共反射面叠加及其波场属性在地震资料处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
获得零偏移距剖面是地震数据处理中很重要的一个中间环节。常规获得零偏移距剖面的方法有共中心点(CMP)叠加、倾角时差校正(DMO)叠加、叠前偏移等,这些方法要求知道宏观的速度模型,并且其成像结果好坏依赖于速度模型的精确程度。上世纪八十年代末九十年代初,一些地球物理学家着手建立与速度无关的旅行时公式,希望用更多参数来描述界面与走时的关系。代表性的是德国Karlsurhe大学Hubral教授九十年代末提出的共反射面叠加(CRS)方法。
     共反射面叠加的理论基础是射线理论。它利用共反射点道集一个邻域内(菲涅尔带)道之间的相关性,并将相干区域内道集的能量相加来增强地震信号能量,并借助于相邻CMP道集数据形成CRS超道集,利用超道集的高覆盖次数来压制噪声最终得到高信噪比的零偏移距叠加剖面。该方法可大幅度地提高地震资料信噪比和分辨率,被视为今后复杂地区地震资料处理方法的重要发展途径。
     CRS叠加在提供高质量的叠加剖面的同时,还提供了与之相关的运动波场参数。针对这些重要的波场参数,本文主要做了以下几方面的工作:
     1)研究基于二维CRS叠加及其属性的速度反演。在二维情况下,CRS叠加的三个波场属性参数都是特征波传播矩阵的相关参数,与速度参数必然有内在联系。通过研究,建立了与之对应的关系式,从而反演得到地下介质的速度模型。
     2)研究基于CRS叠加的剩余静校正方法。该方法具体实现途径为:首先通过CRS获得零偏移距剖面,再将零偏移距剖面的每一道作为互相关的模型道,对CRS超道集进行动校正。然后用超道集动校后的每道与零偏移距剖面的相应道之间进行互相关,再将所有属于相同炮或相同检波点的相关结果叠加,并用叠加能量最大值对应的时移量确定剩余静校正值。
     3)提出了CRS速度反演与叠前偏移联合建立速度模型的方法,以改善叠前偏移速度的分析的精度,缩短资料的处理周期。同时,将得到的速度模型,结合叠后偏移方法,得到基于CRS叠加的叠后偏移结果。
     理论模型及实际资料处理表明,基于CRS叠加的速度反演能得到较为精确的速度场,为后续的偏移处理、AVO分析提供良好的基础资料;基于CRS叠加的剩余静校正方法对于低信噪比资料处理也非常有益,能够改善常规速度谱的质量,提高速度分析的精度,增强反射波同相轴的连续性。
Zero-offset (ZO) section is an important intermediate result in seismic reflection imaging. Common-midpoint (CMP) stack, normal-moveout correction/dip-moveout correction/stack(NMO/DMO/stack), as well as pre-stack migration are the main methods to obtain zero-offset section in conventional seismic processing. These conventional methods require macro-velocity model of subsurface and, the image quality are depended on the accuracy of the velocity model. In the eighties of last century, new stacking techniques have been established which yield better stacking results than the conventional methods mentioned above. They used several kinematic wavefield attributes instead of only one in NMO/DMO/stack. On behalf of the new type of multi-coverage method, the common reflection surface (CRS), which developed by Prof. Hubral of Karlsurhe university in Germany, has been widely accepted by geophysicists.
     Common reflection surface stack is a macro-model independent seismic imaging method and takes also the local curvature of the reflector at the reflection point into account. Based on the similarity of common reflection point(CRP) trace gathers in one coherent zone (Fresnel zone), CRS stack effectively improves S/N ratio by using more CMP trace gathers to stack. Compared with conventional CMP stack and DMO stack , CRS stack can focus more energy in the vicinity of the reflector. It not only improves the quality of simulated zero-offset section and S/N ratio in deeper layers but also provides important seismic three-parameters section which can be used for inversion of a macro-velocity model and for depth image. It is regarded as one important method of seismic data processing.
