田旋花和打碗花对草甘膦的耐药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草甘膦(glyphosate)是一种传导型广谱灭生性除草剂,主要用于非耕地、果园、林地和农田作物种植之前防治一年生和多年生杂草,目前,越来越多地用于棉花和玉米田保护性喷雾防治田间杂草。田旋花(Convolvulus arvensis L.)、打碗花(Calystegia hederacea Wall.)均属旋花科多年生杂草,以地下根茎和种子进行繁殖,耕地除草时地下根茎易断裂,切断后的每段都能发出新芽,生命力极强,其地上茎缠绕周围的作物,对作物生长和产量造成严重危害,且不易防除。自然界中存在着对草甘膦耐药的田旋花种群(DeGenaro,1984)。本研究以田旋花和打碗花为对象,运用生物测定、生化检查和分子生物学等技术,研究田旋花和打碗花对草甘膦的耐药性。主要结论如下:
     (1)不同种群田旋花、打碗花对草甘膦的敏感性差异不显著。地上鲜重抑制率曲线是检测田旋花、打碗花对草甘膦耐性的适宜指标,田旋花对草甘膦具有很强的耐药性,打碗花只有一定程度的耐药能力。
     (2)草甘膦施用后1天,田旋花和打碗花体内莽草酸含量略大于对照,施用后6天,莽草酸积累,证明田旋花和打碗花对草甘膦的敏感性低,耐药能力强;相同草甘膦处理剂量下,单位质量的田旋花体内莽草酸的积累量明显少于打碗花的积累量,田旋花对草甘膦的耐药能力大于打碗花;随着田旋花生长时间的延长,对草甘膦耐性逐渐增强。
     (3)田旋花和打碗花的EPSP合成酶基因cDNA全长为1751bp,开放阅读框长1560bp,编码520个氨基酸,起始密码子位于51~53bp,终止密码子位于1611~1613bp,5’非翻译区98bp,一致性达97.94%,并推导出相应的氨基酸序列,一致性达到98.1%。
     (4)田旋花和打碗花的EPSP合成酶叶绿体转运肽长度均为72个氨基酸残基,一致性为94.4%,在转运肽段有8个位点氨基酸有差异占整个氨基酸序列中差异位点数的57%(8/14)。田旋花EPSP合成酶的101位丝氨酸为极性氨基酸,具有极性羟基基团,具有亲水性,而打碗花中为苯丙氨酸,是非极性疏水性氨基酸。
     (5)田旋花EPSP合成酶基因全长2953bp,含有6个内含子,7个外显子。7个外显子长度分别为390、310、219、60、217、63、315bp,最大的外显子为外显子1,长度390bp,最小外显子为外显子4,长度为60bp。6个内含子大小依次为393、220、365、172、124、105bp,最大的内含子为内含子1,长度为394bp,最小内含子为内含子6,长度为105bp。
     (6)田旋花101位氨基酸为丝氨酸,毗邻EPSP合成酶保守的活性位点,由于此极性氨基酸可以先与草甘膦结合,导致草甘膦无法竞争性地占据PEP结合位点,从而保护了活性区域,造成草甘膦不易与田旋花的EPSP合成酶结合,导致了田旋花对草甘膦的耐药性。
     综上所述,本研究首次对我国田旋花和打碗花对草甘膦的耐药性进行了研究,建立了耐药性检测指标,明确了草甘膦施用后田旋花、打碗花体内莽草酸含量的变化规律;首次克隆了田旋花、打碗花中EPSP合成酶cDNA全长基因,并将田旋花和打碗花EPSP合成酶基因cDNA序列在GenBank上登录(登录号分别为:EU698030、EU526078)。生物测定、酶水平和分子检测均证明:田旋花对草甘膦具有耐药性。本研究不仅完成了国家科技支撑计划规定的相关研究任务,而且为杂草科学家深入开展杂草对草甘膦的耐性机制研究,尤其是田旋花、打碗花的耐药性机制研究奠定了坚实基础,具有重要的理论和实践价值。
Glyphosate [N-(phosphonomythyl) glycine] is a non-selective, broad-spectrum herbicide, which is mainly used in the non-farming ares, the orchard, the forest and fields before crop growning, prevents and controls the annual and the perennial weeds. Reseantly, more and more glyphosate was used in the cotton and the corn fields by protective atomization. Field bindweed (Convolvulus arvensis L.) and Ivy glorybind (Calystegia hederacea Wall.) are perennial weeds, which belonging to convolvulaceae and reproducting by their rhizomes and seeds. The rhizomes are easy to break while in farming and cultivation, very difficult to clean out. Each cut-off can also reproduce and the vitality is greatly strengthened. Due to winding growth on the periphery plants, they are difficult to control and can cause severe damage to crop growth and yield loss. Glyphosate tolerant C. arvensis population is naturally existied (DeGenaro 1984). This study, both C. arvensis and C. hederacea in China are investigated in their tolerance to glyphosate by bioassay, biochemistry inspection and DNA analysis, to verify C. arvensis and C. hederacea tolerance in China. The main findings are as followings:
     (1) The differences of sensitivity to glyphosate in population of C. arvensis and C. hederacea were not significant. The regression curve of aerial fresh weight inhibition rate was relatively more appropriate indicator of the resistance of C. arvensis and C. hederacea to glyphosate. It was cleare that C. arvensis was tolerant to glyphosate, meanwhile C. hederacea was only tolerance to glyphosate in a certain degree.
