菌酶协同处理豆粕制备饲用肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豆粕是大豆榨油后的副产品,粗蛋白含量在43-48%之间,必需氨基酸含量高、氨基酸组成合理,是目前使用最多、最广泛的植物性蛋白质原料。饲用肽泛指寡肽和小肽,是指由2个到50个氨基酸以肽键相连的化合物,相对分子质量在1-10 kD之间。本研究采用微生物法和酶解法处理豆粕制备饲用肽,将豆粕中的大分子蛋白降解成小分子肽,有效提高发酵豆粕产品中的肽含量,提高豆粕蛋白质消化率,从而改善豆粕营养价值,对弥补我国蛋白饲料尤其是优质蛋白资源的短缺,降低养殖业生产成本,促进畜牧业增产、增效具有重大的现实意义。
     本研究从实验室保藏的8株枯草芽孢杆菌中筛选到了1株能有效降解豆粕中大分子蛋白为小分子肽的菌株BSW-2,豆粕经过该菌发酵后,肽含量从原豆粕13.35mg/g提高到发酵后108.10 mg/g。同时,本研究还筛选到了1株能有效提高发酵豆粕粗蛋白含量的酵母菌YT,经过YT发酵后,粗蛋白从原料豆粕47.97%提高到55.32%。
     随后,通过正交试验建立了芽孢杆菌BSW-2、酵母菌YT混菌发酵豆粕的工艺,工艺条件为混合菌液接种量1.5%,料水比1:1.0,发酵温度30℃,发酵时间36 h。发酵后样品肽含量从发酵前的13.35 mg/g提高到184.57 mg/g,粗蛋白含量从47.62%提高到56.38%,蛋白质体外消化率从81.86%提高到91.99%,干物质体外损耗率从66.00%提高到71.40%,乳酸含量为2.65%,脲酶活性从0.45 U降低到0.15 U,抗原蛋白及大分子蛋白得到有效降解。
     另一方面,试验选择了中性蛋白酶作为豆粕酶解用酶,确定其酶解工艺为加酶量400u/g、料水比1:1.6、酶解温度50℃、酶解时间48 h。酶解豆粕样品肽含量从发酵前的13.35 mg/g提高到185.72 mg/g,粗蛋白含量从47.62%提高到52.59%,抗原蛋白及大分子蛋白也得到有效降解。
     最后,建立了菌酶协同处理豆粕的工艺,确定工艺条件为混合菌接种量1.5%、中性蛋白酶添加酶量450u/g、料水比1:1.4、处理温度40℃、处理时间48 h。在此条件下,豆粕经菌酶协同处理后,各项指标均优于混菌发酵和中性蛋白酶酶解,其中肽含量从13.35 mg/g提高到199.65 mg/g,粗蛋白含量从47.62%提高到56.72%,蛋白质体外消化率从81.86%提高到92.79%,干物质体外损耗率从66.00%提高到72.30%,乳酸含量为2.75%,脲酶活性从0.45 U降低到0.086 U,抗原蛋白及大分子蛋白得到有效降解。
     采用PCR-DGGE方法分析菌酶协同处理豆粕过程中细菌群落的变化,结果表明1.5%的接种量可以使枯草芽孢杆菌BSW-2从发酵开始就在整个发酵体系中占优势。随着发酵时间的延长,BSW-2的生长会抑制其它细菌的生长,到发酵后期整个发酵体系中,BSW-2占有绝对的优势。
Soybean meal, a by-product after oil extraction, crude protein content of 43-48%, high content of essential amino acids, is the most widely used source of dietary protein in the poultry and swine industry. Small peptide is compounds of 2 or more amino acids linked by peptide bonds, it's molecular weight between 1-2 kD. In this study, microbiological methods and enzymatically methods was used to treated soybean meal, to increase the content of peptides. The study is of great practical significance to make up of high-quality protein feed, especially the shortage of protein resources, to reduce farming cost of production, to promote livestock output.
     One strain of Bacillus subtilis BSW-2 was screened to degrade protein macromolecules of soybean meal into small peptides from 8 strains preserved by our laboratory. After fermented, the content of peptide increased from 13.35 mg/g to 108.10 mg/g. One strain of yeast YT was also screened to improve the content of crude protein. After fermented, the crude protein content increased from 47.62% to 55.32%.
