超高压均质对澳豆豆乳理化性质及与溶菌酶协同作用对微生物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压处理技术被认为是新的食品加工与保藏技术中最有潜力和发展前途的一种物理技术。超高压均质既能有效灭菌,又能较好的保留营养成分及色、香、味等。澳豆(Narrow-leafed lupin)中富含丰富的蛋白质和合理的氨基酸组成,在食品配方中作为一种重要的功能成分和食品添加剂广泛应用于食品工业。传统的加热杀菌易使大豆蛋白变性,易使蛋白饮料沉淀,从而影响产品的质量。本论文选择澳豆豆乳作为研究对象,运用多种分析检测手段,研究了压力、循环次数等因素对豆乳的物理、化学、微观结构特性的影响,为超高压均质在大豆制品加工中的应用、大豆蛋白的改性及食品安全提供理论依据;并探索了在脱脂奶中超高压均质与溶菌酶协同作用对微生物的影响,试图寻求一种新的食品冷杀菌新技术。本论文的实验和研究结果如下:
     1、超高压均质对澳豆豆乳理化性质、微生物及显微结构的影响以澳豆豆乳为食品体系,研究了超高压均质(UHPH)对澳豆豆乳理化性质、微生物及微结构性质的影响,结果表明在均质压力175MPa,循环次数为6条件下,豆乳中的菌落总数减少了4个log CFU/mL,正交试验表明压力对杀菌效果的影响最大。表示豆乳物性的参数有颜色、稳定性、表观黏度、颗粒大小。超高压均质处理的样品颜色都有所变化,在均质压力为175MPa,6个循环时,ΔE~*木与对照样相差1.63,从肉眼上就会感觉到有差异;澳豆豆乳经过超高压均质机处理后,表观黏度明显降低,稳定性提高。随着压力的不断增大,循环次数不断增多,豆乳中颗粒不断减小;透射电镜照片显示了胶体颗粒的分布和一般特性,超高压均质处理后没有发生聚合现象,在所有图片中看出颗粒大小与对照样相比,明显降低,蛋白在未处理样品中比超高压均质处理样品中更加分散。
     2、超高压均质与溶菌酶协同作用对微生物的影响
     研究了超高压均质与溶菌酶联合处理对以脱脂奶为培养基的G~-、G~+菌的影响。溶菌酶对细菌的最小抑制浓度(MIC)结果表明该溶菌酶对革兰氏阴性菌,革兰氏阳性菌都有不同程度的抑制作用。Escherichia coli、Lactobacillus plantarum对压力有抵抗力,Bacillus subtilis、Pseudmonas putida、Staphylococcus aureus对高压均质比较敏感。溶菌酶的添加提高了压力对所选菌株抗菌效果,此外,溶菌酶和超高压均质协同处理显著的影响了菌株的生长动力学特征。通过不同均质压力处理,比较生残菌菌落数,溶菌酶的添加提高了对G~-处理的效果。预均质的溶菌酶在75MPa下,10h时菌落数减少了1.93logCFU/mL,与对照相比酶的抗菌活性提高了。另一方面,菌与酶液在接触6h时,100MPa均质时,对植物乳杆菌的抗菌效果更好。初步地证明酶和高压均质有协同或交互作用,细菌总数的下降而不仅仅是由于均质压力对细菌细胞壁或细胞膜的作用。通过扫描电镜图观察到在130MPa时,菌体细胞质不均匀开始萎缩、变形,细胞膜破裂,或者细胞破碎。本实验结果证明不是两种因子的简单加和而是他们协同作用的结果。
Dynamic high-pressure processing is considered as one of the most potential and promising physical modification technologies in the latest food processing and preservation development.In the process of ultra-high pressuree homogenization(UHPH) can not only kill food-borne microorganisms,but bring less detriment to food compounds such as nutrients,pigments,and flavoring agents,et al.Aussie bean is a full-nutrient food due to have abounding proteins and rational amino acids.So Aussie bean proteins are commonly used as a functional ingredient and additive for food formulation because of its excellent function properties and good nutritional values.Thermal preservation results in denaturation of proteins and precipitation of beverage containing protein,thus affects the quality of products.The lupin-milk has been studied by multiple analysis ways.The effects of high pressuree homogenization on the physicochemical and microstructural characteristics of lupin-milk have been analyzed,in order to provide the reference for the application of soybean products,modification of soybean protein,and food safety. Combined effect of lysozyme and high pressure homogenization on microorganism in model systems based on skim milk was discussed,too.And try to seek for a novelty nonthermal pasteurization technology.The experimental results of this paper are summarized showed as follows:
     1.Effects of ultra high pressure homogenization(UHPH) on physicochemical, microbial and microstructural characteristics of lupin-milk
     The effects of ultra high pressure homogenization(UHPH) on physicochemical, microbial and microstructural characteristics of lupin-milk was studied and compared with lupin-milk(control) processed with conventional homogenization pressure(25MPa) used in industry.UHPH treated lupin-milks were compared with the control lupin-milk,and the result of microbiological quality showed that UHPH was reducing the total number of bacteria,reaching reductions of 4 logCFU/mL at 175MPa with 6 passes and results of levels of orthogonal experiment showed the pressure was the most effective on sterilization. Physicochemical parameters assessed in lupin-milk were viscosity,color,and particle size. Color differences between UHPH treatment