以菱镁石为原料真空金属热还原法炼镁实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁作为一种有色金属,具有低密度、高比强度、良好的阻尼减震性、可循环利用和环境友好等优良性能,被称为21世纪“绿色”工程材料,成为继钢铁、铝之后的第三大金属工程材料,其制备主要方法有熔盐电解法和Pidgeon法。Pidgeon法采用白云石为原料,由于投资成本低、技术简单等优势在我国被广泛应用,但同时也带来能耗大、资源浪费严重、对环境有较大污染等弊端。我国辽南菱镁石资源丰富,矿石品位高,本文以我国辽南菱镁石为原料,采用真空热还原法对金属镁冶炼进行了工艺研究。
     论文应用热力学基本原理,计算出常压下硅铁还原氧化镁化学反应自由能和临界反应温度,结果表明在还原过程中添加活性CaO,生成产物Ca2Si04可促使临界还原温度由3846K降低到2820K,并避免反应生成Mg2Si04产物,减小还原过程中Mg的损失。还原过程中真空条件对还原温度有着重要的影响,计算结果表明当还原系统真空度为10.13Pa时,以FeSi(Si,75%)作为还原剂还原金属Mg临界反应温度1358K。
     论文研究了我国辽南菱镁石的矿物特性与热分解性能,通过实验考察了菱镁石粒径为0.2mm、0.6mm、1.0mm、3.0mm、5.0mm、8.0mm,煅烧温度600-800℃(50℃间隔),煅烧时间30-70min(10min间隔)分解率、烧损率、水化活性度、活性度等工艺参数。确定了各个不同粒径最佳活性度下煅烧温度与煅烧时间。采用XRD和SEM技术分析产物,得出活性氧化镁形成机理即在菱镁石煅烧过程中包括碳酸镁大量吸热、亚稳氧化镁晶体结晶和再结晶的氧化镁烧结等三个阶段。论文采用Doyle和Coats-Redfern机理方程对菱镁石非等温热分解过程分析,得出菱镁石非等温分解过程机理符合Avrami Erofeev成核和核生长为控制步骤的A1模型,分解反应活化能E=225.06KJ·mo1-1,指前因子A=1.64×1012s-1,分解动力学方程:da/dt=1.64×1012/5exp(-225060/RT)(1-a),根据分解动力学方程对在不同煅烧温度下菱镁石热分解过程给予了预测。
     通过对粒径1.0mm、3.0mm、5.0mm、8.0mm的石灰石在煅烧温度800~1100℃(50℃间隔),煅烧时间40-70min(10min间隔)分解率、灼减量、水化活性度和活性度等工艺参数考察,确定了各个不同粒径最佳活性度下煅烧温度与煅烧时间。对煅烧过程中添加少量的CaF2、NaCl试剂展开实验研究,得出分解率、活性度等工艺参数数值,并对CaF2、NaCl作用机理给予讨论。实验得出粒径8.0mm,1100℃煅烧60min分解率98.51%、灼减量43.35%、水化活性度30.81%,活性度84.7%,CaF2、NaCl添加量占总物料的3%~5%为宜。论文对石灰石非等温热分解动力学进行理论分析和实验研究,得出石灰石非等温分解过程机理符合二维相界反应的R2模型。分解反应活化能E=222.38KJ·mo1-1,指前因子A=3.34×109s-1,分解动力学方程da/t=3.34×109/5exp(-222380/RT)(1-a)1/2,根据分解动力学方程对在不同煅烧温度下石灰石热分解过程进行了预测。
     论文研究了以菱镁石和石灰石为原料真空还原金属镁的工艺可行性,通过实验分别考察了还原温度、还原时间、硅铁还原剂加入量、制团压力、矿化剂加入量、不同还原剂、石灰石配比对镁还原率和硅利用率的影响,得出在1473K、10.13Pa真空度下还原1h,当CaO/MgO=1.4(mol)时,以75%硅铁作为还原剂,镁的还原率最大达94.42%,对反应产物金属Mg进行EDS分析,纯度98.36%,炉渣中主要为Ca2Si04和Si02,未检测出Mg2SiO4的存在。理论推导出以菱镁石为原料,硅铁还原过程反应机理方程D1三维扩散(Jander方程),表现形式:1-2/3a-(1-a)2/3=2.7×106exp(-313580/RT)t,表观活化能E=313.58KJ/mol,指前因子A=2.7×106s-1。
     论文考察了白云石粒径为1.0mm、3.0mm、5.0mm、8.0mm,煅烧温度700-1100℃(50℃间隔),煅烧时间50-80min(10min间隔),烧损率、水化活性度等工艺参数。确定了各个不同粒径最佳活性度下煅烧温度与煅烧时间。结果表明粒径3.0mm,1050℃煅烧80min烧损率45.29%、水化活性度32.84%。以煅烧白云石为原料内热法真空下还原金属镁实验研究,分别考察还原温度、还原时间、硅铁还原剂加入量、制团压力、矿化剂加入量、不同还原剂、石灰石配比等对镁还原率和还原剂利用率的影响。实验结果表明1473K、10.13Pa真空度下还原1h,以75%硅铁作为还原剂,制团压力250Mpa,镁的还原率最大达93.70%。
     论文通过以菱镁石、白云石为原料真空热还原法对金属镁实验研究对比,得出1200℃还原温度下,还原3h以菱镁石和石灰石为原料Mg的还原率及Si的利用率均高于以白云石为原料的Mg的还原率及Si的利用率。
     实验设计了一台小型内电阻加热还原炉进行工业化实验,通过调整电流、电压及还原时间等工艺参数,得出最佳工艺条件,考察了该套装置连续还原工作时的稳定性,实验结果表明内电阻加热还原炉还原金属镁方案可行,在合理加热制度下,生产金属镁电耗9kWh/kg-Mg,Mg收率可达到90%,还原周期小于180min,热效率超过50%。
     论文对我国现有炼镁方法Pidgeon法和本实验内电阻加热法进行生命周期评价,以1t镁锭作为功能单位,结果显示Pidgeon法炼镁过程能耗大,能耗1.48×105MJ/t,其中真空冶炼阶段和煅烧阶段能耗较多,分别占能耗总额的80.48%和15.21%。温室效应对环境负荷影响最大,所占比例49.65%。C02,SO2,NOx等废气的排放主要来源于煤的燃烧。内电阻加热法采用直接接触式加热反应物料,减小了热能的损失,提高了能量的利用率。