     (2)Shikimate accumulation in C. arvensis and C.hederacea were slighterly higher than control 1 day after being treated with glyphosate, it began to accumulate rapidly 6 days after treatment. It indicated that both C. arvensis and C. hederacea were not sensitive to glyphosate. Shikimate accumulation in C. arvensis was significantly lower than C. hederacea when treated with the same dose of glyphosate. Therefore, C. arvensis was highly tolerant to glyphosate comparing to C. hederacea. For C. arvensis, the longer the growth was, the stronger the tolerance to glyphosate.
     (3) The full length cDNA of EPSPS gene from both C. arvensis and C. hederacea are 1751bp, with QRF of 1560bp, encoding 520 amino acids; the start codon located at 51~53bp, the stop codon follen at 1611~1613bp, 5' non-translation area are 98bp, achieved whereas 97.94% identical. The deduced amino acid sequence is 98.1% identic.
     (4) The EPSPS chloroplast transit peptide length of both C. arvensis and C. hederacea was 72 amino acid residues with 94.4% similarity, there were eight differences in transit peptides representing 57% (8/14) of differences in the total amino acid sequence. The serine at position 101 (Ser101) of C. arvensis EPSPS was a polar amino acid with polar hydroxyl group and water affinity, however, in C.hederacea leucine, a non-polar hydrophobic amino acid presented at the same location.
     (5) The total length of EPSPS gene of C. arvensis L. was 2953 bp, containing 6 introns and 7 exons. The length of 7 exons was 390, 310, 219, 60, 217, 63, 315 bp, respectively, of which, the largest one was exon 1 with a length of 390 bp; the smallest one was exon 4 with a length of 60 bp. The length of 6 introns was 393,220,365,172,124,105 bp, respectively, of which, the largest one was intron 1 with a length of 393 bp; the smallest one was intron 6 with a length of 105 bp.
     (6) The Ser101 of C. arvensis EPSPS was close to conserved active site of EPSPS. It is very likely that the polar amino acid could bind with glyphosate firstly, therefore glyphosate could not occupy the PEP binding site and the activity site was protected. Subsequently, changes in the PEP binding site might affect the response of EPSPS to glyphosate leding the tolerance of C. arvensis to glyphosate.
     In summary, glyphosate resistance of C. arvensis and C. hederacea in China was investigated for the first time, glyphosate resistance of C. arvensis and C .hederacea detecting critior was established, the full length of cDNA in EPSPS gene from both C. arvensis and and C. hederacea were cloned for the first time, EPSPS gene of C. arvensis and C. hederacea was registered in the GenBank (the accession number: EU698030, EU526078). Results of bioassay, biochemistry inspection and DNA analysis revealed that C. arvensis was resistant to the glyphosate. This study has not only contributed to the stipulation of the National Science and Technology R & D Programme, but paved the new way for further research in glyphosate resistant weeds thoroughly, especislly to the studies of glyphosate tolerant mechanism in C. arvensis and C. hederacea, with very important theoretical and practical significances.
引文
[1] 郝彦俊,李广阔,王剑,王锁牢,李号宾. 几种除草剂对棉田田旋花的防效. 农药, 2004,43:132~134.
    [2] 胡凡,付迎春,朴英,王洪武,李卫平,张广成. 三江地区大豆田抗性杂草种群演变趋势及化学防除. 黑龙江农业科学, 2003, 3:11~12.
    [3] 黄炳球,林韶湘. 我国稻区稗草对禾草丹的抗性研究. 农药科学与管理, 1993, 14:18~21.
    [4] 李扬汉. 中国杂草志. 中国农业出版社 1998.
    [5] 李拥兵,吴志华,陈萱,刘洪斌,黄炳球. 我国南方稻区稗草对二氯喹啉酸的抗药性测定. 农药学学报, 2003, 5:89~92.
    [6] 李宜慰,梅传生,李永丰,汤日圣,瞿其楷,刘宁政. 麦田菵草和日本看麦娘对氯磺隆抗药性的初步研究. 江苏农业学报, 1996,12:34~38.
    [7] 李志军,于军,段黄金,徐雅丽. 田旋花营养器官及不定芽发生的解剖学研究. 武汉植物学研究, 2002,20:185~187.
    [8] 梁丽娜,郭平毅,李奇峰. 我国除草剂产业现状、面临的问题及发展趋势. 中国农业信息,2006,6:8~9.
    [9] 梁巧玲,马德英. 农田杂草综合防治研究进展. 杂草科学, 2007,2:14~15,26.
    [10] 娄远来,邓渊钰,沈晋良,徐朗莱,沈文飚. 甲磺隆和草甘膦对空心莲子草乙酰乳酸合酶活性和莽草酸含量的影响. 植物保护学报, 2005,32:185~188.