and control were found that the UHPH treatments increased the L*,a*and△E* values and reduced the b* value of treated lupin-milk,moreover the maximum difference value of△E* between the treated and control was 1.63 which was noticeable difference.And the UHPH treatments induced a reduction in viscosity valuesk and a enhencement in physical stability index values of treated soymil compared with control.With the higher the pressure and the more passes employed,the smaller was the particle size.Images of transmission electron microscopy showed the distribution and general characteristics of the particles and structures of samples. No structures in coalescence process were observed after UHPH treatment.Differences of size and distribution of globules depending on the treatment applied to lupin-milk could be seen.More detailed images of protein could be observed,evidencing that the protein fraction in the continuous phase appeared more disperse that in UHPH lupin-milks.
     2.Combined effects of ultra high pressure homogenization and lysozyme on microorganism
     It was studied the reduction of a population of Gram positive and Gram negative species inoculated in in skim milk by the combination of ultra-high pressure homogenization(UHPH) treatment and the use of lysozyme as antimicrobial.The minimum inhibitory concentration(MIC) of lysozyme against bacteria showed that lysozyme had a different extent of inhibition against Gram positive and Gram negative species.Escherichia coli.Lactobacillus plantarum were the most pressure resistant species,while Bacillus subtilis,Pseudomonasputida,Staphylococcus aureus were found to be very sensitive to the hyperbaric treatment.The enzyme addition enhanced the instantaneous pressure efficacy on almost all the considered species as indicated by their instantaneous viability loss following the treatment.Moreover,the combination of the enzyme and high pressure homogenization significantly affected the recovery and growth dynamics of several of the considered species.The enzyme addition enhanced the treatment efficacy on the Gram negative species as indicated by the comparison of data relative to surviving cells of samples homogenized at different pressures in the presence or absence of lysozyme.HPH-treated lysozyme(75MPa) reduced the cell load after 10h from treatment of 1.93 logcfumL in comparison with the control.On the other hand,a treatment at 100 MPa enhanced the lysozyme activity and induced,after an incubation of about 6 h,an increase of the L. plantarum deactivation rate with respect to the control.These results preliminary evidence that the interaction lysozyme-high pressure homogenization should not be attributed only to the effect of pressure on the integrity of the cell walls or outer membrane for the Gram negative species.As shown by the SEM(scanning electron microscopy) micrographs,at the pressure level applied(130 MPa) severe damages,including shrinkage of surface,rupture of parital cell wall,also the discharge of cytoplasmic content and even breakage of microbial cells,were observed.These results suggested that the combined effects of the process and enzymes cannot be attributed to a mere sum of their individual actions but to their synergetic effect.
引文
[1]杨诗斌,徐凯,张志森.高剪切及高压均质机理研究及其在食品工业业中的应用[J].粮油加工与食品机械,2002(04):32-35.
    [2]杜军,张绍英,戴元忠等.动力作用作为冷杀菌方法的可行性初探[J].中国乳品工业,2002,30(6):25-27.
    [3]Hetherington,P.J.,Follows,M.,Dunnill,P.,Lilly,M.D..Release of Protein from Baker's Yeast(Saccharomyces cerevislae) by Disruption in an Industrial Homogenizer[J].Chemical Engineering Research and Design.1971,49:142-148.