As a kind of nonferrous metal, magnesium is referred to as the most promising green engineering material. It has such unique properties as light, tough, good heat conductivity, easily processed and recycled and a good recycling characteristics. Magnesium will be the largest engineering materials after iron and steel, aluminum. To extract metallic magnesium, two different technologies are commercially used:Pidgeon method in calcined dolomite and molten-salt electrolysis. An advantage of Pidgeon method is that low investment and simple techniques, so it is widely applied in China, but it still brings energy and resource wasting serious and more environmental pollution, etc. In the South China Liaoning province, there are plenty of magnesite stones and more grade higher. The research on smelting metallic magnesium process use a new method-internal resistance vacuum thermal reduction technology with South China Liaoning province magnesite stones as raw material.
     By applying the basic principle of thermodynamics, the Gibbs free energy and critical temperature of deoxidization of MgO with ferrosilicon are calculated. Added active CaO during the whole reduction process can obtain Ca2SiO4, make critical temperature decrease from3846K to2820K, avoid the reaction Mg2SiO4product and decrease the loss of magnesium under latm. Vacuum degree has a significant impact on reduction temperature. The calculation results show critical temperature is1358K when the vacuum degree of the reduction system is10.13Pa.
     The magnesite characteristics and thermal analysis properties are studied. By experiments examine the decomposition rate, burning rate, hydration activity degree and active degree of magnesite calcined process parameters under the condition of magnesite particle size range from0.2mm to8.0mm, calcining temperature range from600℃to800℃and time range from30min to70min, the optimal temperature and time of different size magnesite are determined. Formation mechanism of active magnesium oxide, including three stages of magnesium carbonate absorbing a large number heat, metastable magnesium oxide crystallizing and re-crystallization magnesium oxide sintering, is getting by analysis technology such as XRD and SEM, etc. The kinetic parameters and mechanism functions on magnesite non-isothermal decomposition process is obtained by using Coats-Redfern and Doyle equations. Magnesite decomposition process is in line with Avrami-Erofeev nucleation and nuclear growth as the control of steps Al model and kinetic equitation are expressed as da/dt=1.64×1012/5exp(-225060/RT)(1-α), with an apparent activation energy, E=225.06KJ·mol-1frequency factor, A=1.64×1012s-1. Magnesite thermal decomposition process gives a prediction at different calcination temperature on the decomposition kinetic equaition.
