β-细辛醚对气道副交感节前运动神经元突触传递的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细辛是我国的一种传统中药,临床应用已有几个世纪。文献报道,细辛会引起急性呼吸毒性作用,但相关的毒性成分、机制等都未明确。细辛经过煎煮后使用,其毒性便会大幅降低,故人们推测细辛挥发油可能是导致其呼吸毒性作用的主要物质。目前,人们已经分离了许多细辛挥发油的单体,包括α-和β-细辛醚(cis-1-Propenyl-2,4,5-trimethoxybenzene)、甲基丁香酚(]methyl eugenol)和黄樟醚(safrole)等。在最近的研究中,在麻醉兔用细辛散剂灌胃,观察到膈神经放电频率和幅度均被抑制,提示细辛的呼吸毒性可能与其对延髓呼吸中枢的抑制作用有关。
     呼吸节律由延髓腹外侧区的前包钦格复合体(Pre-Botzinger complex, PBC)和邻近的一些神经元产生。这些区域的起博神经元通过兴奋性突触传递和电突触相互联系,并向颅神经前运动环路(cranial premotor circuit)以及延髓-脊髓吸气性前运动神经元(bulbospinal inspiratory premotor neuron)投射,延髓-脊髓吸气性前运动神经元再支配脊髓膈神经和肋间神经吸气运动神经元。有证据显示:呼吸节律发生器和气道副交感节前运动神经元(airway preganglionic parasympathetic motoneurons, APPMs)在解剖和功能上是相互“藕联”的。气道副交感神经或它们的节前细胞体与舌下神经和膈神经的吸气电活动同时相发生。支配膈神经前运动神经元的一组延髓呼吸神经元同时也支配APPMs。
     离体延髓脑片是研究呼吸节律产生和气道副交感神经节前运动神经元的行之有效的模型。在我们的研究中,我们利用这个模型来研究细辛的有效成分p-细辛醚对中枢性呼吸驱动和对APPMs紧张性突触后活动的影响。
     结果如下:
     1.细辛乙醇提取物抑制了舌下神经根放电活动的频率和强度,说明细辛酯溶性成分有中枢呼吸毒性作用。
     2.p-细辛醚浓度依赖性地减少舌下神经根吸气性放电活动的持续时间和面积。放电活动频率和幅度在最初不受影响或暂时增加,其后被进行性抑制。随着舌下神经根放电被抑制,APPMs的紧张性和相位性(phasic)突触后电流(包括兴奋性和抑制性)也进行性减弱。提示p-细辛醚对延髓呼吸神经元网络神经传递的抑制参与了细辛的呼吸毒性作用。
Therapeutic application of Asarum, a herbal medicine that has been used for centuries, reportedly causes acute respiratory disturbance. The responsible constituents, the sites of action, and the mechanisms involved in this side effect are unclear. It is generally believed, however, that components of Asarum volatile oils may be the cause of Asarum-induced respiratory disturbance, because the risk of this complication is reduced when Asarum is boiled prior to use. Researchers have isolated many of the Asarum volatile oil constituents, including α-and (3-asarone (cis-l-Propenyl-2,4,5-trimethoxybenzene), methyl eugenol, and safrole. In one recent study, intragastric application of Asarum pulvis inhibited the frequency and intensity of phrenic nerve discharges in anesthetized rabbits, suggesting the acute respiratory disturbance caused by Asarum may be a result of actions at the medullary respiratory centers.
     Respiratory rhythm is generated in the Pre-Botzinger complex (PBC) and nearby in the ventrolateral medulla. Pacemaker neurons in this area are interconnected by excitatory synapses and gap junctions, and send projections to cranial premotor circuits and bulbospinal inspiratory excitatory neurons that project to spinal phrenic and intercostal inspiratory motoneurons. Some evidence has suggested that the respiratory rhythm generator and the airway preganglionic parasympathetic motoneurons (APPMs) may be coupled both anatomically and functionally. The airway parasympathetic nerves or their preganglionic cell bodies fire in phase with the hypoglossal and the phrenic nerves. A subset of the medullary respiratory neurons that project to the phrenic motoneurons also innervate the APPMs.
     The brainstem slice is a well-established model to study the respiratory rhythm generator and the airway autonomic premotor neurons. In the present work, we utilized this model to investigate the effects of β-asarone, a volatile constituent of Asarum, on the central respiratory drive and the tonic postsynaptic activity of the APPMs.