     The process condition of soybean meal fermentation by BSW-2 and YT was established. The results showed that the optimum fermentation parameters were mixed inoculation volume 1.5%, ratio of material to water 1:1.0, fermentation temperature 30℃, fermentation time 36 h. After fermentation, the content of peptides increased from 13.35 mg/g to 184.57 mg/g. The crude protein content increased from 47.62% to 56.38%. The vitro digestibility of protein increased from 81.86% to 91.99%. The dry matter digestibility vitro increased from 66.00% to 71.40%. The content of lactic was 2.65%. The urease activity decreased from 0.45 U to 0.15 U. The results of SDS-PAGE shows that the protein macromolecular and the antigen protein was degraded.
     The neutral protease was screened and the condition of enzymatic hydrolysis was established. The results showed that the optimum condition were neutral protease 400 u/g, ratio of material to water 1:1.6, reaction temperature 50℃, hydrolysis time 48 h. Under that condition, the content of peptides increased from 13.35 mg/g to 185.72 mg/g. The crude protein content increased from 47.62% to 52.59%. The results of SDS-PAGE shows that the protein macromolecular and the antigen protein was also degraded.
     An orthogonal test experiment was conducted to investigate the optimal conditions of soybean meal fermentation by Bacillus subtilis BSW-2, Saccharomyces cerevisiae YT and a neutral protease for improving the content of peptides. The results showed that the optimum conditions were mixture inoculum 1.5%, neutral protease 450 u/g, ratio of material to water 1:1.4, fermentation temperature 40℃, fermentation time 48 h. Under that condition, all the indicators were better than fermentation only and neutral protease only. The content of peptide increased from 13.35 mg/g to 199.65 mg/g. The crude protein content increased from 47.62% to 56.72%. The vitro digestibility of protein increased from 81.86% to 92.79%. The vitro dry matter digestibility increased from 66.00% to 72.30%. The content of lactic acid was 2.75%. The urease activity decreased from 0.45 U to 0.086 U. The results of SDS-PAGE shows that the protein macromolecular and the antigen protein was almost degraded.
     PCR-DGGE method was used to analysis the change of bacterial communities in the collaborative process, the results show that BSW-2 was in a dominant position throughout the fermentation process. With the fermentation time, BSW-2 can inhibit the growth of other bacteria, so it can have an absolute advantage.
引文
1.程丽娟,赵树欣.大豆肽的生理功能及前景展望.营养强化剂及特种营养食品专业委员会年会学术论文集,2008,132-135
    2.陈宝江,蔡辉益,刘国华等.不同比例寡肽对肉仔鸡生长及相关激素分泌的影.河北农业大学学报,2008,2:88-92
    3.陈勇,曹光辛,王锋.小肽吸收机制及营养作用.中国饲料,1999,12:15-17
    4.程茂基,卢德勋,王洪荣等.不同来源肽对培养液中瘤胃细菌蛋白产量的影响.畜牧兽医学报,2004,35:1-5
    5.曹志军,李胜利,丁志民.2004.日粮中添加小肽对奶牛产奶性能影响的研究.饲料工业,4:35-37
    6.曹玉华,杨惠萍.固定化木瓜蛋白酶制备大豆肽的研究.中国油脂,2005,30:53-55
    7.曹玉华,杨慧萍.固定化胰蛋白酶制备大豆肽正交实验的研究.食品科技,2003,10:33-35
    8.代建国,傅伟龙,高萍.禽胰多肽粗品对肉鸡生长及血液生长激素、甲状腺激素水平的影响.动物营养学报,2000,2:39-42
    9.丁斌英,房桂兵.饲用大豆饼粕营养研究.粮食与饲料工业,2001,1:28-29
    10.郭贵海,王崇文.肠道菌群调节剂的研究进展.临床内科杂志,2002,19:88-90
    11.顾仁勇,刘春成,傅伟昌.菠萝汁酶解大豆多肽发酵酸豆乳的研制.食品与发酵工业,2005,31:117-119
    12.高蕙文,吕欣,董明盛.PCR-DGGE指纹技术在食品微生物研究中的应用.食品科学,2005,26:465-468.
