplified Partial Small Subunit rRNA Genes in Ecological Studies[J]. Mol Ecol,2003,12:251-262
    [79]Rani N L,Lalithakumari D.Degradation of methyl parathion by Pseudomonas putida [J] Canadian Journal of Microbiology,1994,40(12):1000-1006
    [80]Yang C H, Crowley D E. Rhizosphere Microbial Community St ructure in Relation to Root Location and Plant iron Nut ritionalStatus[J]. Appl. Environ. Microbiol,2000, 66:345-351
    [81]Marco Ventura,Douwe van Sindaren, Gerald F. Fitzgerald, et al. Insights into the taxonomy, genetics and physiology of bifidobacteria [J]. Antonie van Leeuwenhoek,2004, 86:205-223
    [82]Sanyal N, Pramanik S K, Pal R, Chowdhury A. Laboratory simulated dissipation of metsulfuron methyl and chlorimuron ethyl in soils and their residual fate in rice, wheat and soybean at harvest. Journal of Zhejiang University Science B,2006,7(3):202-208
    [83]Elen Aquino Perpetuol, Regina Celia Pereira Marques, Maria Anita Mendes et al Characterization of the phenol monooxygenase gene from Chromobacterium violaceum: Potential use for phenol biodegradation.Biotechnology and Bioprocess Engineering 2009, 14(6):694-701
    [84]Oliver D P, Baldock J A, Kookana R S, Grocke S. The effect of land use on soil organic carbon chemistry and sorption of pesticides and metabolites. Chemosphere,2005,60:531-541
    [85]Weber J B, Wilkerson G G, Reinhardt C F. Calculating pesticide sorption coefficient (Kd) using selected soil properties. Chemosphere,2004,55:157-16
    [86]Kocherginskaya S A, Aminov R I, White B A. Analysis of the Rumen Bacterial Diversity Under two Different Ddiet Conditions Using Denaturing Gradient Gel Elect rophoresis, Random Sequencing, and Statistical Ecology Approaches. Anaerobe,2001, (7):119-134
    [87]Richard A H, Qiu X Y, Wu L Y. et al. Simultaneous Recovery of RNA and DNA from Soils and Sediment s. Appl Enviorn Microbiol,2001,67 (10):4495-4503
    [88]Aim D W, Zheng D, Raskin L. The Presence of Humic Substances and DNA in RNA Extracts Affects Hybridization Result s. Applied and Environmental Microbiology, 2000,66:4547-4557
    [89]Christopher R, Alexander M,Hermann B.Biodiversity of Denitrifying and Dinitrogen-fixing Bacteria in an Acid Forest Soil. Appl. Environ Microbiol,2002,68 (8):3818-3829
    [90]Masayuki Hashimoto, Atsushi Mizutani, Kanako Tago,et al.Cloning and nucleotide sequence of carbaryl hydrolase gene (cahA) from Arthrobacter sp. RC100 Journal of Bioscience and Bioengineering2006,01(5):410-414
    [91]Schmalenberger A,Tebbe C C.Bacterial Diversity in Maize Rhizospheres:Conclusions on the Use of Genetic Profiles Based on PCR amplified Partial Small Subunit rRNA Genes in Ecological Studies. Mol Ecol,2003,12:251-262
    [92]Garabed Antranikian,Constantinos E.Vorgias,Costanzo Bertoldo.Extreme Environments as a Resource for Microorganisms and Novel Biocatalysts Marine Biotechnology.2005(96): 219-262