    [4]R.Lander,W.Manger,M.Scouloudis,A.Ku,C.Davis,and A.Lee.Ganlin Homogenization:A Mechanistic Study[J].Biotechnol.Progress.2000,16:80-85.
    [5]Ram,A.,Kadim,A..Shear degradation of Polymer solutions[J].Appt.Polym.Sci.1970,14:2145-2156.
    [6]Doulah,M.S.and Hammond,T.H..Brookman J.S.G.A hydrodynamic mechanism for the disintegration of Saccharomyces cereviae in an industrial homogenizer[J].Biotechnol Biogngng X V.1975,1:845-858.
    [7]Cherry,R.S.and Papoutsakis,E.T..Hydrodynamic effects on cells in agitated tissue culture reaction[J].Bioprocess Engng.1986,1:29-41.
    [8]Floury J.,Desrumaux A.,Lardieres J..Effect of high pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions[J].Innovative Food Science and Emerging Technologies,2000,1:127- 134.
    [9]Keenan T.W.,Moon T.W.,Dylewski D.P.Lipid globules retain globule membrane material after homogenization[J].Journal of Dairy Science,1983,66:196-203.
    [10]Floury J.,Desrumaux A.,Axelos M.A.V.,et al.Degradation of methylcellulose during ultra-high pressure homogenization[J].Food Hydrocolloids,2002,16:47-53.
    [11]Desrumaux A.,Marcand J..Formation of sunflower oil emulsion stabilized by whey protein with high-pressure homogenization(up to 350MPa):effect of pressure on emulsion characteristics [J].International Journal of Food Science and Technology,2002,37:263-269.
    [12]Diels A.M.J.,Callewaert L.,Wuytack E.Y.,et al.Inactivation of Escherichia coli by high-pressure homogenization is influenced by fluid viscosity but no by water activity and product composition[J].International Journal of Food Microbiology,2005,101:281-291.
    [13]Guerzoni M.E.,Vannini L.,Chaves Lopez C.,et al.Effect of high Pressure Homogenization on Microbial and Chemico-Physical Characteristics of Goat cheeses[J].J.Dairy Sci.,1999, 82(5):851-862.
    [14]Michael H.Tuniek,Diane L.Van Hekken,Peter H.Cooke.Effect of high Pressure microfuidzation on microstructure of mozzarella cheese[J].Lebenm.-Wiss.u.-Technol,2000(33),538-544.
    [15]N.Lagoueyte,P.Paquin.Effects of microfluidization on the functional properties of xanthan gum[J],Food Hydrocolloids.1998,12:365-371
    [16]汪箐琴.动态超高压均质对大豆分离蛋白改性的研究[D].南昌:南昌大学,2007.
    [17]Lutz Popper and Dietrich Knorr.Applications of High-Pressure Homogenization for Food[J]Preservation Food Technology.July l900,84,86-89
    [18]Harrison,S.T.,Chase,H.A.and Dennis,J.S.Combined Chemical and Mechanical Processes for the Disruption of Bacteria[J].Bioseparation.1991,2:95-105.
    [19]Cruz N.,Capellas M.,Hernandez M.,et al.Ultra high pressure homogenization of soymilk:Microbiological,physicochemical and microstructural characteristics[J].Food Research International,2007.
    [20]Donsl F.,Ferrari G.,Maresca P.High-Pressure Homogenization for Food Sanitisation[J].2006,1811-1822.
    [21]Lanciotti R.,Gardini F.,Sinigaglia M.,et al.Effects of growth conditions on the resistance of some pathogenic and spoilage species to high pressure homogenization[J].Letters in Applied Microbiology,1994,22:165-168.
    [22]Lee C.H..Lupin seed for human consumption.Proceedings of the fourth international Lupin conference[M].1986,64-75.
    [23]Archer Bridie J.,Johnson Stuart K.,Devereux Helen M.et al..Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability,post-meal perceptions of satiety and food intake in men[J].British Journal of Nutrition,2004,91,591-599.
    [24]Lee YP,Mori TA,Sipsas S,et al.Lupin-enriched bread increases satiety and reduces energy intake acutely[J].American Journal of Clinical Nutrition,2006,84:975-980.
