南四湖大型底栖动物的群落结构及演替规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2010年4月-12月对南四湖大型底栖动物的群落结构进行了季度调查,分析了南四湖大型底栖动物的物种数、现存量、优势种、功能摄食类群及其时空变化,探讨了南四湖大型底栖动物群落的演替规律及影响因素,并根据大型底栖动物群落结构对南四湖水质进行了生物学评价,为南四湖水生生物资源保护和监测调水工程对南四湖生态系统的影响提供背景资料。主要结果如下:
     1、南四湖共计有大型底栖动物35属40种,其中寡毛类4属6种,软体动物10属10种,水生昆虫15属17种,其它6属6种。四个子湖泊中微山湖物种数最多,南阳湖最少;综合四季来看,冬季物种数最多,夏季最少。
     2、南四湖大型底栖动物全湖的年平均密度为1103ind/m~2,年平均生物量为82.09g/m~2。全湖寡毛类的年平均现存量为232ind/m~2和0.48g/m~2;软体动物的年平均现存量为71ind/m~2和74.02g/m~2;水生昆虫的年平均现存量为884ind/m~2和6.59g/m~2。寡毛类和软体动物的现存量以独山湖最高,水生昆虫是以南阳湖最高。除微山湖外,其它三个湖区中水生昆虫为绝对密度优势群,其密度均占各湖区底栖动物密度一半以上;软体动物是四个湖区的绝对生物量优势群,占底栖动物总生物量的90%以上。
     3、南四湖四季大型底栖动物密度冬季最高,生物量则是秋季居首;现存量最低的是夏季。寡毛类密度冬季最高,达到397ind/m~2,现存量夏季最低;软体动物密度夏季最高,为120ind/m~2,而生物量秋季最高,为123.82g/m~2;水生昆虫现存量冬季最高,夏季最低,两者相差近四十倍。
     4、南四湖大型底栖动物的优势种为红裸须、霍普水丝蚓、长角涵螺和铜锈环棱螺,用Morisita指数测定其优势种均呈现核心分布。南四湖各子湖泊大型底栖动物优势种均有区别,南阳湖优势种最少,只有红裸须和铜锈环棱螺;独山湖的优势种比南阳湖多出一种霍普水丝蚓;优势种最多的微山湖和昭阳湖分别比独山湖多出一种,分别为长角涵螺和背角无齿蚌。霍普水丝蚓和铜锈环棱螺是南四湖四季均出现的优势种,冬季拥有绝对优势的红裸须在夏季不呈现优势。
     5、南四湖全湖的大型底栖动物功能摄食类群的平均密度以直接收集者为最高,为1022ind/m~2,占总数的87.6%,而从平均生物量来看,刮食者为54.39g/m~2,占总数的65.9%,其次为过滤收集者,为21.08g/m~2,占总数的25.5%。不同季节中,南四湖大型底栖动物密度仍是以直接收集者为主要类群,生物量方面,微山湖和昭阳湖以过滤收集者最多,其它两湖以刮食者占优。
     6、结合K-优势度曲线,南四湖大型底栖动物多样性微山湖>独山湖>昭阳湖>南阳湖;南四湖大型底栖动物多样性冬季最低,夏秋季较高。
     7、南四湖四个湖区大型底栖动物在不同季节里群落物种组成差别较大,群落构成并不相似;对比以往资料,南四湖大型底栖动物群落物种数减少,现存量下降,耐污种增加。
     8、根据Shannon-Weaver多样性指数(H’)、Pielou均匀度指数(J)、Margalef丰富度指数(dM)和Simpson优势度指数(D)评价了南四湖水质。结果显示,南四湖水质整体上处于轻-中度污染状况。四个子湖区受污染程度依次为南阳湖>昭阳湖>独山湖>微山湖,最南面的微山湖湖区总体明显好于最北面的南阳湖,因为南阳湖临近济宁,受工业化影响显著;南四湖四季除冬季外,其它三季均呈现中度污染状态,而南四湖冬季水体评价多样性指数最低,可能是由于红裸须冬季大量繁殖的原因,与水质好坏无关。
According to the investigation on macrozoobenthos of Nansi Lake in a full year, this thesispreliminary deals with analyzing the species number, standing crop, dominant species andfunctional feeding groups, and its Spatio-temporal variation. Compared with previous studies,succession of community structure of macrozoobenthos and its impact factors were explored. Inaddition, Water quality of Nansi Lake was also assessed using Shannon-Weaver index, Pielouindex, Margalef index and Simpson index. Those results can provide scientific information forconservation of hydrobios diversity and evaluation of ecosyterm health caused by theSouth-to-North Water Transfer Project. The main results show as follows:
     1A total number of40species were identified, of which,7species were oligchaetes,10species were mollusks,17species were insects, and others were6species. The number ofspecies in Weishan Lake was the largest among four lake regions, Nanyang Lake was thesmallest. The number of species in winter was the most in four seasons, while that in summerwas the least.