    [93]Bernard L, Courties C,Duperray C. A New Approach to Determine the Genetic Diversity of Viable and Active Bacteria in Aquatic Ecosystems. Cytometry,2001,43 (4):314-321
    [94]Regina S R,Anastassial L,Kathy B S,et al.Fungi from Geothermal Soils in Yellowstone National Park. Applied Environment Microbiology,1999,65(12):5193-5197
    [95]Takami H, Kobata K, Nagahama T, et al. Biodiversity in deep sea sites located near the. south part of Japan. Ex—tremophiles,1999,3(2):97-102
    [96]张朝贤,钱益新,胡样恩等.合理用药预防长残效除草剂残留药害.杂草科学,1998(2):2-4
    [97]韩厚安.关于“长残效”除草剂在应用中的几个问题.湖北植保,1999(1):28-31
    [98]李淑琴等.氯啼磺隆在大豆田使用技术研究,农药.1995,37(8):32-33
    [99]王焕民,磺酞脉类及咪哇琳酮类除草剂的特性及其应用问题,农药科学与管理, 1995,53(1):18-21
    [100]苏少泉等.豆黄隆使用技术中的若干问题.农药科学与管理,1995,53(1):22-23
    [101]杨晓明,高原等氯喀磺隆在建三江地区的应用.农药.1996,35(4):41-44
    [102]周景恺等.豆黄隆对大豆生长发育影响的初步研究.农药科学与管理.1994,400(3):12-13
    [103]Choudhury, P.et al.Studieson Photodegradation of Chlorimuron-ethylin 5011. PestieideSeienee,1997,51(2):201-205
    [104]俞飞,蔡道基,单正军等.20%三哇磷乳油在稻田上的残留试验.农业环境科学学报.2004,23(2):384-386
    [105]赵维佳,高巍,陈如东等.青菜中多种农药残留量的分析方法.南京农业大学学报.2004,27(1):106-107
    [106]白桦,邱月明,郝楠等.气相色谱.质谱法测定粮谷中多效吐残留量.检疫检验科学.2004,14(3):54-55
    [107]刘永波,贾立华,牛淑妍等.气一质联用快速检测蔬菜、水果中农药多残留的分析方法.青岛科技大学学报.2003,24(6):491-495
    [108]Blagodatskaya E, Kuzyakov Y. Mechanisms of Real and Apparent Priming Effects and their Dependence on Soil Microbial Biomass and Community Structure:Critical Review. Biology and Fertility of Soils.2008.45 (2):115-131
    [109]Bossio D.A., Scow K.M., Gunapala N., et al. Determinants of Soil Microbial Communities:Effect of Agricultural Management, Season, and Soil Type on Phospholipid Fatty Acid Profiles. Microb. Ecol.1998.36:1-12
    [110]Buyer J.S. and Drinkwater L.E. Comparison of Substrate Utilization Assay and Fatty Acid Analysis of Soil Microbial Communities. Journal of Microbiological Methods. 1997.30(1):3-11
    [111]Chinalia F.A., Killham K.S.2,4-Dichlorophenoxyacetic Acid (2,4-D) Biodegradation in River Sediments of Northeast-Scotland and its Effect on the Microbial Communities (PLFA and DGGE). Chemosphere.2006.64:1675-1683
    [112]Kryn i tsky,Adersson JI, MosbachK.SelectiveRecognition of the Herbicide Atrazine by Noncovalent Molecularly Imprinted Polymer.Agric Food Chem.1996,44:141-45
    [113]蔡顺香.台湾蔬菜农药残留的预防措施及其启示.福建农业科技.1999(4):25-26
    [114]高晓辉,朱光艳.蔬菜上农药残毒快速检测技术一酶抑制法检测有机磷和氨基甲酸醋类农药.农药科学与管理.2000,24(4):29-31
    [115]腾春红,陶波.氯密磺隆高效降解真菌F8的分离和鉴定.土壤通报,2008,1160-1163
    [116]王哲,孙纪全,马吉平等.氯密磺隆降解菌株LW-3的分离及生物学特性研究.微生物学通报,2008(35):1899-1904
    [117]汪佳秀,张祥辉,穆文辉等.降解菌2N3对被氯嘧磺隆污染土壤的生物修复.农药学学报.2010,12(1):49-53
    [118]刘艳,范丽薇,王晓萍.氯嘧磺隆降解菌的分离鉴定及其降解特性.微生物学通报.2010,37(8):1164-1168
    [119]Xu G, Li F, Wang Q. Effect of Humic Acids on Photodegradation of Chloroacetanilide Herbicides under UV Irradiation. Environ Health B.2007,42(2):165-171
    [120]Breaux E J.I dentification of the Initial Metabolites of Acetochlor in Corn and Soybean Seedings. Agric Food Chem.1986,34:884-888