     In this paper, we have studied several forward and inverse problems by means of CRS stack and its kinematic wavefield attributes.
     Firstly, we developed several methods to reconstruct macro-velocity model in 2D seismic datasets. The CRS stack makes full use of the multi-coverage seismic reflection data and provides additional traveltime parameters. These parameters are very useful for the extraction of further attributes of the seismic medium or for an inversion of a meaningful subsurface velocity model. We can obtain three kinematic wavefield attributes through 2D CRS stacking. These attributes, expressed in terms of wavefront curvatures and emergence angle, can be combined to estimate the RMS velocities and/or interval velocities within the illuminated part of the subsurface model.
     Secondly, a new residual static correction approach by means of CRS attributes is presented. We considered to make use of the CRS stack which provides additional information about the subsurface by means of kinematic wavefield attributes. The new approach uses the CRS attributes for the moveout correction and the CRS stacked ZO traces as pilot traces. The result of the cross correlation of each pre-stack trace with the pilot trace is assigned to the corresponding source and receiver locations. This new approach is based on the stack power maximization method. In general, the maximum of this cross correlation stack corresponds to the surfaceconsistent residual static time shift of the respective source or receiver. Thus, one of the advantages of this method is that it makes use of more information of the seismic multi-coverage reflection data.
     Finally, we combined velocity inversion by means of CRS attributes with prestack migration to establish initial macro-velocity model, replacing the conventional velocity analysis and a Dix inversion in a seismic processing routine. The obtained velocity model can be used in a subsequent prestack migration or post-stack migration to determine a depth/time domain image of the subsurface. Otherwise, the projected Fresnel zone based on the kinematic wavefield attributes can be used to to determine an optimal migration aperture in Kirchhoff migration. As is shown, not only the prestack depth migration but also the poststack migration benefits from this approach.
     Application of the comprehensive processing methods by means of CRS on synthetic examples and field seismic records, the results of these methods show an excellent performance of the algorithm both in accuracy and efficiency. They can provide high accuracy of the velocity model for AVO, and improve the quality of velocity spectra, enhance the continuity of reflection events and the signal-to-noise (S/N) ratio after stacking.
引文
[1] Bergler, S., Hubral, P., Marchetti, P., Cristini, A., and Cardone, G., 2002, 3D common-reflection-surface stack and kinematic wavefield attributes.The Leading Edge, 21: 1010~1015
    [2] Cruz J C R, Hubral P,Tygel M,et al. The common reflecting element (CRE) method revisited. Geophysics, 2000, 65(3): 979~993
    [3] Gelchinsky B. Common reflecting element (CRE) method. Geophysics, 1988, 19(1) : 71~75
    [4] Hale D. Dip moveout processing. Domenico: Society of Exploration Geophysicists, 1991
    [5] 袁亚湘,孙文瑜.最优化理论与方法. 北京:科学出版社,1997
    [6] D. Hale. Dipmoveout by Fourier transform . Geophysics,1984,49(6):741~757
    [7] de Bazelaire, E. and Viallix, J.R. . Normal moveout in focus. Geophys. Prosp.,1994,42 (5) :477~499
    [8] Deregowski S M. Common –offset migration and velocity analysis. First Break,1990,8(6):225~234
    [9] Deregowski, S. M. (1986). What is DMO? First Break, 4(7) : 7~24.