    [25]Hall R.,Thomas S.,Johnson S..Australian sweet lupin flour addition reduced the glycaemic index of a white bread breakfast without affecting palatability in healthy human volunteers[J].Asia Pacific Journal of Clinical Nutrition,2005,14(1):91-97.
    [26]Hall,R.S.,Johnson,S.K.,Baxter,A.L.,et al.Lupin kernel fibre-enriched foods beneficially modify serum lipids in men[J].European Journal of Clinical Nutrition,2005,59:325-333.
    [27]Pilvi T.K.,Jauhiainen T.,Cheng Z.J.,et al.Lupin protein attenuates the development of hypertension and normalises the vascular function of NaCl-loaded Goto-Kakizaki rats[J].Journal of Physiology and Pharmacology,2006,57(2):167-176.
    [28]Johnson S.K.,Chua V.,Hall R.S.,et al.Lupin kernel fibre foods improve bowel function and beneficially modify some putative faecal risk factors for colon cancer in men[J].British Journal of Nutrition,2006,95(2):372-378.
    [29]Hayes,M.G.,Fox,P.F.,& Kelly,A.L..Potential applications of high pressure homogenisation in processing of liquid milk[J].Journal of Dairy Research.2005,72,25-33.
    [30]Pereda,J.,Ferragut,V.,Guamis,B.,& Trujillo,A.J.Effect of ultra high-pressure homogenisation on natural-occurring micro-organisms in bovine milk[J].Milchwissenschaft,2006,61,245 - 248.
    [31]船津胜,鹤大典.溶菌酶[M].济南:山东科学技术出版社,1982.
    [32]Canfield R.E,McMurry S..Purification and characterization of a lysozyme from goose egg white[J].Biochemical and Biophysical Research Communications,1967,26(1):38-42.
    [33]Blake CC,Koenig DF,Mair GA,et al.Structure of hen egg-white lysozyme[J].Nature,1965,206(986):757-761.
    [34]Philips DC.The three-dimensional structure of an enzyme molecule[J].Sci.Am.,1966,215(5):78 -90.
    [35]Jolles P.,Jolles J.What's new in lysozyme research? Always a model system,today as yesterday[J].Mol Cell Biochem,1984,63(2):165-189.
    [36]马美湖,葛长荣,王进等.冷缺肉生产中保鲜技术的研究[J].食品科学,2003,4.
    [37]贾向志,李元等.溶菌酶的研究进展[J].生物技术通讯,2002,13(5):374-377.
    [38]Gergory R,Siragusa,Jmaes S et al.Inhibition of listeria Monoyctogenes on beef Tissue by Appjication of Organic Acids Immobilized in a Calcium Alginate Gel[J].Jounral of Food Science,1992,2(57):293.
    [39]W Manu-Tawiah,L Ammann et la.Extending the Color Stability and Shelf Life of Fresh Meat.Food technology,1991,95.
    [40]Fuglsnag C.C.,Johansen C.,Christgau S.et al.Antimicrobial Enzymes:Application and Future Potential in the food industry[J].Trends in food science & technology,1995,6:390-396.
    [41]李冬梅.溶菌酶及其在食品中的应用[J].食品工业,1999,3:21.
    [42]朱奇等.溶菌酶及其应用[J].生物学通报,1998,33(10):9-10.
    [43]梅从笑等.溶菌酶及其在茶饮料生产中的应用前景[J].山西食品工业,2000,2:19-26.
    [44]张凤凯,马美湖.溶菌酶及其食品保鲜剂的应用[J].肉类研究,2001,(4):41-42.
    [45]陈舜胜等.溶菌酶复合保鲜剂对水产品的保鲜作用[J].水产学报,2001,25(3):254-259.
    [46]马美湖,葛长荣,张凤凯.三种保鲜剂的比较试验[J].肉类研究,2003,(1):32-37.
    [47]杨万根,马美湖,张凤凯.三种抗菌剂在肉制品中的应用[J].肉类工业,2002,(8):20-27.
    [48]方远超,梅丛笑.茶饮料灭菌技术[J].冷饮鱼速冻食品工业,2000(1):17-19.
    [49]林亲录,王德安等.溶菌酶在饮料中的应用[J].食品科学,1994(11):37-40.