     The Limestone characteristics and thermal analysis properties are studied. By experiments examining the decomposition rate, burning rate, hydration activity degree and active degree of Limestone calcined process parameters under the condition of Limestone particle size range from0.2mm to8.0mm, calcining temperature range from600℃to800℃and time range from30min to70min, the optimal temperature and time of different size Limestone are determined. Decomposition rate, activity degree process parameters are getting under a condition of additive a small amount of CaF2、NaCl reagent to limestone and the elaborate mechanism of CaF2、NaCl is analyed, too. It derived limestone' decomposition rate was98.51%, loss rate43.35%, hydration activity30.81%, active degree84.7%and CaF2、 NaCl added3%~5%of total materials when particle size is8.0mm and calcined60min under1100℃. Limestone decomposition process is in line with two-dimensional phase boundary reaction R2model and kinetic equitation is expressed as da/dt=3.34×109/5exp(-222380/RT)(1-α)1/2, with an apparent activation energy, E=222.38KJ· mol-1, frequency factor, A=3.34X109s-1. Lime stone thermal decomposition process gives a prediction at different calcination temperature on the decomposition kinetic equation.
     Discussion the feasibility on a vacuum process to smelt magnesium with magnesite and limestone as raw material in the paper and investigation factors on the impact of Mg reduction ratio and Si utilization ratio which including reduction temperature and time, FeSi added mount, briquetting pressure, mineralizer added, different reductants, added limestone. The result showed Mg reduction ratio could reach up to94.42%under reduction temperature1473K, vacuum degree10.13Pa, FeSi(Si,75%) as reducing agent, CaO/MgO mole rate1.4,1hour to reduce reaction. Mg product purity is98.36%. Slag mainly include Ca2SiO4和SiO2 which do not detect Mg2SiO4. Reduction process is in line with three-dimensional phase boundary reaction D3model and kinetic equitation are expressed as1-2/3a-(1-a)2/3=2.7×106exp(-313580/RT)t, with an apparent activation energy, E=313.58KJ/mol, frequency factor, A=2.7x106s-1
     The dolomite characteristics and thermal analysis properties are studied. By experiments examining burning rate, hydration activity degree of dolomite calcined process parameters under the condition of dolomite particle size range from1.0mm to8.0mm, calcining temperature range from700℃to1100℃and time range from50min to80min, the optimal temperature and time of different size dolomite are determined. Smelting metallic magnesium experimental factors on the impact of Mg reduction ratio and Si utilization ratio which including reduction temperature and time, FeSi added to mount, briquetting pressure, mineralizer added, different reductants, added limestone are investigated under vacuum thermal reduction with dolomite as raw material factors. The result showed the Mg reduction rate could reach up to93.70%under reduction temperature1473K, vacuum degree10.13Pa, FeSi(Si,75%) as reducing agent, CaO/MgO mole rate1.4,1hour to reduce reaction.
     Smelting metallic magnesium experiment is carried out with magnesite and limestone as raw material. It obtained that Mg reduction ratio and Si utilization ratio are more when magnesite is selected as raw material than dolomite as raw material.
     Some industrialization experiments for the production of magnesium from calcined magnesites and limestones were done on a novel vacuum furnace by using internal heating method. The optimum process parameters are obtained by adjusting the current, voltage and reduction time. The results show that its magnesium yield exceed90%with the working cycle of180min, that its power consumption is below9kWh/kg and thermal efficiency can reach up to50%.
     The life cycle assessment method was used to investigate the energy consumption and environmental loading of It magnesium production with internal resistance vacuum thermal reduction technology and Pidgeon technology. As a consequence, the consumption of the abundance energy with Pidgeon magnesium production process is1.48×105MJ/t-Mg ingot and greenhouse effect is the biggest one to the environment loading, accounts for the total amount49.65×. The most energy consuming stage is vacuum refining stage and calcination stage, and it occupies80.48%and15.21%for total energy consuming respectively. CO2, SO2, NOX and other exhaust emissions mainly come from coal combustion. Internal resistance vacuum thermal reduction technology use direct-contact heat reaction mass, reduce the heat loss and improve energy efficiency.
引文
1.屠海令,赵国权,郭青蔚.有色金属冶金、材料、再生与环保[M],北京:化学工业出版社,2002,12.
    2.徐日瑶.金属镁生产工艺学[M],湖南:中南大学出版社,2003,12.