    [11] 马晓渊. 论可持续的农田杂草治理. 杂草科学, 2000,1:11~12,16.
    [12] 马晓渊. 农田杂草抗药性的发生为害、原因与治理. 杂草科学, 2002,1:5~9.
    [13] 彭建. 苜蓿种子田恶性杂草田旋花的生态生物学特性及防除技术研究. [硕士学位论文] 乌鲁木齐:新疆农业大学,2005.
    [14] 强胜,王庆亚,戴宝江,葛海燕,朱晶晶,李广英. 用空心莲子草评价草甘膦药效的新技术. 上海农业学报, 2003,19:70~74.
    [15] 宋小玲,马波,皇甫超河,强胜. 除草剂生物测定方法. 杂草科学, 2004,3:1~6.
    [16] 苏少泉. 编著 除草剂概论. 科学出版社,1989,279~298.
    [17] 苏少泉. 生物技术与抗除草剂作物. 化学工业出版社, ISBN 7-5025-4224-8,北京 2002,10:53~56.
    [18] 王肃鲁, 卢志叶. 化学防除果园田旋花试验初报. 新疆农垦科技,1994,2:24.
    [19] 王信群,黄世霞,李楠. 油菜田看麦娘对10.8 %高效盖草能抗性及对几种除草剂交互抗性的研究. 安徽农业科学, 2006,34:4022~4023.
    [20] 魏守辉,张朝贤,翟国英,李香菊,王睿文. 河北省玉米田杂草组成及群落特征. 植物保护学报, 2006,33 :212~218.
    [21] 吴加军, 宋小玲, 强胜, 耿贺利. 抗草甘膦小飞蓬检测方法的建立. 江苏农业科学, 2006,6:187~189.
    [22] 夏禹. 编译. 耐草甘膦作物的历史、现状和未来. World pesticides, 2005,27,5:14~18.
    [23] 向文胜,李孱,陶波,王相晶,李景鹏,苏少泉,张文吉. 耐草甘膦菜豆耐性分子学机理研究. 农药学学报, 2001,3:23~29.
    [24] 徐军望,冯德江,宋贵生,魏晓丽,陈蕾,伍晓丽,李旭刚,朱祯. 水稻EPSP合酶第一内含子增强外源基因的表达. 中国科学, 2003,33:224~231.
    [25] 姚姝,张保龙,沈新莲,杨郁文,徐英俊,倪万潮. 分别转CP4 EPSPS 和aroA 基因拟南芥对草甘膦的抗性. 江苏农业学报, 2006,22:302~304.
    [26] 张朝贤. 我 国 农 田 杂 草 治 理 的 差 距 与 亟 待 解 决 的 问 题 . 2005年 学 会 通 讯 第 二期.
    [27] 张朝贤,李香菊 . 杂草学学科发展. 2007-2008植物保护学学科发展报告,中国科学技术出版社, 2008,2:75~86.
    [28] 张浩,范志先,许允成 . 大豆田除草剂混用对氟乐灵抗性杂草控制作用的研究. 农药, 2000,39:36~38.
    [29] 张宏军,王萍,周志强. 杂草对草甘膦的抗性及抗性治理. 农药科学与管理, 2004,25:18~22.
    [30] 张广成,胡凡,朴英 . 大豆田抗性杂草发生趋势及综合防除 . 农机化研究 , 2003, 4: 237.
    [31] 张庆臣,张克东,孙家栋 . 麦田菵草的特征特性及防除策略 .杂草科学 , 1993,3: 36~ 37.
    [32] 中国化工信息网.草甘膦企业面临成长机遇 市场需求持续增长. http://www.cheminfo. gov.cn 2007, 10, 22.
    [33] 中国农业统计年鉴 . 2006.
    [34] 中国县域经济报 . 2007 年全国农药需求总量预计将达 30 万吨 . 2007, 0108:011
    [35] 周国民,吴福民,李华,刘才忠,李明,张国铭,葛建平,胡国顺 . 12 %收乐通乳油防除油菜田抗性禾本科杂草的药效试验. 杂草科学, 2002,3:36~37.
    [36] 周青,高金芬,刘金荣,徐淑霞,张毅,童燕 . 玉米田杂草马唐对阿特拉津、乙阿合剂的抗药性试验简报. 杂粮作物, 2005,25:274.
    [37] 朱行,郭晓东 . 全球转基因作物发展回顾、展望和对策 . 未来与发展 , 2007,6: 11~ 14.
    [38] 祝智辉. 水田稗草对二氯喹磷酸已产生明显抗药性. 山东农药信息, 2005,7:31.
    [39] Abdel-Meguid S.S., Smith W.W., Bild G.S. . Crystallization of 5-enolpyruvyl shikimate-3- phosphate synthase from Escherichia coil. J Mol Biol 1985, 186: 673.
    [40] Adegas F., Gazziero D., Nascimento E., Osipe R. www.weedscience.org. May, 26, 2008, Brail and Paraguay.