    13.黄骊虹.大豆多肽的生理功能及应用.食品科技1999,3:50-51
    14.黄国清,易虹.不同剂量小肽制剂对奶牛产奶性能的影响.黑龙江畜牧兽医,2006,12:33-34
    15.胡梦红,王有基,熊邦喜等.发酵豆粕在水产饲料中的应用.饲料工业,2007,28:60-62
    16.郝征文.大豆功能性成分的价值综览及其综合开发利用.粮食与饲料工业,1998,5:34-37
    17.姜绍通,罗蕾蕾,潘牧等.菜籽粕分步酶解制备水解产物的研究.食品科学,2009,30:52-55
    18.蒋文强,孙显慧.大豆多肽的功能特性及其开发应用.粮油加工与食品机械,2004,7:39-42
    19.李树宏,邝哲师,杨金波等.发酵豆粕概述.饲料博览,2007,12:12-15
    20.黎观红,乐国伟,施用晖.动物蛋白质营养中小肽的吸收及其生理作用.生物学通报,1:20-22
    21.李利,丁角立.肽对体外混合培养瘤胃微生物发酵和生长影响的研究.畜牧兽医学报,2000,31:113-119
    22.乐国伟,施用晖,胡祖禹等.小肽与游离氨基酸对雏鸡血液循环中肽的影响.畜牧兽医学报,1997,28:481-488
    23.罗士津,瞿明仁,张铁鹰.奶牛生产中小肽的研究及其应用效果.奶牛杂志,2007,5:27-29
    24.吕嘉枥,张大为,周玲等.复合风味蛋白酶水解豆粕调味液的研究.中国调味品,2003,6:16-18
    25.刘静,陈均志.微波双酶协同水解大豆分离蛋白制备小分子肽的研究.食品研究与开发,2006,27:9-13
    26.励建荣,朱军莉.变性梯度凝胶电泳技术在食品微生物研究中的应用.食品科技,2008,33:217-220
    27.梁慧珍,崔丽华,张春辉等.PCR-DGGE技术及其在食品行业中的应用.酿酒科技,2008,10:89-91
    28.齐莉莉,王进波.动物的肽营养研究进展.中国畜牧杂志,2003,3:50-52李绩.大豆多肽的功能特性和应用.山东食品发酵,2003,3:42-44
    29.卢婷婷,吴凤笋,唐桂芬.浅谈发酵豆粕作为饲料的价值.中国畜牧兽医学会微生态学分会第四届第九次学术研讨会论文集,2008,47-48
    30.任善茂,陶勇.饲用大豆肽的开发应用前景.饲料研究,2004,19-21
    31.施用晖,乐国伟,左绍群等.产蛋鸡日粮中添加酪蛋白肽对产蛋性能及血浆肽和铁锌含量的影响.四川农业大学学报,1996,14(增刊):45-50
    32.欧宇,李胜利.瘤胃肽代谢研究进展.中国畜牧兽医,2003,30:3-6
    33.钱方,刘海波,刘阳等.胃蛋白酶水解大豆蛋白的研究.中国乳品工业,2001,29:10-13
    34.钱磊,张业尼,唐翔宇等.双酶酶法制备大豆肽及其性质研究.现代食品科技,2007,23:6-10
    35.戚伟,赵树欣,李艳敏等.混菌发酵生产富肽蛋白饲料工艺条件的研究.饲料工业,2007,28:6-9
    36.戚薇,唐翔宇,王建玲等.益生菌发酵豆粕制备生物活性饲料的研究.饲料工业,2008,29:15-19
    37.邵伟,乐超银,涂志英等.响应面法优化发酵大豆多肽工艺条件研究.食品科技,2007,6:81-85
    38.王恬,傅永明.小肽营养素对断奶仔猪生产性能及小肠发育的影响.畜牧与兽 医,2003,4:4-8
    39.王恬,贝水荣,傅永明等.小肽营养素对奶牛泌乳性能的影响.中国奶牛,2004,2:12-14
    40.王春林,陈喜斌.大豆抗营养因子及其处理方法饲料工业,2000,91:6-7
    41.王尔惠.大豆蛋白质生产新技术.北京:中国轻工业出版社,1999,36-46
    42.王凤翼.大豆蛋白质生产与应用.北京:中国轻工业出版社,2001,16-17
    43.王爱华,戴志明,魏红江等.小肽的吸收机制与营养价值研究进展.江西饲料,2007,5:7-10
    44.许培玉,周洪琪.小肽制品对南美白对虾生长及非特异性免疫力的影响.中国饲料,2004,9:13-15
    45.肖玲,龚月生.热处理对豆粕品质的影响.粮食与饲料工业,2000,1:23-25
    46.杨利军,陈良柱,刘小艳等.小肽营养在养殖业中的应用研究进展.动物医学进展,2007,28:92-94
    47.杨玉荣,佘锐萍,张日俊.大豆生物活性肽对肉鸡肠道黏膜上皮内淋巴细胞和IgA+50生成细胞的影响.中国预防兽医学报,2006,28:412-415
    48.张呈军,李建鑫.小肽的营养及其在畜禽生产上的应用.安徽农业科学,2006,34:3072-3074
    49.张香美,贾月梅,薛胜平等.DGGE指纹技术在传统发酵食品开发中的应用.食品研究与开发,2008,29:167-171
    50.赵芳芳,张日俊.大豆肽的功能及其在畜牧业中的应用前景.兽药与饲料添加剂,2003,8:17-18
    51.赵芳芳,张日俊.大豆肽研究进展.中国饲料,2004,2:22-23
    52.邹玉蓉.大豆肽的特性及在饲料中的应用研究进展.饲料研究,2007,3:6-10
    53.郑云峰,许云英,徐玉娟.蛋白质营养中小肽的研究新进展.饲料工业,2006,27:16-18
    54. Bamba T, Fuse T K, Obata H, et al. Effects of small peptides as intraluminal abstrates on transport carriers for amino acids and peptides. J Clinic Biochemistry Nutrion, 1993,15:33-42