     2The mean density and biomass of macrozoobenthos in the Nansi Lake were1103ind/m2and82.09g/m2respectively. The average density and biomass of oligchaetes in the Nansi Lake were232ind/m2and0.48g/m2respectively; The average density and biomass of mollusks were71ind/m2and74.02g/m2respectively; The average density and biomass of insects were884ind/m2and6.59g/m2respectively. The standing crop of both oligchaetes and mollusks in Dushan Lakewas maximal, and the standing crop of insects in Nanyang Lake was maximal. Except WeishanLake, the changes of macrozoobenthos density of Nansi Lake were mainly affected by density ofinsects which occupied more than a half of total density. The changes of macrozoobenthosbiomass of Nansi Lake were affected by biomass of mollusks which occupied more than90%oftotal biomass.
     3The density of macrozoobenthos in Nansi Lake was significantly the highest in winter thanthat of the other three seasons, but the biomass in autumn was highest. The density and biomassof macrozoobenthos in Nansi Lake in summer were lowest. The average density of oligchaetes inwinter was397ind/m2, which was the highest of the four seasons. The density of mollusks wasdominant in summer with120ind/m2, and the biomass was dominant in autumn with123.82g/m2. The density and biomass of insect were significantly highest in winter while lowest insummer.
     4The dominant species of macrozoobenthos were Propsilocerusi akamusi, Limnodrilushoffmeisteri, Bellamya aeruginosa and Alocinma longicornis in Nansi Lake. All of four specieswere always denfinite patchiness. The dominant species of macrozoobenthos were Bellamyaaeruginosa and Propsilocerusi akamusi in Nanyang Lake. The number of dominant species of macrozoobenthos in Dushan Lake was one more than that of Nanyang Lake, which wasLimnodrilus hoffmeisteri. Copared with DushanLake, Alocinma longicornis and Anodontawoodiana woodiana are also among one of the dominant species of macrozoobenthos in WeishanLake and Zhaoyang Lake respectively. Limnodrilus hoffmeisteri and Bellamya aeruginosa werethe common dominant species in Nansi Lake all the year round. Propsilocerusi akamusi was nota dominant species in summer although it was absolute dominant species in winter.
     5Gather-collector was the main component of functional feeding groups in Nansi Lakesystem, accounting for87.6%of the total density in full year. The biomass of scrapers was54.39g/m2and the biomass of filter collectors was21.08g/m2, accounting for65.9%and25.5%of thetotal biomass in full year respectively. Direct collectors were dominant in density in all four lakes,while in biomass, Filter collectors were dominant in number in Weishan Lake and ZhaoyangLake, but Scrapers were dominant in number in other two lakes at all seasons.
     6According to K-dominant curve and biodiversity indexes, biodiversity of macrozoobenthoscommunity was that Weishan>Dushan>Zhaoyang>Nanyang. Biodiversity ofmacrozoobenthos community in winter was fewer than in summer and autumn.
     7The macrozoobenthos communities in Nansi Lake showed a clear medium similarity. Themacrozoobenthos species had obvious differences at all seasons. Long-term trends in the densityand species composition of macrozoobenthos in Lake Nansi were examined using data fromprevious researches. Species number and standind crop of macrozoobenthos was dcreasedsignificantly; the dominant species in the lake has changed form intoleranet group to tolerantgroup.
     8Water quality was assessed using Shannon-Weaver index, Pielou index, Margalef index andSimpson index. It showed that the lake on the whole was moderately polluted. The degree ofpollution was Weishan>Zhaoyang>Dushan>Nanyang. Water quality in the south of NaisiLake was relatively better than that in the north of Nansi Lake, because it is close to Jining City.The lake was moderately polluted all the year round expect for winter. The biodiversity indexvalues in winter were relatively low. It was caused by Propsilocerusi akamusi, unconcerningabout water quality.