    3. C.S.Roberts. Magnesium and Its Alloys [M], New York:Wiley,1960.
    4. Meng S K, Wu S M, Han w, et al. China magnesium industry development report for 2005 [C], In 63rd World Magnesium Conference, Beijing, IMA:3-23.
    5. Horst E. Friedrich-Barry L. Mordike. Magnesium Technology Metallurgy, Design Data, Applications [M], New York:Springer Berlin Heidelberg,2006,1-20.
    6.《有色金属工程设计项目经理手册》编委会.有色金属工程设计项目经理手册[M],北京:化学工业出版社,1995:513-514.
    7.中国大百科全书总编辑委员会《矿冶》编辑委员会.中国大百科全书出版社编辑部编.中国大百科全书矿冶[M],北京:中国大百科全书出版社,1998:465.
    8. CLIFFORD B, WILSON. Modern Production Process for Magnenium [J], Light Metals,1996:1075-1079.
    9.李晓波.炼镁工艺的发展趋势[J],铝镁通讯,2000,(47):12-13.
    10.全跃.镁质材料生产及应用[M],北京:冶金工业出版社,2008,727-728.
    11.中国冶金百科全书总编辑委员会《有色金属冶金》卷编辑委员会.中国冶金百科全书·有色金属冶金[M],北京:冶金工业出版社,1999:661.
    12. H. Friedrich, S. Schumann.Research for a "new age of magnesium" in the automotive industry [J]. Journal of Materials Processing Technology,2001,117(3):276-281.
    13. Kh.L.Strelets. Electrolytic Production of Magnesium [M], Israel Program for Scientific Translations, Jerusalem,1977.
    14. Petrunko A N, Lobanov V S. New Developments in Producing Magnesium from Carnallite [J], Light metal age,1997:16-35.
    15. Donskikh PA, Korotkov YA, E.F. Michailov. Tsvetnye Metally (Engl. trans.) [J],1985, 26(6):68-70.
    16. Saburov LN, Teterin VV, Mikhailov EF, et al. Tsvetnye Metally (Engl. trans.) [J],1985, 26(8):83-84.
    17. Reznikov I L, Sandler G Y, Svidlo VP, et al. Tsvetnye Metally (Engl.trans.) [J],1985, 26(9):51-53.
    18. Muzhzhavlev KD. U.S. Pat. [P],4,058,448.1977.
    19. Kipouros G J, Sadoway DR. A dvancesin Molten Salt Chemistry, Amsterdam [J], Elsevier,1987, (6):127-209.
    20. Emley E F. Principles of Magnesium Technology [M], London:Pergamon,1966.
    21. Kirk-Othmer. Encyclopedia of Chemical Technology [M], New York:John Wiley & Sons,1992, (15).
    22. D. Eliezer, E. Aghion, F.H. (Sam) Froes. Magnesium science, technology and applications [J], Advanced Performance Materials,1998,5(3):201-212.
    23. Duhaime, P.; Mercille, P.; Pineau, M. Electrolytic process technologies for the production of primary magnesium [J], Mineral Processing and Extractive Metallurgy, 2002, 11(2):53-55.
    24. D.Gilroy. The electrowinning of metals, Industrial Electrochemical Processes [J], Elsevier, Amsterdam,1971:175-217.
    25. BeckTR, Ruggeri RT. Advances in Electrochemistry and Electrochemical Engineeri-ng [M], New York:Wiley,1981(12):263-354.
    26. CLIFFORD B.WILSON. Modern Production Process for Magnenium [J], Light Metals, 1996:1075-1079.
    27. Boyum O, Eriksen KE, Solberg P, Tveten KW U.S. Pat[P],3742100.1973.
    28. Blaker I, Boyum O, Anton K, Skipperud R, Tveten KW U.S. Pat [P],3760050.1973.
    29. Wallevik O, Ronhaug JB U.S. Pat [P],4385931.1983.
    30. Mejdell GT, Baumann HM, Tveten KW U.S. Pat [P],5112584.1992.
    31. Tveten KW, Mejdell GT, Marcussen JB U.S. Pat [P],5120514.1992.
    32. Mezzeta G. Magnesium Plant Built on Environmental Respect [J], Light Metals Age, 1991,49(5-6):12-14.
    33. Andreassen KA and Stiansen KB U.S. Pat[P],3,907,651.1975.
    34.中国金属学会编译组.化学冶金进展评论[M],北京:冶金工业出版社.1985:244.