    55. Boza J J, Moennoz D, Vuichoud J, et al. Protein hydrolysate VS free amino acid based diets on the nutritional recovery of the starved rat. European Jounral of Nutrion, 39:237-243
    56. Chen H M, Muramoto K, Yamauchi F. Antioxidateve properties of histidin-containing Peptides designed from Peptides fragments found in the digests of a soybean protein. Journal of Agriculture Food Chemistry,1998,46:49-53
    57. Dunsford B R, Knabe D A, Hacnsly W E. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. Journal of Animal Science,1989,67:1855-1864
    58. Hara H, R Funabiki, M Iwata, et al. Portal absorption of small peptides in rats under under straied conditions. Journal of Nutrition,1984,114:1122-1129
    59. Huisman J M, Jansman. Dietary effects and some analytical aspects of antinutritional factors in effects of logume seeds in piglets in rats and chickens. Waveningen, 1990:1-40
    60. Jiang R, Chang X, Stoll B, et a. Diatery plasma proteins used more efficiently than extruded soy protein for lean tissue growth in early-weaned pigs. Journal of Nutrition, 2000,130:2016-2019
    61. J Feng, X Liu, ZR Xu, YP Lu, YY Liu. Digestive diseases and sciences, 2007-Springer Netherlands,2007,52:1845-1850
    62. Li D F, Nelssen J L, Reddy P G, Blecha F, Hancock J D, Allee G L, Goodband R D, Klemm R D. Transient hypersensitivity to soybean meal in the early-weaned pig. Journal of Animal Science,1990,68:1790-1799
    63. Newey H, Smyth D H. Intracellular hydrolysis of dipeptides during intestinal absorption. Journal of Physiology,1960,152:367
    64. Pafisini P, Scicipioni P. Effect of peptide in a proteolysate in pig let nutrition. Zootecnieae Nutrition Animal,1989,15:637-644
    65. Petruccelli S, Anon M C. Relationship between the Method of Obtention and the Structural and Functional Propetries of Soy Protein Isolates. Structural and Hydration Properties. Journal of Agriculture Food Chemistry,1994,42(10):2161-2169
    66. Puppo M C, Annon M C. Soybean Protein Dispersions at Acid pH. Thermal and Rheological Properties. Journal of Food Science,1999,64(1):50-56
    67. White C E, Campbell D R, McDowell L R. Effects of dye matter content on trypsin inhibitors and urease activity in heat-treated soya beans fed to weaned piglets. Animal. Feed Science and Technology,2000,87:105-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700