    [41] Alcocer-R.M, Thill D.C., Shafii B. . Seed biology of sulfonylurea-resistant and -susceptible biotypes lettuce (Lactuca serriola). Weed Technology 1992, 6: 858~864.
    [42] Baerson S.R., Rodiguez D.J., Tran M. . Glyphosate-resistant goosegrass identification of amutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiology 2002, 129: 1265~1275.
    [43] Bezier A., Lambert B. Baillieul F. . Molecular cloning of 5-enolpyruvylshikimate-3- phosphate synthase mRNA induced by grapevine in response to Botrytis cinerea infection. Submitted (13-SEP-2002) Equipe de Biochimie et Biologie Moleculaire des Plantes.
    [44] Blackshaw R. E., Harker K. N. . Selective weed control with glyphosate in glyphosate-resistant spring wheat (Triticum aestivum). Weed Technology. 2002,16: 885~892.
    [45] Boerboom C.M., Wyse D.L., Somers D.A. . Mechanism of Glyphosate Tolerance in Birdsfoot Trefoil(Lotus corniculatus L.). Weed Science 1990, 38: 463~467.
    [46] Boocock M.R., Coggins J.R. .Kinetics of 5-Enolpyruvylshikimate-3-phosphate Synthase Inhibition by Glyphosate. Febs Letters. 1983, 154: 127~133.
    [47] Bradshaw L.D., Padgette S.R., Kimball S. L. . Perspectives on glyphosate resistance. Weed Technology 1997, 11: 189~198.
    [48] Buchman A.R., Berg P. . Comparison of intron-dependent and intron-independent gene expression. Mol Cell Biol 1988, 8: 4395~4405.
    [49] Bunkers G.J., Sammons R.D., Feng P.C.C., Foadey W.T., CaJacob C.A. . Investigations into glyphosate resistant horseweed (Conyza canadensis): EPSPS gene family. NCBI submitted (08-FEB-2004) Monsanto Company.
    [50] Cairns A.L.P., Ecksteen F.H. . Glyphosate Resistance in Lolium rigidum(Gaud.)in South Africa. Rothamsted UK.2001, Abstract: 1~4.
    [51] Christoffers M. J. . Genetic aspects of herbicide-resistant weed management. Weed Technology 1999, 13: 647~652.
    [52] Cole D.J. . Mode of action of glyphosate - a literature analysis. Butterworths & Company Ltd, London, UK. In: The Herbicide Glyphosate (eds E Grossbard & D Atkinson).1985, 48~74.
    [53] Comai L., Sen L.C., Stalker D.M. . An altered aroA gene product confers resistance to the herbicide glyphosate. Science 1983, 221: 270~271.
    [54] Comai L., Facciotti D., Hiatt W.R., Thompson G., Rose R.E., Stalker D.M. . Expression in plants of mutant aroA gene from Salmonella tymphimurium confers tolerance to glyphosate. Nature 1985, 317: 741~744.
    [55] Cromartie, T. H., Polge N. D. . An improved assay for shikimic acid and its use as a monitor for the activity of sulfosate. Weed Science Society of America 2000,40: 291.
    [56] Culpepper A.S., Grey T.L., Vengill W.K. . Glyphosate-resistant Palmer Amaranth(Amaranthus palmeri)Confirmed in Georgia. Weed Science 2006, 54: 620~626.
    [57] DeGenaro, F.P., Weller, S.C. . Differential susceptibility of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Science 1984, 32: 472~476.
    [58] Della-Cioppa G., Bauer S.C., Klein B.K., Shah D.M., Fraley R.T., Kishore G.M. . Translocation of the precursor of 5 - enolpyruvylshikimate - 3 - phosphate synthase in chloroplasts of higherplants in vitro. Proc. Natl. Acad.Science 1986, 83: 6873~6877.
    [59] Duncan K., Lewendon A., Coggins J.R. . The purification of 5-enolpyruvylshikimate -3- phosphate synthase from an overproducing strain of Escherichia coli. FEBS Lett. 1984, 165: 121~127.
    [60] Faircloth W. H., Patterson M. G., Monks C. D., Goodman W. R. . Weed management programs for glyphosate-tolerant cotton(Gossypium hirsutum). Weed Technology 2001,15: 544~551.
    [61] Feng P.C., Chiu T., Sammons R.D. . Glyphosate efficacy is contributed by its tissue concentration and sensitivity in velvetleaf(Abutilon theophrasti). Pesticide Biochemisty Physiology 2003, 77: 83~91.
    [62] Feng P.C.C., Tran M., Chiu T. . Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Science 2004, 52: 498~505.
    [63] Forlani G., Mangiagalli A., Nielsen E., Suardi M.C. . Degradation of the phosphonate herbicide glyphosate in soil: evidence for a possible involvement of unculturable microorganisms. Soil Biology Biochemistry 1999, 31: 991~997.
    [64] Fuchs M.A. . Mechanisms of glyphosate toxixity in velvetleaf (Abutilon thephrasti Medikus) . Pesticide Biochemistry and Phsiology, 2002, 74: 27~39.