    35. Stanley RW, Berube M, Celik C, et al. The Magnola process magnesium production [C], IMA 53. Magnesium-a Material Advancing to the 21st Century.1996:58-65.
    36. The Magnola process. www.noranda.com.
    37. Magnola. www.mining-journal.com/mininginfo/projrcts/magnola.htm
    38. Peacey JG, Kennedy MW, Walker TP. U.S. Pat [P],5565080.1996.
    39. White C, Berube M. U.S. Pat [P],5980854.1999.
    40. Peacey JG, Kennedy MW, Walker TP. WO Pat [P],31401.1995.
    41.许并社,李明照.镁冶炼与镁合金熔炼工艺[M],北京:化学工业出版社,2006:45.
    42. Tveten KW, Mejdell GT, Marcussen JB. U.S. Pat [P],5120514.1992.
    43. Mezzeta G. Magnesium Plant Built on Environmental Respect [J], Light Metal Age, 1991,49(5-6):12-14.
    44. Andreassen KA and Stiansen KB.U.S. Pat [P],3,907,651.1975.
    45. Peacey JG, Kennedy MW, Walker TP. U.S. Pat [P],5565080.1996.
    46. White C, Berube M. U.S. Pat [P],5980854.1999.
    47. Peacey JG, Kennedy MW, Walker TP. WO Pat [P],31401.1995.
    48. Sivilotti OG U.S. Pat[P],5439563.1995.
    49. Sivilotti OG, Sang JV, Lemay RJR .U.S. Pat [P],5514359.1996.
    50. Amundsen K, Eklund HR, Schmidt R.U.S. Pat [P],6042794.2000.
    51. JMToguri, LM Pidgeon. HIGH-TEMPERATURE STUDIES OF METALLURGICAL
    52. PROCESSES, PART II. THE THERMAL REDUCTION OF CALCINED DOLOMITE WITH SILICON [J], Canadian Journal of Chemistry.1962,40:1769-1776.
    53. L.M.Pidgeon, W.A.Alexander. Trans. Am.Inst.Mining Met.Eugrs [J], Iron Steel Div.1944:159-315.
    54. L.M.Pidgeon. Trans. Can. Inst[J], Min. Met.1946,49:621.
    55. B.Humes. Vacuum Engineering as Related to the Dolomite Ferro-Silicon Process, Reduction and Refining of Non-Ferrous Metals [J], Trans. A.I.M.E.1944,159:353.
    56. JR Jackman. A Mayer. Plant for Production of Magnesium by the Ferrosolicon Process [J], Transactions of AIME,1944.159:363.
    57. Jackman, Joseph R., Luyckx, Leon A., Gill, Jeffrey S. Method of manufacturing magnesium powder from magnesium crown.U.S. Pat [P],5658367.2007.
    58. GL. Miller Ph.D. B.Sc. A.R.I.C. M.I. Chem. E.The production of magnesium, calcium, tantalum and zirconium [J], Vacuum.1952,2(1):19-32.
    59.杨芳.Pidgeon法提镁[J],江苏冶金.2001,29(03):15-17.
    60. Brit. Pat [P],606644,606637.
    61. Toguri JM, Pidgeon LM. High-temperature studies of metallurgical process Part Ⅱ.The thermal reduction of calcined dolomite with silicon [J], Canadian J. Chem.1962,40, 1769-1776.
    62. Toguri JM, Pidgeon LM. High-temperature studies of metallurgical process Part Ⅱ.The thermal reduction of magnesium oxide with silicon[J], Canadian J. Chem.1961,39, 540-547.
    63.胡庆福.镁化合物生产与应用[M],北京:化工工业出版社,2004.
    64. Zang JC. The Pidgeon process in China and its future [C], Proceedings of the Minerals, Metals and Materials Society Meeting 2001, New Orleans, Lousiana, 2001:7-10.
    65. Faure C, Marchal J. Magnesium by the Magnetherm Process [J], Journal of. Metals, 1964,16:721-723.
    66. F. Trocme. The development of the Magnetherm. Process [J], Light Metals, 1971:669-678.
    67. Logerot JM, Mena AM (1980). Extractive Metallurgy: Latest Developments of the Magnetherm Process [C], TMS/AIME, Warrendale PA,1980:29.
    68. Christini RA, Roiles R, Bowman KA and Ballain MD. U.S. Pat [P],4,478,637.1984.
    69. Bowman KA, Christini RA and Ballain MD U.S. Pat [P],4,498,927.1985.
    70. Brit. Pat [P],908531.
    71. Christini RA. Equilibria among Metal, Slag and. Gas Phases in the Magnetherm Process [J], Light Metals,1980:981-995.
    72.全跃.镁质材料生产及应用[M],北京:冶金工业出版社,2008,727-728.