引文
[1] ROSENBERG D M, RESH V H. Introduction to freshwater biomonitoring and benthicmacroinvertebrates[J]. Chapman and Hall, New York,1993,488pp.
    [2] THRONE R S J, WILLIAMS W P, CAO Y. The influence of data transformations onbiological monitoring studies using macroinvertebrates[J]. Wat. Res.,1999,33:343-350.
    [3] XIE Z.C., Y.L. LIANG, J. WANG, ET AL. Preliminary studies of macroinvertebrates of themainstream of the Chan jiang (Yangtze) River[J]. Acta Hydrobiologica Sinica,1999,23(suppl.):148-157.
    [4] BERG M S, COOPS L-F, NOORDHUIS R, et a1. Macroinvertebrate communities inrelation to submerged vegetation in two Chara-dominated lakes[J]. Hydrobiologia,1997,342/343:143-150.
    [5] THEODOROS K S. Seasonal Variation of the Macrozoobenthic Community Structure atLow Salinities in a Mediterranean Lagoon (Monolimni Lagoon, Northern Aegean).Internet[J]. Rev. Hydrobio1,2004,89(4):407-425.
    [6] WANG, H. Z., Q. Q. XU, Y. D. CUI, ET AL. Macrozoobenthic community of Poyang Lake,the largest freshwater lake of China, in the Yangtze floodplain[J]. Limnology,2007,8:65-71.
    [7]龚志军,谢平,唐汇涓,等.水体富营养化对大型底栖动物群落结构及多样性的影响[J].水生生物学报,2001,25(3):210-216.
    [8] SOFIA R, ARTEMIS N. Benthic diversity of coastal brackish-water lagoons in westernGreece[J]. Aquatic Conserv: Mar. Freshw. Ecosyst,2004,14:93-102.
    [9]刘宝兴,由文辉.黄浦江上游大型底栖动物生物多样性现状[J].华东师范大学学报,2007(4):124-131.
    [10]CHU E W, KARR J R. Environmental impact, concept and measurement[J]. Encyclopediaof Biodiversity,2001,2:557-577.
    [11]尤平,任辉.底栖动物及其在水质评价和检测上的应用[J].淮北煤师院学报,2001,22(4):44-48.
    [12]马陶武,黄清辉,王海,等.太湖水质评价中底栖动物综合生物指数的筛选及生物基准的确立[J].生态学报,2008,28(3):1192-1199.
    [13]闫云君,梁彦龄.草型湖泊与藻型湖泊大型底栖动物生产力的比较[J].湖泊科学,2004,16(1):81-84.
    [14]杜飞雁,王雪辉,李纯厚,等.大亚湾大型底栖动物生产力变化特征[J].应用生态学报,2008,19(4):873-880.
    [15]WALLACE J B, BENKE A C, LINGLE A H, et al. Trophic pathways of macroinvertebrateprimary consumers in subtropical blackwater streams[J]. Archiv fcir Hydrobiologie,1987,74(supply):423-451.
    [16]LIU, X. Q., WANG, H. Z., LIANG, X. M. Food web of macroinvertebrate community in aYangtze shallow lake: tropic basis and pathways[J]. Hydrobiologia,2006,571:283-295.
    [17]LIU, X. Q., WANG, H. Z. Food web of benthic macroinvertebrates in a large YangtzeRiver-connected lake: the role of flood disturbance[J]. Fundamental and Applied Limnology,2008,171(4):297-309.
    [18]LARS H, VIKTOR V B. Modelling production and biomasses of zoobenthos in lakes[J].Aquatic Ecology,2003,37:277-306.
    [19]闫云君,梁彦龄.底栖动物估算扁担塘和后湖的渔产潜力[J].水利渔业,2005,25(5):68-69.
    [20]杜瑜,闫洪山,张艳萍.碧流河水库底栖动物及其鱼产力的研究[J].水利渔业,2006,26(3):45-47.
    [21]吴天惠.保安湖底栖动物资源及季节动态的研究[J],湖泊科学,1989,1(1):71-78.
    [22]谢志才,张君倩,陈静,等.东洞庭湖保护区大型底栖动物空间分布格局及水质评价[J].湖泊科学,2007,19(3):289-298.
    [23]GORAN M. An improved environmental index based on the relative abundance ofoligochaete species[J]. Hydrobiologia,1983,102:89-97.