     Asarum ethanol extract inhibited the frequency and intensity of the hypoglossal respiratory-like bursts. β-Asarone caused progressive decreases in the duration and area of the hypoglossal bursts in a concentration-dependent manner. The frequency and amplitude of the bursts were initially unaltered or temporarily increased, but were then inhibited progressively after prolonged exposure. As with the inhibition of the hypoglossal bursts, the tonic and the phasic excitatory and inhibitory postsynaptic currents in the APPMs were attenuated. These data suggest that the Asarum-caused acute respiratory disturbance involves β-asarone-induced inhibition of neurotransmission in the medullary respiratory neuronal network.
引文
1. Baker, DG.1986. Parasympathetic motor pathways to the trachea:recent morphologic and electrophysiologic studies. Clin. Chest Med [J].7 (2),223-229.
    2. Barillot, JC, Grelot, L, Reddad, S, Bianchi, AL,1990. Discharge patterns of laryngeal motoneurones in the cat:an intracellular study. Brain Res [J].509 (1), 99-106.
    3. Bianchi, AL, Denavit-Saubie, M, Champagnat, J,1995. Central control of breathing in mammals:neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev [J].75,1-45.
    4. Brockhaus, J, Ballanyi, K,1998. Synaptic inhibition in the isolated respiratory network of neonatal rats. Eur. J. Neurosci [J].10 (12),3823-3839.
    5. Bryant, TH, Yoshida, S, de Castro, D, Lipski, J,1993. Expiratory neurons of the Botzinger Complex in the rat:a morphological study following intracellular labeling with biocytin. Comp. Neurol [J].335 (2),267-282.
    6. Busselberg, D, Bischoff, A.M., Paton, J.F., Richter, D.W.2001. Reorganisation of respiratory network activity after loss of glycinergic inhibition. Pflugers Arch [J].441:444-449.
    7. Chen, Y (陈咏华), Li, M, Liu, H, Wang, J,2007a. The airway-related parasympathetic motoneurones in the ventrolateral medulla of newborn rats were dissociated anatomically and in functional control. Exp. Physiol [J].92 (1), 99-108.
    8. Chen, YH (陈咏华), Hou, LL, Wang, JJ,2007b. Selective revealing of gap junction currents in single inspiratory tracheal motor neurons. Sheng Li Xue Bao [J] 59 (6),770-776.
    9.陈奕芝;方永奇;王绮雯;谢宇辉;匡忠生.2007a,β-细辛醚对PC12细胞和乳鼠皮层神经细胞形态学及细胞活力的影响[J].中药材.30(3),317-321.
    10.陈奕芝;王绮雯;梁毅;方永奇.2007b,p-细辛醚对谷氨酸所致脑皮层神经元损伤的保护作用.中药材[J].30(4),436-439.
    11. Cho, J, Kim, YH, Kong, JY, Yang, CH, Park, CG,2002. Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sci [J].71 (5),591-599.
    12.方永奇,魏刚,柯雪红.2002,GC—MS分析石菖蒲挥发油透大鼠血脑屏障的成分研究[J].中药新药与临床药理.13(3):181—182
    13. Feldman, JL, Smith, JC 1989. Cellular mechanisms underlying modulation of breathing pattern in mammals. Ann N Y Acad Sci [J].563:114-130.
    14. Greer, JJ, Smith, JC, Feldman, JL,1991. Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat. J. Physiol [J].437, 727-749.
    15. Guyenet, PG, Sevigny, CP, Weston, MC, Stornetta, RL,2002. Neurokinin-1 receptor-expressing cells of the ventral respiratory group are functionally heterogeneous and predominantly glutamatergic. J. Neurosci [J].22 (9), 3806-3816.
    16. Haxhiu, MA, Erokwu, BO, Cherniack, NS,1996. The brainstem network involved in coordination of inspiratory activity and cholinergic outflow to the airways. J. Auton. Nerv. Syst [J].61 (2),155-161.
    17. Hou L(侯丽丽), Zhou X, Chen Y, Qiu D, Zhu L, Wang J.2012 Thyrotropin-releasing hormone causes a tonic excitatory postsynaptic current and inhibits the phasic inspiratory inhibitory inputs in inspiratory-inhibited airway vagal preganglionic neurons. Neuroscience [J].27;202:184-91.
    18. Koizumi, H, Wilson, CG, Wong, S, Yamanishi, T, Koshiya, N, Smith, JC,2008. Functional imaging, spatial reconstruction, and biophysical analysis of a respiratory motor circuit isolated in vitro. J. Neurosci [J].28,2353-2365.
    19. Morgado-Vallel, C, Bacal, SM, Feldmanl,JL,2010. Glycinergic pacemaker neurons in preBotzinger Complex of neonatal mouse. J Neurosci [J].10; 30(10): 3634-3639.