    [65] Gasser C.S., Winter J.A., Hironaka C.H. . Structure, expression, and evolution of the 5-genes of petunia and tomato. J Biol Chemistry 1988, 263: 4280~4287.
    [66] Global Status of Commercialized Biotech/GM Crops: 2006 ISAAA Briefs 35-2006: http://www. ISAAA.org Apr. 2007.
    [67] Global Status of Commercialized Biotech/GM Crops: 2007 ISAAA Brief 37-2007: Executive Summary. http://www. ISAAA.org.
    [68] Glyphosate tolerant 5-enolpyruvylshikimate 3-phosphate synthase. Europan Pantent: 0409815 AI.
    [69] Glyphosate tolerant 5-enolpyruvylshikimate 3-phosphate synthase. International patent: PCT/US91/07068.
    [70] Goldsbrough P.B., Hatch E.M., Huang B., Kosinski W.G., Dyer W.E., Herrmann K.M., Weller S.C. . Gene amplification in glyphosate tolerant tobacco cells. Plant Science 1990,72: 53~62.
    [71] Gong Y., Liao Z., Chen M., Guo B., Jin H., Sun X. Tang K. . Characterization of 5-enolpyruvylshikimate 3-phosphate synthase gene from Camptotheca acuminate. Biology Plant 2006, 50: 542~550.
    [72] Gower S. A., Loux M. M., Cardina J., Harrison S. K., Sprankle P. L., Probst N. J., Bauman T. T., Bugg W., Curran W. S., Currie R. S., Harvey R. G., Johnson W. G., Kells J. J., Owen M. D. K., Regehr D. L., Slack C. H., Spaur M., Spraque C. L., Vangessel M.,Young B. G. . Effect of postemergence glyphosate application timing on weed control and grain yield in glyphosate- resistant corn: Results of a 2-yr multi-state study. Weed Technology 2003,17: 821~828.
    [73] Grssel J., Segel L.A. .Herbicide rotations and mixtures: effective strategies to delay resistance.Symposium series Aerican Chemical Society 1990, 421: 430~458.
    [74] He M., Yang Z.Y. Nie Y.F. .A new type of class I bacterial 5-enolpyruvylshikimate-3 -phosphate synthase mutants with enhanced tolerance to glyphosate. Biochimica et Biophysica Acta 2001, 1568 : 1~6.
    [75] Heap I. . International Survey of Herbicide Resistant Weeds.http://www.weedscience.org 2001.
    [76] Heap I. . International Survey of Herbicide Resistant Weeds.http://www.weedscience.org 2003.
    [77] Heap I. . International Survey of Herbicide Resistant Weeds.http://www.weedscience.org 2006.
    [78] Heap I. . International Survey of Herbicide Resistant Weeds.http://www.weedscience.org 2008.
    [79] Heck G.R., Alibhai M., Hubmeier C.S., Flasinski S., Malven M., Qi Y., Chen Y.C.S., Bunkers G.J., Sammons R.D., Feng P.C.C., Foadey W.T., CaJacob C.A. . Investigations into glyphosate resistant horseweed (Conyza canadensis): EPSPS gene family. NCBI submitted (08-FEB-2004) Monsanto Company.
    [80] Henry, W. B., Koger C. H., Shaner D. L. . Accumulation of shikimate in corn and soybean exposed to various rates of glyphosate. Online. Crop Management 2005,doi:10.1094/CM-2005 -1123-01-RS.
    [81] Henry W.B., Shaner D.L., West M.S.. Shikimate accumulation in sunflower, wheat, and proso millet after glyphosate application. Weed Science 2007, 55:1~5.
    [82] Herrmann K.M, Weaver L.M. .The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology 1999, 50: 473~503.
    [83] Hoagland R.E. . Effects of glyphosate on metabolism of phenolic compounds: Ⅵ. Effects of glyphosine and glyphosate metabolites on phenylalanine ammonialyase activity, growth, and protein chlorophyll, and anthocyanin levels in soybean (Glycine max) seedings. Weed Science 1980, 28: 393~400.
    [84] Holt G.S. Radosevich S.R. . Herbicide resistance in weeds (Biotypes, genetic component). Proceedings California Weed Conference 1982, 34: 152~155.
    [85] Holt J., Powles S., Holtutn J. . Mechanism and agronomic aspects of herbicide resistance. Annual Review of Plant Physiology and Plant Molocular Biology 1993, 44: 203~229.
    [86] Huynh Q.K., Baner S.C., Bild G.S. . Site-directed mutagenesis of Petunia hybrida 5-enolpyruvylshikimate - 3-phosphate synthase: Lys-23 is essential for substrate binding. Biology Chemitry 1988, 263: 11636~11639.
    [87] Kent-Moor J. Falco S.D. Larson A.D. . Isolation of a pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Applied Environmental Microbiology 1983: 316~320.
    [88] Klee, H.J., Muskopf, Y.M., Gasser, C.S. . Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol. Gen. Genet 1987, 210: 437~442.