    [24]GYORGY D, JUDIT M. An attempt to trace eutrophication in a shallow lake usingchironomids[J]. Hydrobiologia,1983,103:169-175.
    [25]任淑智.京津及邻近地区底栖动物群落特征与水质等级[J].生态学报,1991,11(3):262-268.
    [26]KARR J R, DUDLEY D R. Ecological perspective on water quality goals[J]. EnvironmentalManagement,1981,5:55-68.
    [27]KARR J R, FAISCH K D, ANGERMEIER P L, et al. Assessing biological integrity inrunning waters: a method and its rationale[M]. Illinois Natural History Survey, Publication5,Urbana, IL,1986.
    [28]谢志才.湖群大型底栖动物的生态学特征及生态系统健康评价[D].中国科学院博士论文,2003.
    [29]MARGALEF D R. Information Theory in Ecology. General Systems,1957,3:36-71.
    [30]王琴.武汉及其周边湖泊底栖动物及水质生物指标筛选[D].中国科学院研究生院硕士学位论文,2009.
    [31]刘学勤.湖泊底栖动物食物组成与食物网研究[D].中国科学院研究生院博士学位论文.2006:165-166.
    [32]谢志才,马凯,叶麟,等.保安湖大型底栖动物结构与分布格局研究[J].水生生物学报,2007,27(2):174-183.
    [33]BENKE A C, WALLACE J B. Trophic basis of production among riverine caddisflies:implications for food web analysis[J]. Ecology,1997,78:1132-1145.
    [34]VANDER ZANDEN M J, VADEBONCOEUR Y. Fish as integrators of benthic and pelagicfood webs in lakes[J]. Ecology,2002,83:2152-2161.
    [35]LIANG Y L, MELACK J M, WANG J. Primary production and fish yields in Chinese pondsand lakes[J]. Transactions of the American Fisheries Society,1981,110:346-350.
    [36]欧阳珊,詹诚,陈堂华,等.鄱阳湖大型底栖动物物种多样性及资源现状评价[J].南昌大学学报·工科版,2009,31(1):9-13.
    [37]武国正,李畅游.内蒙古乌梁素海浮游动物与底栖动物调查[J].湖泊科学,2008,20(4):538-543.
    [38]许巧情.湖泊不同利用方式对底栖动物群落的影响[D].武汉:华中农业大学硕士论文,2001.
    [39]孙刚,盛连喜,李明全.长春南湖底栖动物群落特征及其与环境因子的关系[J].应用生态学报,2001,12(2):319-320.
    [40]吴天惠.新疆福海底栖动物的研究[J].水生生物学报,1991,15:303-313.
    [41]赵永晶.新疆乌伦古湖底栖动物群落结构的研究[D].华中农业大学硕士论文,2010.
    [42]熊飞,李文朝,潘继征.高原深水湖泊抚仙湖大型底栖动物群落结构及多样性[J].生物多样性,2008,16(3):288-297.
    [43]戴友芝,唐受印,张建波.洞庭湖底栖动物种类分布及水质生物学评价[J].生态学报,2000,20(2):277-282.
    [44]陈立侨,刘影,杨再福,等.太湖生态系统的演变与可持续发展[J].华东师范大学学报(自然科学版),2003,12(4):99-106.
    [45]崇加荣,吕传生,凌去非,等.昆承湖底栖动物群落结构的研究[J].水利渔业,2002,22(4):37-39.
    [46]VON FUMETTI S, NAGE P, SCHEIFHACKEN N, et al. Factors governingmacrozoobenthic assemblages in perennial springs in north-western Switzerland[J].Hydrobiologia,2006,568:467-475.
    [47]NOGARO G, MERMILLOD B F, VALETT M H. Ecosystem engineering at thesediment2water interface: Bioturbation and consumer substrate interaction[J]. Oecologia,2009,161:125-138.
    [48]MANUEL A S, GRACA P P, RUI C, et al. Faetors Affecting Macroinvertebrate Richnessand Diversity in Portuguese Streams: a Two-Scale Analysis[J]. Rev. Hydrobiol,2004,89(2):151-164.
    [49]张远,徐成斌,马溪平.辽河流域河流底栖动物完整性评价指标与标准[J].环境科学学报,2007,27(6):919-927.
    [50]郑文浩,渠晓东,张远,等.太子河流域大型底栖动物栖境适宜性[J].环境科学研究,2011,24(12):1355-1363.