    [10] Eric de Bazelaire and Jean Rene Viallix. Normal moveout in focus[J]. Geophysical Prospecting, 1994,42: 477-49
    [11] Eric Duveneck. Velocity model estimation with data-derived wavefront attributes[J]. Geophysics, 2004,69(1): 265~274
    [12] Erik Ewig. Theory and application of residual static correction by means of CRS attributes:[Ph.D. thesis]. University Karlsruhe,Germany,2003
    [13] F.Adler, F.Hoxha, P. Hubral. Migrating around in circles: Part II. The leading Edge. 1997,3: 235~237
    [14] G.Gierse, J.Pruessmann, E.Laggiard, C.Boennemann, and h.Meyer. Improved imaging of 3D marine seismic data from offshore Costa Rica with CRS processing. First break, 2003, 21(12): 45-49
    [15] H. Perroud, P. Hubral, E. Debazelaire. Migrating around in circles: Part III [J]. The Leading Edge. 1997,15(6): 875~883
    [16] H. Trappe, G. Gierse and J. Pruessmann. Case studies show potential of Common ReflectionSurface stack – structural resolution in the time domain beyond the conventional NMO/DMO stack[J]. First break. 2001, 19(11) : 625~633
    [17] H.Perroud, P. Hurbal, and G. Hocht. Migrating around in circles-Part III[J]. The Leading Edge, 1997, 15(6): 875~883
    [18] Hocht G.. Common Reflection Surface Stack:[Master’s thesis]. University Karlsruhe,Germany,1998
    [19] Hubral, P. and Krey, T. Interval velocities from seismic reflection traveltime measurements. Soc. Expl. Geophys, 1980
    [20] Hubral, P.,Hocht, G. ,and Jager, R.. Seismic illumination. The Leading Edge, 1999, 18(11):1268~1271
    [21] Hubral, P.,Hocht, G..,and Jager, R.. An introduction to the Common Reflection Surface Stack. 60th Mtg. Eur. Assoc. Expl. Geophys.,1988, Extended Abstracts:l~19
    [22] Hubral,P.. Computing true amplitude reflections in a laterally inhomogeneous earth. Geophysics, 1983, 48(8):1051~1062
    [23] Hubral,P.. Macro-model independent seismic reflection imaging. Journal of Applied Geophysics, 1999, 42(3,4):137~138
    [24] Ian F. Jones,Keith Ibbotoson,Martin Grimshaw et al.. 3-D prestack depth migration and velocity model building. The Leading Edge,1998,17(7):897~906
    [25] Ingo Koglin. Picking and Smoothing of Seismic Events and CRS Attributes-Application for Inversion:[Ph.D. thesis]. University Karlsruhe,Germany,2001
    [26] J. Pruessmann, R. Coman, H. Endres, and H. Trappe. Improved imaging and AVO analysis of a shallow gas reservoir by CRS[J]. The Leading Edge. 2004, 23(9 ): 915~918
    [27] J.F. 克莱鲍特. 地震成像理论及方法,许云译. 北京:石油工业出版社,1991
    [28] J.Schleicher, M. Tygel, and P. Hubral. Parabolic and Hyperbolic Paraxial two-point traveltimes in 3D media. Geophysical Prospecting ,1993 ,41:495~513
    [29] Jager R.. The Common Reflection Surface Stack – Theory and Application:[Master’s thesis]. University Karlsruhe,Germany,1999
    [30] Kondrashkov V.V., Aniskovich E.M. Basic principles of Parametric evolvent of signal method (PRO) as universal technique of seismic data processing. ”Physics of the Earth”, 1998. No2. С. 46~64.