    [89] Koger, C. H., Shaner D. L., Krutz L. J., Walker T. W., Buehring N., Henry W. B., Thomas W., Wilcut J. . Rice(Oryza sativa)response to drift rates of glyphosate. Pestic.Manag. Sci. 2005, 61: 1161~1167.
    [90] Koshiba T. . Organization of enzymes in the shikimate pathway in Phaseolus mungo seedlings. Plant Cell Physiol 1979, 20: 677~680.
    [91] Leon P., Planckert F., Walbot V. . Transient gene expression in protoplasts of Phaseolus vulagaris isolated from a cell suspension culture. Plant Physiology 1991, 95: 968~972.
    [92] Lin X., Kaul S., Rounsley S., Shea T.P., Benito M., Town C.D., Fujii C.Y., Mason T., Bowman C.L., Barnstead M., Feldblyum T.V., Buell R., Ketchum K.A., Lee J., Ronning C.M., Koo H.L., Moffat K.S., Cronin L.A., Shen M., Pai G., Aken S.V., Umayam L., Tallon L.J., Gill J.E., Adams M.D., Carrera A.J., Creasy T.H., Goodman H.M., Someville C.R., Copenhaver G.P., Preuss D., Nierman W.C., While O., Eisen J.A., Salzberg L., Fraser M., Venter C. . Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 1999, 402:761~768.
    [93] Lorraine-colwill D.F., Powles S.B., Hawkes T.R. . Inheritance of Evolved Glyphosate Resistance in Lolium rigidum (Gaud.). Theoretical and Applied Genetics 2001, 102: 545~550.
    [94] Lorraine-colwill D.F., Powles S.B., Hawkes T.R. . Investigations into the mechanism of glyphosate resistance in Lolium rigidum. Pesticide Biochemistry Physiology 2003, 74: 62~72.
    [95] Lydon, J., Duke, S.O. . Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants. J. Agric. Food Chem 1988, 36: 813~818.
    [96] Maas C., Laufs J., Grant S. . The combination of a novel stimulatory element in the first exon of the maize Shrunken-lgene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Molbiology 1991, 16:199~207.
    [97] Malik R.K. . Herbicide resistant weed problems in developing world and methods to overcome them. 1996. Second International Weed Control Congress, Copenhagen. 665~673.
    [98] Majumder K., Selvapandiyan A., Fattam F.A. .5-Enolpyruvylshikimate-3-phosphate synthase of Bacillus subtileu is an allosteric enzyme. Analysis of Arg 24, Pro 105, His 385 suggest a hidden phosphoenolpyruvate-binding site. Eur. J. Biochem 1995, 229: 99~106.
    [99] Mannael?f M., Tuvesson, S., Steen, P., Tenning, P. . Transgenic sugar beet tolerant to glyphosate. Euphytica 1997, 94: 83~91.
    [100] Mazur B.J., Falco S.C. . The development of herbicide resistant crops. Annu Rev Plant Physoil 1989, 40: 441.
    [101] Mousdale D.M., Coggins J.R. . Purification and properties of 5-enolpyruvylshikimate- 3-phosphate synthase from seedlings of Pisum sativum L. Planta 1984, 160: 78~83.
    [102] Mueller T.C., Massey J.H., Hayes R.M., Main C.L., Stewart, C. N. . Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza Canadensis L. Cronq.). J. Agric.Food Chem. 2003, 51: 680~684.
    [103] Nandula V.K., Reddy K.N., Poston D.H., Rimando A.M., Duke S.O. . Glyphosate tolerance mechanism in Italian ryegrass (Lolium multiflorum )from Mississippi. Weed Science 2008 56: 344~349.
    [104] Norris R., Meryer S.E., Callis J. . The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative of chiemeric gene expression. Plant Mol Biology1993, 21: 895~906.
    [105] NG C.H., Wickneswary R., Salmihah S., Teng Y.T., Ismail B.S. .Gene polymorphisms in glyphosate- resistant and -susceptible biotypes of Eleusine indica from Malaysia. Weed Research 2003, 43: 108~115.
    [106] NG C.H., Wickneswary R., Salmihah S. . Glyphosate resistant in Eleusine indica (L.) Gaertn. from different origins and polymerase chain reaction amplification of specific Alleles. Australian Journal of Agricultural Research 2004, 55: 407~414.
    [107] Owen M.D.K. . Current use of transgenic herbicide-resistant soybean and corn in the USA. Crop Protection 2000, 19: 765~771.
    [108] Padgette S.R., Smjth C.E., Huynh Q.K., Kishore G.M. . Arginine chemical modification of petunia hybrida 5-enol-pyruvylshimimate synthase. Arch. Biochem. Biophys 1988, 266: 254~262.
    [109] Padgette S.R., Re D.B., Gassers C.S., Eichholtz D.A., Fraziers R.B., Hironaka C.M., Levine E.B., Shah D.M., Fraley R.T., Kishore G.M. . Site-directed mutagenesis of a conserved region of the 5-enolpyruvyl shikimate-s -phosphate synthase active site. J.Biol. Chem 1991, 266: 22364~22369.