    [51]王银东,熊邦喜,陈才保,等.环境因子对底栖动物生命活动的影响[J].浙江海洋学院学报(自然科学版),2005,24(3):253-257,280.
    [52]陈其羽,吴天惠.底栖动物[M].见:刘建康主编,东湖生态学研究(一).北京:科学出版社,1990,129-151.
    [53]阮景荣,戎克文,王少梅.微型生态系统中鲢-鳙下行影响的实验研究-浮游生物群落和初级生产力[J].湖泊科学,1995,3(7):226-234.
    [54]胡忠军,孙月娟,刘其根,等.浙江千岛湖深水区大型底栖动物时空变化格局[J].湖泊科学,2010,22(2):265-271.
    [55]金相灿主编.中国湖泊和环境[M].北京:海洋出版社,1995.
    [56]钟非,刘保元,贺锋,等.水生态修复对莲花湖底栖动物群落的影响[J].应用与环境生物学报,2007,13(1):55-60.
    [57]TOKESHI M. Production ecology. In: Armitage P, Cranston P S and Pinder L C V eds., TheChirononidae: The biology and ecology of non-biting midges[J]. Chapman and Hall, London,1995,269-296.
    [58]SCHINDER D W. Recent advances in the understanding and management ofeutrophication[J]. Limnol. Oceanogr,2006,51(1, part2).
    [59]蔡永久,姜加虎,张路,等.长江中下游湖泊大型底栖动物群落结构及多样性[J].湖泊科学,2010,22(6):811-819.
    [60]胡知渊,鲍毅新,程宏毅,等.中国自然湿地底栖动物生态学研究进展[J].生态学杂志,2009,28(5):959-968.
    [61]江晶,温芳妮,苏华武,等.叹气沟河优势摇蚊种群动态、周年生产量及营养基础[J].生态学杂志,2008,27(9):1503-1509.
    [62]闫云君,李晓宇,梁彦龄.草型湖泊和藻型湖泊中大型底栖动物群落结构的比较[J].湖泊科学,2005,17(2):176-182.
    [63]谷孝鸿,范成新,胡本龙,等.固城湖生物资源现状及近20年间的变化趋势[J].农村生态环境,2005,21(1):7-11.
    [64]姜苹红,梁小民,陈芳,等.月湖底栖动物的空间格局及其对水草可恢复区的指示[J].长江流域资源与环境,2006,15(4):502-505.
    [65]陈其羽,谢翠娴,梁彦龄,等.望天湖底栖动物种群密度与季节变动的初步观察[J].海洋与湖沼,1982,13(1):78-86.
    [66]蒋小欣,严以新.苏州市养殖类湖泊现状生态系统的调查分析[J].水资源保护,2008,24:57-63.
    [67]许巧情,王洪铸,张世萍.河蟹过度放养对湖泊底栖动物群落的影响[J].水生生物学报,2003,27(1):41-46.
    [68]刘其根,孔优佳,陈立侨,等.网围养殖对滆湖底栖动物群落组成及物种多样性的影响[J].应用与环境生物学报,2005,11(5):569-570.
    [69]朱顺初,彭波.南四湖自然保护区环境现状分析[J].水利规划与设计,2005(1):32-34.
    [70]李景保,秦建新,王克林,等.洞庭湖环境系统变化对水文情势的响应[J].地理学报,2004,59(2):239-248.
    [71]邓立斌,付福乔,刘德晶,等.山东南四湖自然保护区综合评价[J].西部林业科学,2006,35(4):123-126.
    [72]张祖陆,孙庆义,彭利民,等.南四湖地区水环境问题探析[J].湖泊科学,1999,11(1):86-90.
    [73]石磊.山东省南四湖水生维管植物研究[J].国土与自然资源研究,2002(3):69-71.
    [74]李传印,李殿香.南四湖鱼类物种多样性衰减原因初步分析[J].水利渔业,2003,23(2):49-50.
    [75]张祖陆,辛良杰,梁春玲.近50年来南四湖湿地水文特征及其生态系统的演化过程分析[J].地理研究,2007,26(5):957-966.
    [76]孙娟,张祖陆,彭利民.南四湖湿地面临的威胁及其可持续利用对策[J].山东师范大学学报(自然科学版),2002,17(2):48-51.
    [77]罗辉,周建仁,郭忠.南水北调对南四湖水环境影响分析与评估[J].河海大学学报(自然科学版),2005,33(1):63-67.