    73. Bettanini C, Zanier S and Enrici M U.S. Pat [P],4,238,223.1980.
    74. Ravelli S et al. U.S. Pat[P],4,264,778.1981.
    75. S.Afr. Pat[P],8704237.1987.
    76.张晓明.铝硅合金热法炼镁的研究[J],轻金属,1998(5):42-44.
    77.姚广春,张晓明.铝硅合金热法炼镁的理论分析[J],轻金属,1998(3):42-44.
    78.吴贤熙.铝硅合金铁合金法炼镁的研究[J],有色金属,2000,52(2):72-74.
    79.李晓波.炼镁工艺的发展趋势[J],铝镁通讯,2000,(47):12-13.
    80. Brooks Geoffrey, Trang Simon, Khan, M N H et al. The Carbothermic Route to Magnesium [J], JOM Journal of the Minerals, Metals and Materials Society,2007, 58(5):51-55.
    81. T. A. Dungan. Production of Magnesium by the Carbothermic Process at Perma-experimental work in casting nente [J], Trans. A.I.M.E.1944,159:308.
    82. F.J. Hansgirg. Thermal reduction of magnesium compounds [J], Iron Age,1943, 152(21):56-63.
    83. Hansrig FJ .U.S. Pat[P],2,437,815.1948.
    84. G L. Miller's. Comprehensive and well balanced article on Applied Vacuum Metallurgy [J], Vacuum,1952,2:19-32.
    85.薛怀生.真空碳热还原煅白制取金属镁实验研究[D],昆明:昆明理工大学,2004.
    86.邱竹贤.冶金学[M],东北:东北大学出版社,2001,10.
    87.苏士可夫,特罗依斯基,埃捷状.轻金属冶炼第三册镁冶炼[M],北京:中国工业出版社,1962,1.
    88.彭建平,陈世栋,武小雷等.碳化钙热法炼镁试验研究[J],轻金属,2009,(3):47-50.
    89.李志华,戴永年,薛怀生.真空碳热还原氧化镁的热力学分析及实验验证[J],有色金属,2005,57(1):56-59.
    90. Schoukens A, Curr T, Abdellatif M. Thermal production of magnesium. MINTEK, Pyrometallurgy Division, Randburg, South Africa, personal communication,2007.
    91.何培.铸造材料化学[M],北京:机械工业出版社,1981:76.
    92.周进华.铁合金[M],北京:冶金工业出版社,1993:129.
    93.彭建平,杨世栋,武小雷等.碳化钙热法炼镁试验研究[J],轻金属,2009,(3):47-50.
    94.于金,蒋建清,方峰,等.真空铝热还原法制备Sr的热力学分析及实验研究[J],金属学报,2005,41(8):824-828.
    95.辽宁省地质矿产局.辽宁省矿产储量表[M],1987,3.
    96.马鸿文.工业矿物与岩石[M],北京:化学工业出版社2005,229-230.
    97.成田亮一.菱镁石工业[M],北京:地质出版社,1956,42.
    98.李楠,陈荣荣.菱镁石煅烧过程中氧化镁烧结与晶粒生长动力学的研究[J],硅酸盐学报,1989,17(1):64-69.
    99. L.Turcaniova, G.Paholic, K.Mateova. Stimulating the thermal decomposition of magnesite[J], Thermochimica Acta,1996, (277):77-84.
    100.钱海燕,邓敏,张少明.菱镁石煅烧活性氧化镁实验研究[J],非金属矿,2004,45(2):18-45.
    101.莫鼎成.冶金动力学[M],长沙:中南工业大学出版社,1987,247.
    102.陈肇友.化学热力学与耐火材料[M],北京:冶金工业出版社,2005,207-209.
    103.徐劲之,万方,徐日瑶.硅热法炼镁炉料吸湿性的研究[J],轻金属.1999,(5):40-44.
    104.王海霞.纳米氧化镁的制备及其表面改性的研究[D],上海:华东师范大学,2006,24-25.
    105.夏树屏,王桂芬,黄发清.动力学法研究氧化镁的活性[J],盐湖研究.1999, (4):36-38.
    106.李环,于景坤,匡世波.菱镁石轻烧水化对MgO烧结的影响[J],耐火材料.2008,42(2):92-96.