    20. Nortier, JL, Vanherweghem, JL,2002. Renal interstitial fibrosis and urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). Toxicology,181-182,577-580. Review.
    21. Paton, JF, Nolan, PJ,2000. Similarities in reflex control of laryngeal and cardiac vagal motor neurones. Respir. Physiol [J].119 (2-3),101-111.
    22. Ramirez, JM, Quellmalz, UJ, Wilken B.1997, Developmental changes in the hypoxic response of the hypoglossus respiratory motor output in vitro. J Neurophysiol [J].78(l):383-92.
    23. Rekling, JC, Feldman, JL,1997. Bidirectional electrical coupling between inspiratory motoneurons in the newborn mouse nucleus ambiguus. J. Neurophysiol [J].78 (6),3508-3510.
    24. Rekling, JC, Shao, XM, Feldman, JL,2000. Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBotzinger complex. J. Neurosci [J].20 (23), RC113.
    25. Richter, DW,1996. Neural regulation of respiration:rhythmogenesis and afferent control. In:Gregor, R, Windhorst, U (Eds), Comprehensive Human Physiology, vol. II. Springer-Verlag [M], Berlin, Germany, pp.2079-2095.
    26. Richter, DW, Spyer, KM.2001. Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci [J].24:464-472.
    27. Ren, J, Greer, JJ.2006. Modulation of respiratory rhythmogenesis by chloride-mediated conductances during the perinatal period. J Neurosci [J]. 26:3721-3730.
    28. Ryan, S, McNicholas, WT, O'Regan, RG, Nolan, P,2002. Effect of upper airway negative pressure and lung inflation on laryngeal motor unit activity in rabbit. J. Appl. Physiol [J].92 (1),269-278.
    29. Shao, XM, Feldman, JL,1997. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Botzinger complex:differential roles of glycinergic and GABAergic neural transmission. J. Neurophysiol [J].77 (4), 1853-1860.
    30. Smith, JC, Ellenberger, HH, Ballanyi, K, Richter, DW, Feldman, JL,1991. Pre-Botzinger complex:a brainstem region that may generate respiratory rhythm in mammals. Science [J].254,726-729.
    31. Stornetta, RL, Rosin, DL, Wang, H, Sevigny, CP, Weston, MC, Guyenet, PG. 2003. A group of glutamatergic interneurons expressing high levels of both neurokinin-1 receptors and somatostatin identifies the region of the pre-Botzinger complex. J Comp Neurol [J].455:499-512.
    32. Sun, QJ, Pilowsky, P, Llewellyn-Smith, IJ,1995. Thyrotropin-releasing hormone inputs are preferentially directed towards respiratory motoneurons in rat nucleus ambiguus. J. Comp. Neurol [J].362 (3),320-330.
    33. Wang,J(王继江),[maten, M, Venkatesan, P, Evans, C, Baxi, S, Mendelowitz, D, 2002. Synaptic activation of hypoglossal respiratory motoneurons during inspiration in rats. Neurosci. Lett [J].332 (3),195-199.
    34. Winter, SM, Fresemann, J, Schnell, C, Oku, Y, Hirrlinger, J, Hulsmann, S.2009. Glycinergic interneurons are functionally integrated into the inspiratory network of mouse medullary slices. Pflugers Arch [J].458:459-469.
    35.袁晓琴,孙莲芬.2009,细辛不同提取部位镇痛作用及毒性的比较研究[J].时珍国医国药.20(8):2050-2051.
    36.阴健,郭力弓主编.1993,中药现代研究与临床应用(1)[M].北京:学苑出版社,464-468.
    37.周祯祥,李军.2003,细辛散剂半数致死量的测定[J].湖北中医杂志.25(10):52-53
    38.周祯祥,李军,陈泽斌,胡平,杨传峰.2005,细辛散剂对家兔呼吸运动及膈神经电活动的影响[J].湖北中医杂志.27(4):3-5.
    39.周祯祥,李军,陈泽斌,胡平.2003,细辛散剂半数致死量的测定[J].湖北中医杂志.25(10):52.
    1. Akasu T, Nishimura T.1995. Synaptic transmission and function of parasympathetic ganglia. Prog Neurobiol 45,459-522.
    2. Bianchi AL, Denavit-Saubie M, Champagnat J.1995.Central control of breathing in mammals:neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev.75:1-5.
    3. Bouvier J, Thoby-Brisson M, Renier N, Dubreuil V, Ericson J, Champagnat J, et al.2010. Hindbrain interneurons and axon guidance signaling critical for breathing. Nat Neurosci.13:1066-74.