    [110] Perez A., Kogan M. . Glyphosate-resistant Lolium multiflorum in Chilean Orchards. Weed Research 2003, 43: 12~19.
    [111] Perez-Jones A., Park K.J., Colquhoun C., Mallory-Smith, Shaner D. L. . Identification of glyphosate-resistant Italian ryegrass (Lolium multiflorum) in Oregon. Weed Science, 2005, 53: 775~779.
    [112] Pline W.A., Wu J.R., Hatzios K.K. . Effects of temperature and chemical additivies on the response of transgenic herbicide-resistant soybeans to glufosinate and glyphosate applications. Pesticide Biochemistry and Physiology 1999, 65: 119~131.
    [113] Pline-Srnic W. . Technical performance of some commercial glyphosate resistant crops. Pestic. Manag. Sci. 2005, 61: 225~234.
    [114] Powles S.B., Preston C., Bryan I. . Herbicide resistance: impact and management advances in agronomy. Pesticide Biochemistry Physiology 1997, 58: 57~93.
    [115] Powles S.B., Preston C. . Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Technology 2006, 20:282 ~289.
    [116] Pratley J., Baines P., Eberbach P. . Glyphosate Resistance in Annual Ryegrass. Proceedings of the 11th Annual Conference of the Grassland Society of NSW. The Grassland Society of NSW, Australia. 1996:122.
    [117] Priestman M.A, Healy M.L, Funke T., Becker A., Sch?nbrunn E. . Molecular basis for the glyphosate-insensitivity of the reaction of 5-enolpyruvylshikimate 3-phosphate synthase with shikimate. FEBS Lett. 2005, 579: 5773~5780.
    [118] Putwain P.D., Collin H.A. . Mechanism involved in the evolution of herbicide resistance in weeds [M]. Cambridge University Press. 1998, 24.
    [119] Ream J.E., Yuen H. K., Frazier R. B. . EPSP synthase: binding studies usingisothermal titration microcalorimetry and equilibrium dialysis and their implications forligand recognition and kinetic mechanism. Biochemistery 1992, 31: 5528~5534.
    [120] Rose A.B., Last R.L. . Introns act post-transcriptionally to increase expression of the Arabidopsis.thaliana tryptophan pathway gene PATI. Plant Journal 1997, 11: 455~464.
    [121] Ryan G .F..Resistance of common groundsel to simazine and atrazine,Weed Science 1970,158: 614~616.
    [122] Sammons R.D., Heering D.C., Dinicola N. . Sustainability and stewardship of glyphosate and glyphosate-resistant crops. Weed Technology 2007, 21: 347~354.
    [123] Service R. F. . A growing threat down on the farm.. Science 2007, 316:1114~1117.
    [124] Shah D.M., Horsch R.B., Klee H.J., Kishore G.M. . Herbicide tolerance in transgenic plants. Science 1986, 233: 478~491.
    [125] Shinabarger D.L., Braymer H.D. . Glyphosate catabolism by Pseudomonas sp1 strain PG2982. Journal of Bacteriology 1986, 168: 702~707.
    [126] Simarmata M., Kaufmann J.E., Penner D. . Progress in Determining the Origin of the Glyphosate-resistant Ryegrass in California. Proceedings 2001 Meeting of the Weed Science Society of America. Weed Science Society of America, Greensboro, NC, USA.2001, 95.
    [127] Simarmata M., Kaufmann J. E., Penner D. . Glyphosate resistance in California rigid ryegrass (Lolium rigidum). Weed Science 2003, 51: 678~682.
    [128] Simarmata M., D. Penner. . The Basis for Glyphosate Resistance in Rigid Ryegrass (Lolium Rigidum) from California. Weed Science 2008, 56: 181~188.
    [129] Singh B.K., Shaner D.L. . Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technology 1998, 12: 527~530.
    [130] Song X L, Wu J J, Qiang S. Establishment of a test method of glyphosate-resistant Conyza canadensis in China[C]. The 20th Asian-Pacific Weed Science Society Conference. Agriculture Publishing House, Ho Chi Ming City, 2005: 499~504.
    [131] Stallings W. C., Abdel-Meguid S.S., Lim L.W., Shieh H.S., Dayringer H.E., Leimgruber N.K., Stegman R.A., Anderson K.S., Sikorski J.A., Padgette S.R., Kishore G.M. .Structure and topological symmetry of the glyphosate target 5-enolpyrurylshikimate 3-phosphate synthase: a distinctive protein fold. Proc. Natl. Acad. Science 1991, 88: 5046~5050.
    [132] Stoltenberg D.E., Wiederholt R.J. . Giant foxtail (Setaria faberi) resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Science 1995,43: 527~535.
    [133] Takeuchi A., Imanishi S., Nagata M. . Gene expression in wounded Lettuce leaf. Submitted (25-AUG-2005) Atsuko Takeuchi, National Institute of Vegetable and Tea Science, Department of Physiology and Quality Science.
    [134] Talbot H.W., Johnson L.M., Munnecke D.M. . Glyphosate utilization by Pseudomonas sp1 and Alcaligenes sp1 isolated from environmental sources. Current Microbiology 1984, 10: 255~260.