    [50]方无超,梅从笑,尹宁.溶菌酶及其应用前景[J].中国食品添加剂,1999,4:39-41.
    [51]倪瑛,钟立人.天然防腐剂-溶菌酶的研究[J].食品研究与开发,2003,24(2)107-108.
    [52]方远超,梅丛笑.新兴冷杀菌技术在食品工业中的应用研究[J].江苏食品与发酵,2002(2):21-33.
    [53]马美湖,林亲录.冷却肉生产中保鲜技术的初步研究[J].食品科学,2002(8):235-241.
    [54]凌关庭.防腐抑菌剂的进展[J].粮食与油脂,2000,5:44-47.
    [55]章银良.溶菌酶对草莓的保鲜效果[J].食品工业科技,1999,20(1):32-33.
    [56]王明力,唐维援等.溶菌酶涂膜保鲜蔬菜的研究[J].贵州工业大学学报,2003,32(5):29-36.
    [57]叶丹,邱树毅,连宾.蘑菇的复合液膜保鲜[J].食品工业科技,2004,24(6):122-124.
    [58]张宗岩等.溶菌酶-婴儿食品添加剂[J].中国乳品工业,1993,21(3):130-132.
    [59]朱奇,陈彦.溶菌酶及其应用[J].生物学通报,1998,33(10):9-10.
    [60]荣晓花,凌沛学.溶菌酶的研究进展[J].中国生化药物杂志,1999,20(6):319-320.
    [61]孙宇坤,李继遥.溶菌酶在龋病发生中的作用.国外医学口腔医学分册,1998,25(1):5-8.
    [62]王欣平.含溶菌酶牙膏[J].牙膏工业,1994,(1):31-34.
    [63]Palmieri B.and Boraldi F..Topical treatment of some dystrophic and inflammatory lesions of the skin and tissues[J].Arch.Sci.Med.,1977,134(4):481-485.
    [64]Parrot J.L.and Nicot G.Antihistaminic action of lysozyme[J].Nature,1963,197:496.
    [65]杨保全,许卫.溶菌酶在口腔疾病这的应用[J].现代口腔医学杂志,1990,4(1):40-41.
    [66]谢秩勋,刘雄,陈奉等.热负荷对血清溶菌酶的影响[J].中国免疫学杂志,1997,13:148-149.
    [67]邹京宁,韩一平,陈玉林等.溶葡萄球菌酶对烧伤小鼠吞噬细胞功能的影响[J].中华整形烧伤外科杂志,1995,11(4):255-257.
    [68]Krusteva E.,Hristova S.,Damyanov D.,et al.Clinical study of the effect of the preparation deodan on Leukopenia,induced by cytostatics[J].International Journal of Immunopharmacology,1997,19(9-10):487-492.
    [69]杨保全,王克群.溶菌酶治疗牙周炎36例疗效观察[J].口腔医学,1989,9(4):201-202.
    [70]凌关庭.防腐抑菌剂的进展[J].粮食与油脂,2000,5:44-47.
    [71]Barbosacanovas,G.v.,Pothakamury U.R.,Palou,E.,&Swanson,B.G.Nonthermal Preservation of food[M],New York:Marcel Dekker.1998,53-112.
    [72]M.lordache.P.Jelen.High pressure microfluidization treatment of heat denatured whey proteins for improved functionality[J].Innovative Food Science and Emerging Technologies,2003(4):367-376.
    [73]李汴中,曾庆孝等,高压处理后大豆分离蛋白溶解性和流变性的变化及其机理[J].高压物理学报,1999,3(1):22-29.
    [74]GB/T 4789.2-2003.食品卫生微生物学检验-菌落总数测定[S].
    [75]Hindra,F.,Baik O.D.Kinetics of quality changes during food frying[J].Critical Reviews in Food Science and Nutrition.2006,46:239-258.
    [76]Onayemi,O.,&Badifu,G.I.O.Effect of balancing and drying methods on nutritional and sensory quality of leafy vegetables[J].Plant Foods for Human Nutrition.1987,37(4):291-298.
    [77]丘华,宋延珍.均质与杀菌工艺对酸性果汁黑芝麻乳饮料稳定性的影响[J].中国乳品工业,2000,28(4):15-18.