    4. Bryant, TH, Yoshida, S, de Castro, D, Lipski, J,1993. Expiratory neurons of the Botzinger Complex in the rat:a morphological study following intracellular labeling with biocytin. Comp. Neurol.335 (2),267-282.
    5. Butera RJ Jr, Rinzel J, Smith JC.1999a. Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J Neurophysiol. 82:382-397.
    6. Butera RJ Jr, Rinzel J, Smith JC.1999b. Models of respiratory rhythm generation in the pre-Botzinger complex. Ⅱ. Populations Of coupled pacemaker neurons. J Neurophysiol.82:398-415.
    7. Cardi P, Nagy F.1994. A rhythmic modulatory gating system in the stomatogastric nervous system of Homarus gammarus. Ⅲ. Rhythmic control of the pyloric CPG. J Neurophysiol.71:2503-2516.
    8. Chen Y (陈咏华), Li M, Liu H, Wang J,2007a. The airway-related parasympathetic motoneurones in the ventrolateral medulla of newborn rats were dissociated anatomically and in functional control. Exp. Physiol.92 (1),99-108.
    9. Chen, YH (陈咏华), Hou LL, Wang JJ,2007b. Selective revealing of gap junction currents in single inspiratory tracheal motor neurons. Sheng Li Xue Bao. 59 (6),770-776.
    10. Chitravanshi VC, Sapru HN.1996. NMDA as well as non-NMDA receptors mediate the neurotransmission of inspiratory drive to phrenic motoneurons in the adult rat. Brain Res.715:104-112.
    11. Cohen MI.1979. Neurogenesis of respiratory rhythm in the mammal. Physiol Rev.59:1105-1173.
    12. Del Negro CA, Morgado-Valle C, Hayes JA, Mackay DD, Pace RW, Crowder EA, Feldman JL.2005. Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J Neurosci.25:446-453.
    13. Del Negro CA, Kam K, Hayes JA, Feldman JL.2009. A symmetric control of inspiratory and expiratory phases by excitability in the respiratory network of neonatal mice in vitro. J Physiol.587:1217-1231.
    14. Ezure K.1990. Synaptic connections between medullary respiratory neurons and consideration on the genesis of respiratory rhythm. Prog Neurobiol.35:429-450.
    15. Feldman JL, Smith JC.1989. Cellular mechanisms underlying modulation of breathing pattern in mammals. Ann N Y Acad Sci.563:114-130.
    16. Gray PA, Hayes JA, Ling GY, Llona I, Tupal S, Picardo MC, et al.2010. Developmental origin of PreBotzinger complex respiratory neurons. J Neurosci. 30:14883-95.
    17. Greer JJ, Smith JC, Feldman JL,1991. Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat. J. Physiol.437, 727-749.
    18. Guyenet PG, Sevigny CP, Weston MC, Stornetta, RL,2002. Neurokinin-1 receptor-expressing cells of the ventral respiratory group are functionally heterogeneous and predominantly glutamatergic. J. Neurosci.22 (9),3806-3816.
    19. Haxhiu MA, Erokwu BO, Cherniack, NS,1996. The brainstem network involved in coordination of inspiratory activity and cholinergic outflow to the airways. J. Auton. Nerv. Syst.61 (2),155-161.
    20. Haxhiu MA, Jansenb ASP, Cherniack NS & Loewy AD.1993. CNS innervation of airway-related parasympathetic preganglionic neurons:a transneuronal labeling study using pseudorabies virus. Brain Res.618,115-134.
    21. Hadziefendic S, Haxhiu MA.1999. CNS innervation of vagal preganglionic neurons controlling peripheral airways:a transneuronal labeling study using pseudorabies virus. J Auton Nerv Syst.76,135-145.
    22. Irnaten M, Neff RA,Wang J, Loewy AD, Mettenleiter TC &Mendelowitz D. 2001a. Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFPJ Neurophysiol.85,435-438.
    23. Irnaten M,Wang J & Mendelowitz D.2001b. Firing properties of identified superior laryngeal neurons in the nucleus ambiguus in the rat. Neurosci Lett.303, 1-4.
    24. Jiang C, Lipski J.1990. Extensive monosynaptic inhibition of ventral respiratory group neurons by augmenting neurons in the Botzinger complex in the cat. Exp Brain Res.81:639-648.
    25. Koizumi, H, Wilson, CG, Wong, S, Yamanishi, T, Koshiya, N, Smith, JC,2008. Functional imaging, spatial reconstruction, and biophysical analysis of a respiratory motor circuit isolated in vitro. J. Neurosci.28,2353-2365.