    107.白云山,肖艳,林书玉,等.菱镁石制备高活性氧化镁及其活性递变规律研究[J],非金属矿.2005,28(4):51-53.
    108.孔平,谢琰,聂冬锐.轻烧镁、重烧镁、电熔镁中氧化镁晶体结构的XRD分析[J],中国非金属矿工业导刊.2004,1:31-34.
    109.王佩玲,王心磊.煅烧MgO的活性研究[J],上海硅酸盐.1989,(3):137-143.
    110.酒少武,肖国先,陈延信.水泥分解炉中石灰石分解特性的数值研究[J],西安建筑科技大学学报,2006,38(1):47-52.
    111.江宏才.煅白活性度的探讨[J],盐湖研究.1999,(4):36-38.
    112.黄宏道,赵春光.影响石灰活性度几个主要因素的探讨[J],唐钢科技.1992,(1):6-9.
    113.冯小平.石灰的煅烧工艺及其结构对活性度的影响[J],武汉理工大学学报.2004,26(7):28-30.
    114.钱海燕,邓敏,徐玲玲,等.轻烧氧化镁活性测定方法的研究[J],化工矿物与加工.2005,(1):22-23.
    115.徐玲玲,杨南如,陶洪亮等.MgO活性对氯镁石材料开裂和耐水性的影响[J],硅酸盐学报.2003,31(8):759-762.
    116.李维翰,尚红霞,李盛栋.轻烧氧化镁粉活性的研究[J],武汉钢铁学院学报.1992,1:30-37.
    117.陆振荣.几种新的热分析动力学数据处理方法[J],现代科学仪器,1998,(2):27-29.
    118.柳召刚,马莹,魏绪钧,等.热分析技术研究氟碳铈精矿碳酸钠焙烧反应动力学[J],中国有色金属学报,1998,8(2):299-302.
    119.涂赣峰,张世荣,任存志,等.热分析技术在氟碳铈矿分解动力学中的应用[J],稀土,1997,18(2):23-26.
    120. JoseM. Criado, Manuel Gonzalez, Jiri Malek, et al. The effect of the CO2 pressure on the thermal decomposition kinetics of calcium carbonate [J], Thermochimica Acta, 1995,254 (15):121-127.
    121. Kirsh Y, Yariv S, Shoval S. Kinetic Analysis of Thermal Dehydration and Hydrolysis of MgCl2·6H2O by DTA and TG[J], Thermal.Anal,1987,32:392-408.
    122. Novikov V L, Abbakumov V G. Vikhman S I.Kinetic Parameters of Chemically Enriched Magnesium Ocide Sintering [J], Ogneupory.,1993,4:30-34.
    123.路贵民,邱竹贤.菱镁石煅烧动力学[J],轻金属,1992,(6):36-39.
    124.蒋引姗,王玉洁,徐长耀,等.热分析法研究矿物分解过程动力学[J],长春科技大学学报,2000,30(1):90-93.
    125.胡荣祖,史启祯.热分析动力学[M],北京:科学出版社,2001:47-148.
    126. Doyle C.D. Kinetic analysis of thermogravimetric data [J], Journal of Applied Polymer Science,1961, (5):285-292.
    127.李峰,何静,杜以波.α-磷酸锆的制备与热分解非等温动力学研究[J],无机化学学报,1999,15(1):55-60.
    128.上海化工研究院编.钾长石及明矾石土法生产钾肥[M],北京:石油化学工业出版社,1977:15-16.
    129.乐可襄,钱共.石灰石燃烧活性石灰的实验研究[J],安徽工业大学学报,2001,18(2):101-103.
    130.饶发明,伍朝蓬,乐可襄.用小颗粒石灰石煅烧活性石灰[J],金属矿山,2007(2):88-90.
    131.唐亚新.影响石灰活性的因素分析[J],炼钢,2001,3:50-62.
    132.刘世洲.冶金石灰[M],沈阳:东北工学院出版社,1991.
    133.YB/T105-1997《冶金石灰物理检验方法》
    134.陈先勇,周贵云,唐琴,等.以高活性度石灰为原料制备纳米碳酸钙的研究[J],化工矿物与加工,2005,34(4):13-15.
    135.冯小平,张正文,田华锋,等.活性石灰的煅烧工艺研究[J],国外建材科技,2003,24(5):6-7.
    136.朱英雄,冯启成,李永秋.加食盐煅烧提高石灰活性机理的研究[J],炼钢.1995,(2):56-59.