    [31] Mayne,W. H.. Common reflection point horizontal data stacking techniques . Geophysics, 1962, 27(6):927~938
    [32] Mike Cox. 反射地震勘探静校正技术,李培明,柯本喜,等译. 北京:石油工业出版社,2004
    [33] Muller. The 3D Common-Reflection-Surface Stack Theory and Application:[Ph.D. thesis]. University Karlsruhe,Germany,2003
    [34] Neidell N.S., and Taner M.T.. Semblance and other coherency measures for multichannel data. Geophysics, 1971, 36(3):482~497
    [35] P.Hubral, G.Hoecht, and R.Jaeger. Seismic Illumination. The Leading Edge, 1999,18(11): 1268~1271
    [36] P.Hubral, J.Schleicher, and M. Tygel. 3D Paraxial ray properties-Part II: Applications. Journal of Seismic Exploration , 1992, No1: 347~362
    [37] P.Hubral, J.Schleicher, and M. Tygel. 3D Paraxial ray properties-Part I: Basic Relations[J]. Journal of Seismic Exploration, 1992, No1: 265~279
    [38] R. E. 谢里夫,L. P.吉尔达特. 勘探地震学. 北京:石油工业出版社,1999
    [39] R.Jager 等著,姚云霞,李振春编译. 共反射面元叠加法. 石油物探译丛,2001,第 3期, 1~11
    [40] Rainer Jager, Jurgen Mann, German Hocht, and Peter Hubral. Common-reflection-surface stack: Image and attributes. Geophysics, 2001, 66(1): 97~109
    [41] Ronen J. and Claerbout J. F.. Surface-consistent residual statics estimation by stack-power maximization. Geophysics, 1985, 50(12):2759~2767
    [42] SamuelH1Gray. 地震偏移问题及其解决方案. 勘探地球物理进展,2002,25(2):44~60
    [43] Schleicher J., Hubral P., Tygel M., et al. Minimum Apertures and Fresnel Zones in Migration and Demigration. Geophysics, 1997, 62(1):183~194
    [44] Steffen Bergler and Peter Hubral , Paolo Marchetti, et al .3Dcommon-reflection-surface stack and kinematic wavefield attributes[J]. The Leading Edge. 2002,20(10 ): 1010~1015
    [45] Sun J.. Limited-aperture migration. Geophysics, 2000, 65(2):584~595
    [46] Sun J.. On the limited aperture migration in two dimensions. Geophysics, 1998, 63(3):984~994
    [47] Trappe,H., Gierse, G., and Pruessmann,J.. Case studies show potential of Common ReflectionSurface stack- structural resolution in the time domain beyond the conventional NMO/DMO stack.. First break , 19(11):625~633
    [48] V. Cerveny,I.A. Molotkov,I.Psencik. 地震学中的射线方法,刘福田,胡戈,吴华,等译. 北京:地质出版社,1986
    [49] Vieth K. U.. Kinematic Wavefield Attributes in Seismic Imaging:[Ph.D. thesis]. University Karlsuhe,Germany,2001
    [50] Yilmaz,o. and Claerbont, J.F. (1980). Prestack partial migration[J]. Geophysics, 45(12):1753~1779
    [51] Zhang Y, Bergler S., Hubral P. .Common-reflection-surface(CRS) stack for common offset. Geophysical Prospecting,2001,49(6):709~718