    [78]曹瑞民.试论南四湖的淤积趋势[J].海洋湖沼通报,1992(1):28-33.
    [79]MORSE, J C, YANG L F, TIAN L X. Aquatic insects of China useful for monitoring waterquality[J]. Nanjing: Hohai University Press,1994:1-570.
    [80]梁彦龄,王洪铸.第十章底栖动物[M].见:刘健康(主编),高级水生生物学(研究生教材),北京:科学出版社,1999:241-259.
    [81]韩洁,张志南,于子山.渤海中、南部大型底栖动物的群落结构[J].生态学报,2004,24(3):531-537.
    [82]邬祥光.昆虫生态学的常用数学分析方法(修订版)[M].北京:农业出版社,1985.
    [83]陈立婧,彭自然,孙家平,等.安徽南漪湖大型底栖动物群落结构[J].动物学杂志,2008,43(1):63-68.
    [84]苏华武,江晶,温芳妮,等.湖北清江流域叹气沟河底栖动物群落结构与水质生物学评价[J].湖泊科学,2008,20(4):520-528.
    [85]PEILOU E C. The use of information theory in the study of ecological succession[J]. JTheor Biol1966,10:370-383.
    [86]SIMPSON E H. Measurement of diversity[J]. Nature,1949:163,688.
    [87]邬红娟,崔博,吕晋,等.武汉湖泊底栖动物群落结构及水质生态评价[J].华中科技大学学报(自然科学版),2005,33(10):96-98.
    [88]闫云君,李晓宇.汉江流域上游支流大型底栖动物群落结构特征与生物多样性[J].湖泊科学,2007,19(5):585-591.
    [89]杨汉运,黄道明,谢文星,等.红旗湖的底栖动物及其渔业利用[J].水利渔业,2000,20(4):21-22,47.
    [90]张世海,张瑞雷,王丽卿,等.上海市淀山湖底栖动物群落结构及水质评价[J].四川动物,2010,29(3):452-458.
    [91]姜作发,战培荣,赵吉伟,等.大兴凯湖底栖动物[J].水产学杂志,2002,15(1):35-36,53.
    [92]徐小雨,周立志,朱文中,等.安徽菜子湖大型底栖动物的群落结构特征[J].生态学报,2011,31(4):0943-0953.
    [93]陈瑞明.截污后武汉东湖底栖动物群落结构及环境质量评价[D].华中农业大学硕士论文,2004.
    [94]武周虎,张晓波,张芳园.南四湖入湖重点污染河流筛选与水环境问题分析[J].长江流域资源与环境,2011,20(4):475-481.
    [95]谢钦铭,李云,熊国根.潘阳湖底栖动物生态研究及其底层鱼产力的估算[J].江西科学,1995,13(3):161-169.
    [96]郝卫民,王士达,王德铭.洪湖底栖动物群落结构及其对水质的初步评价[J].水生生物学报,1995,19(2):124-134.
    [97]高峰,尹洪斌,胡维平,等.巢湖流域春季大型底栖动物群落生态特征及与环境因子关系.应用生态学报,2010,21(8):2132-2139.
    [98]潘洪超.军山湖底栖动物群落结构及其生产量的研究[D].南昌大学硕士论文,2007.
    [99]杨士建.洪泽湖湿地资源保护与可持续利用研究[J].重庆环境科学,2003,25(2):15-17.
    [100]何志辉,严生良,杨和荃,等.淡水生物学(上册,分类学部分)[M].北京:农业出版社,1982:181-334.
    [101]渠晓东,蔡庆华,谢志才,等.香溪河附石性大型底栖动物功能摄食类群研究[J].长江流域资源与环境,2007,16(6):738-743.
    [102]蒋万祥,蔡庆华,唐涛,等.香溪河水系大型底栖动物功能摄食类群生态学[J].生态学报,2009,29(10):5207-5218.
    [103]王建鹏.南四湖的水生生物和渔业生态初析[J].水产学报,1989,13(3):221-229.
    [104]何俊,谷孝鸿,刘国峰.东太湖围网养蟹效应及养殖模式优化[J].湖泊科学,2009,21(4):523-529.
    [105]胡忠军,刘其根,陈立婧,等.上海崇明明珠湖摇蚊幼虫群落结构特征及其对水质的指示作用[J].应用生态学报,2009,20(4):929-936.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700