    [78]Molina E,Papadopoulou A,Ledward D A.Emulsifying properties of high pressure treated soyprotein isolate and 7s and 11s globulins[J].Food Hydrocolloids,2001,(15):263-269.
    [79]Donsi F.,Ferrari G.,Maresca P..High-Pressure Homogenization for Food Sanitisation[J].2006,1811-1822.
    [80]Lanciotti R.,Gardini F.,Sinigaglia M.,et al.Effects of growth conditions on the resistance of some pathogenic and spoilage species to high pressure homogenization[J].Letters in Applied Microbiology,1994,22:165-168.
    [81]李里特.食品物性学[M].北京:中国农业出版社,2001,239-241.
    [82]Hayes M.G.,Fox P.F.,Kelly,A.L.Potential applications of high pressure homogenisation in processing of liquid milk[J].Journal of Dairy Research,2005,72:25-33.
    [83]姚怀芝,姚慧源.籼米淀粉超微粉体的制备及其性质[J].中国粉体技术,2003(6):23-25.
    [84]卫生部卫生执法与监督司.消毒技术规范[M].北京:中华人民共和国卫生部,2002,83-94.
    [85]Zwietering,M.,H.,Jongenburger,L.,Rombouts,F.M.,et al.Modeling of the bacterial growth curve[J].Application Environment Microbiology,1990,56:1875-1881.
    [86]Koutsoumanis,K.,Nyehas,G.J.E.Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life prediction[J].International journal of Food Microbiology,2000,60:171-184.
    [87]Dalgaard,R.,Vaneanneyt,M.,Euras,V.N.et al.Identification of lactic acid bacteria from spoilage associations of cooked and brined shrimps stored under modified atmospheres at temperatures between 0℃ and 25℃[J].Journal of Application Microbiology,2003,94:80-89.
    [88]Gibson,A.M.,Bratchell,N.&Roberts,T.A.The Effect of Sodium Chloride and Temperature on the Rate and Extent of Growth of Clostridium Botulinum Type A in Pasteurized Pork Slurry[J].Journal of Application Bacteriology,1987,62:479-490.
    [89]Liu,F.,Yang,RQ.,Li,YF.Correlations between growth parameters of spoilage microorganisms and shelf-life of pork stored under air and modified atmosphere at-2,4 and 100℃[J],Food Microbiology,2006,23(6):578-83.
    [90]Gould GW and Sale AJ.H.Initiation of germination of bacteria spores by hydrostatic pressure[J].J.Gen.Microbiol.1970,60:335.
    [91]Rode,L.J.and Foster,J.W.Mechanical germination of Bacterial spore[J].Proc.Natl.Acad.Sci.,1960,46:118-128.
    [92]Luciana Iucci,Francesca Patrignani,,Melania Vallicelli et al.Effects of high pressure homogenization on the activity of lysozyme and lactoferrin against Listeria monocytogenes[J].Food control,2006,558-565.
    [93]Bernkop-Schnurch,A.,Krist,S.,Vehabovic,M.,Valenta,C..Synthesis and evaluation of lysozyme derivatives exhibiting an enhanced antimicrobial action[J].European Journal of Pharmaceutical Sciences.1998,6,301-306.
    [94]Roberts,C.M.,Hoover,D.G..Sensitivity of Bacillus coagulans spores to combinations of high hydrostatic pressure,heat,acidity and nisin[J].Journal of Applied Bacteriology,1996,81,363-368.
    [95]Yuste,J.,Mor-Mur,M.,Capellas,M.,Guamis,B.,Pla,R...Microbiological quality of mechanically recovered poultry meat treated with high hydrostatic pressure and nisin[J].Food Microbiology,1998,15,407-414.
    [96]Guerzoni,M.E.,Suzzi,G.,Lanciotti,R.,Vannini,L.,Chaves Lopez,C..Effects of high pressure homogenization on biochemical and texture characteristics of yoghurt.Proceedings of the IDF Symposium "Texture of Fermented Milk Products and Dairy Desserts"[J],1998,172-180.
    [97]涂宗财.蛋白质动态超高压微射流改性研究及机理初探[D].南昌:南昌大学,2007.
    [98]Ohno N,Morrison DC..Binding of lippolysaccharide to lysozyme and inhibition of lysozyme enzymatic activity[J].The Journal of Biological Chemistry,1989,264(8):4434-4441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700