    [52] 戴志阳,孙建国. DMO 方法综述. 世界地质,2001,20(4):402~409
    [53] 丁建荣,王华忠,李代芳,居兴国. 共反射面元方法在下扬子地区的试验. 石油物探,2003,42(3): 414~416
    [54] 范千,许承权,陈伟. 单纯形—模拟退火混合算法及其在参数估计中的应用. 地理空间信息,2005,3(3):57~59
    [55] 韩立国,孙建国,何礁登,杨勤勇. 共反射面与共中心点联合叠加成像. 石油物探,2003, 42(1):25~28
    [56] 韩立国. 共反射面与共中心点联合叠加成像与速度模型重建方法研究:[博士学位论文]. 吉林:吉林大学,2003
    [57] 韩文功,印兴耀,王兴谋,等. 地震技术新进展. 山东:中国石油大学出版社,2006
    [58] 井西利,李丽,陈淑梅. 自适应混合反演剩余静校正. 石油地球物理勘探,2004,39(2):153~157
    [59] 李庆忠. 走向精确勘探的道路. 北京:石油工业出版社,1993
    [60] 李振春,姚云霞,马在田,王华忠. 共反射面道集偏移速度建模. 地震学报,2003,25(4):406~414
    [61] 李振春,姚云霞,马在田,王华忠. 基于参数多级优化的共反射面叠加方法及其应用. 石油地球物理勘探,2003,38(2):156~161
    [62] 李振春,张凯,张建磊,等. 共聚焦点偏移成像方法研究. 石油物探,2003,42(1):16~21
    [63] 林依华,尹成,周熙襄,等. 一种新的求解静校正的全局快速寻优法. 石油地球物理勘探,2000,35(1):1~12
    [64] 娄晓东,曹谊,赵青. 地震处理新方法——共聚焦点技术. 勘探地球物理进展,2002,25(5):7~17
    [65] 陆基孟. 地震勘探原理. 山东:石油大学出版社,1993
    [66] 罗省贤,李录明. 三维叠前深度偏移速度模型建立方法. 石油物探,1999,38(4):1~6
    [67] 罗银河. 多聚焦(MF)成像技术综述. 地球物理学进展,2003,18(4):635~642
    [68] 马在田. 论反射地震偏移成像. 勘探地球物理进展,2002,25(3):1~5
    [69] 牟永光. 地震勘探资料数字处理方法. 北京:石油工业出版社,1980
    [70] 裴江云,刘 洪,李幼铭,朱振宇. 共反射元弧叠加方法在火山岩成像中的应用. 地球物理学报,2004,47(1):106~111
    [71] 裴江云. 地震波场延拓+菲涅尔体叠加方法及成像效果:[博士学位论文]. 北京:中科院地质与地球物理研究所,2002
    [72] 邱苏,胡旭芝,沈骥.不对称抽道集共反射面元叠加方法探讨. 中国煤田地质,2003,5(2): 49~51
    [73] 覃天,段云卿,赵勇.共反射面元叠加波场属性参数的应用. 石油地球物理勘探,2006,41(5):530~533
    [74] 覃天,贾明辰,凌勋,等. 共反射面元叠加在复杂地区地震成像中的应用. 新疆石油地质,2006,27(5):604~606
    [75] 谭未一,杨长春,李瑞忠,陈辉国. 共反射面元叠加的实现途径及流程. 地球物理学进展,2004,19(2):325~330
    [76] 谭未一.共反射面元叠加:[博士学位论文]. 北京:中科院地质与地球物理研究所,2004
    [77] 王成祥,赵波,张关泉,李顺安. 地下复杂介质地震处理中的 CFP 技术. 地球物理学进展,2003,18(1):30~34
    [78] 王华忠,杨锴,马在田. 共反射面元叠加的应用理论——从共反射点到共反射面元. 地球物理学报,2004,47(1):137~142
    [79] 熊翥. 复杂地区地震数据处理思路. 北京:石油工业出版社,2002
    [80] 徐国庆,胡中平. CRS 叠加技术及其应用. 勘探地球物理进展,2003,26(5):447~450
    [81] 阎世信. 山地地球物理震勘探技术. 北京:石油工业出版社,2000
    [82] 杨 锴,王华忠,马在田.实现最佳零炮检距地震照明成像——CRS 叠加之几何阐述. 勘探地球物理进展,2002,25(3):27~31
    [83] 杨锴,马在田. 关于共反射面元叠加方法在实际应用中的一些思考. 地球物理学进展,2005,20(1):12~16
    [84] 杨锴,王华忠,马在田. 共反射面元叠加的应用实践. 地球物理学报,2004,47(2):327~331
    [85] 杨锴,王华忠,许士勇. 通过倾角扫描实现优化共反射面元(CRS)叠加. 国际地球物理论文集(北京),2004,CPS/SEG :1311~34
    [86] 杨锴,徐蔚亚,王华忠. 基于模型数据的共反射面元叠加初步实践. 同济大学学报,2003,31(3):309~313
    [87] 姚姚. 地震波场与地震勘探. 北京:地质出版社,2006
    [88] 张红梅,吕小林,刘洪. 改进的约束单纯形—模拟退火剩余静校正. 地球物理学进展,2004,19(2):341~347
    [89] 刘全艳,凌勋,周作铭,等. PRO—一种新的地震资料处理方法. 石油地球物理勘探,2006,41(5):509~513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700