    [121]Nilanjan Sanyal, Sukhendu Kumar Pramanik, Raktim Pal,et al.Laboratory SimulatedDissipation of Metsulfuron Methyl and Chlorimuronethyl in Soils and their ResidualFate inRice,Wheat and Soybean Atharvest.ZhejiangUniv Sci.2006,7(3):202-208
    [122]Muyzer G, Waal EC,1 electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16S rRNA. Appl Environ Microbiol,1993,59:695-7001
    [123]Fischer SG, Lerman LS. Length independent separationof DNA restriction fragments in two dimensional gel electrophoresis. Cell,1979,16:191-200
    [124]Myers RM, Fischer SG, Lerman LS, et al. Nearly all single base substitutions in DNA fragments joined to a GC2clamp can be detectedby denaturing gradient gel electrophoresis. Nucleic Acids Res,1985,13:3131-145
    [125]WANG M in qiang, L I Yuan xiang(李远想).玉米对磺酰脲类除草剂敏感性及土壤残留的研究[J]. J Maize Sci (玉米科学),2006,14(2):84-86
    [126]刘祥英,柏连阳.土壤微生物降解磺酰脲类除草剂的研究进展.现代农药,2006,5(1):29-31
    [127]Ph ill ipstm,Seechag,L Eeh et a 1. B iodegradation of hexachlorocyclohexane (HCH) by m icroorganisms [J].B iodegrada tion,2005,16 (4):363-392
    [128]Gzul Tier J.Farenhorst Cathcartj, et a-D egradation of [carboxyl214 C] 2,4-D in 114 agricultural soil as affected by soil organic carbon content [J]. Soil B iology and B iochemistry,2008,40 (1):217-227
    [129]许光辉.土壤微生物分析方法手册.农业出版社:1986,2:91-106
    [130]中国科学院南京土壤研究所微生物室编.土壤微生物研究法.北京:科学出版社,1985,4:51-54:64-66
    [131]沈萍,范秀容,李广武.微生物学实验(第三版).北京:高等教育出版社,1999:28-123
    [132]东秀珠,菜妙英.常见细菌系统鉴定手册.北京:科学出版社,2001:62-65,370-390.
    [133]Amann RI, Ludwig W and Schleifer K. Phylogenetic identification and in situdetection of individual microbial cells without cultivation. Microbiological Reviews,1995,59(1): 143-1691
    [134]司友斌,周静,王兴祥.除草剂苄嘧磺隆在土壤中的吸附.环境科学,,2003,24(3):122-125
    [135]Burns R G.Enzyme activity in soil:location and a possible role in microbial activity.Soil and Biochem,1982,14:423-427
    [136]Muyzer G, Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16S rRNA. Appl Environ Microbiol,1993,59: 695-7001
    [137]Lerman L.S.Comprehensive detection of single base changes in human genomic DNA using denaturing gradient gel electrophoresis and a GC clamp.Genomics,1990,7(4):463-475
    [138]Pizzul L, Castillo M P, Stenstr M J. Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation,2009,20 (6):751-759
    [139]司友斌,周静,王兴祥,周东美.除草剂苄嘧磺隆在土壤中的吸附.环境科学,2003,24(3):122-125
    [140]Peers S G, Milligan A J, Harrison P J. Assay optimization and regulation of urease activity in two marine diatoms J. Phycol.,2000,36:523-528
    [141]Ocio J. A.,Brookes P. C. An evaluation of methods for measuring the microbial biomass in soils f ollow ing recent additions of w heat st raw and the charact erization of the biomass that develops. Soil Biology and Biochem,1990,22:685-694
    [142]张伟,王进军,张忠明,烟嘧磺隆在土壤中的吸附及与土壤性质的相关性研究.农药学学报,2006,8:265-271
    [143]刘祥英,柏连阳.土壤微生物降解磺酰脲类除草剂的研究进展.现代农药,2006,5(1):29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700