    137.张仲云.添加剂NaCl对提高石灰石活性度的影响[J],五钢科技.1993,(5):7-9.
    138.罗世永,张家芸,周土平.固/固相反应动力学模型及其应用[J].材料导报,2000,14(4):6-7.
    139. Gao X .Pollimore D.A.kinetic study of the thermal decomposition of manganese oxalate dehydrate [J], Thermochi m A cta,1996,288:97-104.
    140.胡荣祖,史启祯.热分析动力学[M],北京:科学出版社,2001:50-67.
    141. C. D. Doyle. Kinetics analysis of thermogravimetric data [J], Journal of Applied Polymer Science,1961,5:285-292.
    142.成一.非等温反应过程中新的动力学方程[J],无机化学学报,2006,22(2):287-292.
    143. Gao X, Dollimore D. The Thermal Decomposition of Oxalates26:A Kinetic Study of the Thermal Decomposition of Manganess(II) Oxalate Dihydrate [J], Thermochim. Acta,1993,215:47-63.
    144. Kirsh Y, Yariv S, Shoval S. Kinetic Analysis of Thermal Dehydration and Hydrolysis of MgC12·6H2O by DTA and TG[J], Thermal.Anal,1987,32:392-408.
    145. Novikov V L, Abbakumov V G. Vikhman S I.Kinetic Parameters of Chemically Enriched Magnesium Ocide Sintering [J], Ogneupory.,1993,4:30-34.
    146.陈伟,张红丽,陈旋,等.烧结添加轻烧白云石的试验研究及生产应用[J],河南冶金,2003,15(3):12-14.
    147.冯乃祥.一种内电阻加热金属热还原炼镁炉及炼镁方法[P],200610201022.X.
    148. ISO140401-1997 [s]. Environmental management life cycle assessment principle and frame work.
    149.王天明.生态环境学[M],天津:天津大学出版社.2000.
    150. Xu J C. Ecodesign for wear resistant ductile iron with medium manganese content [J], Materials&Desi-gn,2003(24):63-68.
    151. S Ross, D Evans. Use of life cycle assessment in environmental management [J], Environmental Mana-gement,2002,29(1):132-142.
    152.邓南圣,王小兵.生命周期评价[M],北京:化学工业出版社,2003,122-156.
    153.杨建新,徐成,王如松.产品生命周期评价方法及应用[M],北京:北京气象出版社,2002,51-74.
    154.樊庆锌,敖红光,孟超.生命周期评价[J],环境科学与管理,2007,32(6):177-180
    155.李冬,司继涛,王洪涛.铬渣处理处置方法的生命周期评价[J],现代化工,2006,26(z1):298-301.
    156. Francesco Cherubini, Marco Raugei, Sergio Ulgiati. LCA of magnesium production Technological overview and worldwide estimation of environmental burdens [J], Resources, Conservation and Recycling,2008,52(8-9):1093-1100.
    157. Ramakrishnan S, Koltun P. Global warning impact of the magnesium produced in China using the Pidgeon process [J], Resources, Conservation and Recycling,2004, 42(1):49-64.
    158.袁宝荣,聂诈仁,狄向华,等.乙烯生产的生命周期评价(Ⅱ)[J],化工进展,2006,25(4):432-435.
    159.王超.电石渣水泥和石灰石水泥生命周期评价的比较研究[D],成都:西南交通大学,2007:38.
    160.邓胜南,王小兵.生命周期评价[M],北京:化学工业出版社,2003:133.
    161.高峰.生命周期评价研究及其在中国镁工业中的应用[D],北京:北京科技大学,2008:79.
    162. CHERUBINI Francesco, RAUGEI Marco, ULGIATI Sergio. LCA of magnesium production Technological overview and worldwide estimation of environmental burdens [J], Resources, Conservation and Recycling,2008(52):1093-1100.
    163. ISO 14044 Environmental management Life cycle assessment- Requirements and guidelines,2006.
    164. Guinee J B, Guinee Marieke, Heijungs Reinout, et al. Handbook on life cycle assessment-operational guide to the ISO standards [M], Kluwer Academic Publisher, Dordrecht,2002:387.
    165.蓝盛芳,钦佩,陆宏芳.生态经济系统能值分析[M],北京:化学工业出版社,2002:3-4.
    166. Odum H T(蒋有绪等译).系统生态学[M],北京:科学出版社,1993:8-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700