    [135] Theologis A., Ecker J.R., Palm C.J., Federspiel N.A., Kaul F.S., White O., Alonso J., Altafi H., Araujo R., Bowman C.L., Brooks S.Y., Aprilchan E.B., Chao Q., Chen H., Cheuk R.F., Chin C., Chung M.K., Conn L., Conway A.B., Conway A.R., Creasy T.H., Dewar K., Dunn P., Etgu P.E., Feldblyum T.V., Feng J., Fong B., Fujii C.Y., Gill J.E., Goldsmith A.D., Haas B., Hansen N.F., Hughes B., Huizar L., Hunter J.L., Jenkins J., Johnson-hopson C., Khan S., Khaykin E., Kim C.J., Koo H.L., Kremenetskaia I., Kurtz D.B., Kwan A., Lam B., Langin-hooper S., Lee A., Lee J.M., Lenz C.A., Li J.H., Li Y., Lin X., Liu S.X., Liu Z.A., Luros J.S., Maiti R., Marziali A., Militscher J., Miranda M., Nguyen M., Ninerman W.C., Osborne B.I., Pai G., Peterson J., Pham P.K., Rizzo M., Rooney T., Rowley D., Sakano H., Salzberg S.L., Schwartz J.R., Shinn P., Southwick A.M., Sun H., Tallon L.J., Tambunga G., Toriumi M.J., Town C.D., Utterback T., Aken S.V., Vaysberg M., Vysotskaia V.S., Walker M.I., Wu D., Yu G., Fraser C.M., Venter J.C., Davis R.W., Sequence and analysis of chromosome 1 of the Arabidopsis thaliana. Nature 2000, 408: 816~820.
    [136] Thompson C.R., Thill D.C., Mallory Smith C.A., B. Shafii. . Characterization of chlorsulfuron resistant and susceptible kochia. Weed Technology, 1994, 8: 470~476.
    [137] Tong, X.H. .Cloning, expression, and analysis of a cotton gene encoding EPSP synthase. Submitted (27-AUG-2007) Department of Agronomy, Zhejiang University.
    [138] Totoki Y., Seki M., Ishida J., Nakajima M., Enju A. . Large-scale analysis of RIKEN Arabidopsis full-length (RAFL) cDNAs. Submitted (26-JUL-2006) Motoaki Seki, RIKEN Plant Science Center.
    [139] Tran M., Baerson S., Brinker R. . Characterization of Glyphosate Resistant Eleusine indica Biotypes from Malaysia[C]. Proceedings of the 17th Asia-Pacific Weed Science Society Conference Thailand. 1999: 527~536.
    [140] Vangessel, M. J. . Glyphosate-resistant Horseweed from Delaware. Weed Science 2001, 49: 703~705.
    [141] Wakelin, A.M., Lorraine-colwill D.F., Preston, C. . Glyphosate resistance in four different populations of Lolium rigidum is associated with reduced translocation of glyphosate to meristematic zones. Weed Research 2004, 44: 453~459.
    [142] Wakelin, A.M., Preston, C. A. . Target-site Mutation is Present in a Glyphosate Resistant Lolium rigidum Population. Weed Research 2006, 46: 432~440.
    [143] Wakelin, A.M., Preston, C. . Inheritance of Glyphosate Resistance in Several Populations of Rigid ryegrass (Lolium rigidum) from Australia. Weed Science 2006, 54: 212~219.
    [144] Wang, Y.X., Jones, J.D., Weller, S.C., Goldsbrough, P.B. . Expression and stability of amplified genes encoding 5-enolpyruvylshikimate-3-phosphate synthase in glyphosate-tolerant tobacco cells. Plant Mol. Biology 1991, 17: 1127~1138.
    [145] Xiang, W.S., Wang, X.J., Wang, X.G. . Identification and purification of the EPSP synthase. Submitted (23-JUN-2006) Northeast Agriculture University.
    [146] Xu Y., Yu H., Hall T.C. . Cytosolic triosephosphate isomerase is a single gene in rice .PlantPhysiology 1993, 101: 683~687.
    [147] Yerkes D.C., Weller S.C. . Diluent volume influences susceptibility of field bindweed(Convolvulus arvensis)biotypes to glyphosate. Weed Technology 1996, 10: 565~569.
    [148] Yuan, C.I., Chaing, M.Y., Chen, Y.M. . Triple Mechanisms of glyphosate-resistance in a naturally occurring glyphosate-resistant plant Dicliptera chinensis. Plant Science 2002, 163: 543~554.
    [149] Yuan C.I., Hsieh Y.C., Chiang M.Y. . Submitted (19-NOV-2004) Plant Toxicology Department, Taiwan Agricultural Chemicals and Toxic Substances Research Institute.
    [150] Zhang S.H., Lawton M.A., Hunter T. . atpkl a novel ribosomal protein kinase gene from Arabidopsis. I. isolation, characteriziation, and expression. J Biol Chem 1994, 269: 17586~17592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700