    26. Kuwana S, Tsunekawa N, Yanagawa Y, Okada Y, Kuribayashi J & Obata K. 2006. Electrophysiological and morphological characteristics of GABAergic respiratory neurons in the mouse pre-Bo"tzinger complex. Eur. J. Neurosci.23, 667-674.
    27. Lumsden T.1923. Observations on the respiratory centers in the cat. J Physiol. 57:153-160.
    28. Mamiya A, Nadim F.2004. Dynamic interaction of oscillatory neurons coupled with reciprocally inhibitory synapses acts to stabilize the rhythm period. J Neurosci.24:5140-5150.
    29. Mironov S.2009. Respiratory circuits:function, mechanisms, topology, and pathology. Neuroscientist 15:194-208.
    30. Paton JF, Nolan PJ,2000. Similarities in reflex control of laryngeal and cardiac vagal motor neurones. Respir. Physiol.119 (2-3),101-111.
    31. Rekling, JC, Feldman, JL,1997. Bidirectional electrical coupling between inspiratory motoneurons in the newborn mouse nucleus ambiguus. J. Neurophysiol.78 (6),3508-3510.
    32. Rekling JC, Feldman JL.1998. Pre-Botzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Ann Rev Physiol. 60:385-405.
    33. Rekling, JC, Shao, XM, Feldman, JL,2000. Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBotzinger complex. J. Neurosci.20 (23), RC113.
    34. Ren J, Greer JJ.2006. Modulation of respiratory rhythmogenesis by chloride-mediated conductances during the perinatal period. J Neurosci. 26:3721-3730.
    35. Richter, DW,1996. Neural regulation of respiration:rhythmogenesis and afferent control. In:Gregor, R, Windhorst, U (Eds), Comprehensive Human Physiology, vol. II. Springer-Verlag, Berlin, Germany, pp.2079-2095.
    36. Ryan S, McNicholas WT, O'Regan RG, Nolan P,2002. Effect of upper airway negative pressure and lung inflation on laryngeal motor unit activity in rabbit. J. Appl. Physiol.92 (1),269-278.
    37. Rybak IA, Shevtsova NA, St-John WM, Paton JF, Pierrefiche O.2003. Endogenous rhythm generation in the pre-Botzinger complex and ionic currents: modelling and in vitro studies. Eur J Neurosci.18:239-257.
    38. Rybak IA, O'Connor R, Ross A, Shevtsova NA, Nuding SC, Segers LS, Shannon R, Dick TE, Dunin-Barkowski WL, Orem JM, Solomon IC, Morris KF, Lindsey BG.2008. Reconfiguration of the Pontomedullary Respiratory Network:A Computational Modeling Study with Coordinated in Vivo Experiments. J Neurophysiol.
    39. Shao, XM, Feldman, JL,1997. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Botzinger complex:differential roles of glycinergic and GABAergic neural transmission. J. Neurophysiol.77 (4), 1853-1860.
    40. Smith JC, Butera RJ, Koshiya N, Del Negro C, Wilson CG, Johnson SM.2000. Respiratory rhythm generation in neonatal and adult mammals:the hybrid pacemaker-network model. Respir Physiol.122:131-147.
    41. Smith JC, Ellenberger H, Ballanyi K, Richter DW.1991. Feldman JL Pre-Botzinger complex:a brain stem region that may generate respiratory rhythm in mammals. Science.254:726-729.
    42. St-John WM, Stornetta R, Guyenet PG, Paton JF.2009. Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ. JPhysiol.587:3175-3188.
    43. Tan W, Janczewski WA, Yang P, Shao XM, Callaway EM, Feldman JL.2008. Silencing preBotzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nat Neurosci.11:538-540.
    44. Tian GF, Peever JH, Duffin J.1999. Botzinger-complex, bulbospinal expiratory neurones monosynaptically inhibit ventral-group respiratory neurones in the decerebrate rat. Exp Brain Res.124:173-180.
    45. Waldbam S, Hadziefendic S, Erokwu B, Zaidi SIA&Haxhiu MA.2001. CNS innervation of posterior erieoarytenoid muscles:a transneuronal labeling study. RespPhysiol.126,113-125.
    46. Wang,J(王继江), Irnaten, M, Venkatesan, P, Evans, C, Baxi, S, Mendelowitz, D, 2002. Synaptic activation of hypoglossal respiratory motoneurons during inspiration in rats. Neurosci. Lett.332 (3),195-199.
    47. Winter S M, Fresemann J, Schnell C, Oku Y, Hirrlinger J. & Hu..lsmann S.2009. Glycinergic interneurons are functionally integrated into the inspiratory network of mouse medullary slices. Pflugers Arch.458,459-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700