镧(III)、铽(III)对体内外辣根过氧化物酶活性与结构的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,稀土元素在各个领域广为应用。特别是在中国和其他一些国家,稀土微肥被成功用于促进作物生长和提高产品品质,已有30余年的历史。据报道,适量稀土对植物生长、产品品质及抗逆性方面有促进作用,但是当稀土浓度过高时,则起抑制作用,表现为“低促高抑(hormesis effect)”现象。植物体内的保护酶系统,如过氧化氢酶,过氧化物酶(POD)和超氧化物歧化酶对稀土敏感。因此,保护酶如过氧化物酶可作为生物标记物来研究酶与稀土的相互作用。然而,由于植物细胞壁的阻隔作用,稀土能否进入细胞及其对POD在植物细胞的分布、活性和结构的影响机理,以及POD生物活性和结构的关系至今仍不清楚。辣根过氧化物酶(HRP)为POD酶超家族的一员,其主要源自辣根,且HRP分离纯化及其结构研究透彻。本论文中,HRP作为过氧化物酶的典型模型,通过多学科交叉合作,研究了轻稀土离子La~(3+)和重稀土离子Tb~(3+)对植物体内外的HRP活性与结构的影响。结果主要归纳如下:
     模拟生理溶液中,轻稀土离子La~(3+)对HRP活性的影响随稀土浓度升高呈现“低促高抑(Hormesis effect)”现象。产生这种效应的成因是La~(3+)改变了HRP的构象。低浓度的La~(3+)使HRP的多肽链构象的有序结构含量增加,无序结构含量减少,使血红素卟啉环中非平面性增加,导致HRP分子血红素活性中心Fe(III)暴露程度的增加,使得HRP分子电子传递更加容易,因而HRP分子的活性增加。高浓度的La~(3+)会使HRP分子中的多肽链构象的有序结构含量减少,无序结构含量增加,整个分子更趋近于松散,使血红素卟啉环中平面性增加,导致HRP分子血红素活性中心Fe(III)的暴露程度减弱,使HRP分子电子传递更为困难,因而HRP分子的活性被抑制。La~(3+)可以和HRP分子中多肽的酰胺发生相互作用,改变多肽链的构象,从而对活性中心产生微扰。低浓度的La~(3+)和HRP相互作用,只是改变了HRP的构象,其中并没有La-HRP配合物生成。高浓度的La~(3+)和HRP相互作用,有La0.88-HRP配合物生成,0.44摩尔Ca(II)被La~(3+)取代。HRP中Ca(II)的丢失将导致HRP活性的降低。进一步解释了HRP的活性被高浓度的La~(3+)所抑制的现象。在La0.88-HRP配合物中,La~(3+)和HRP多肽链酰胺的氧原子或氮原子形成共价键,使整个分子电子云密度重新分配,从而导致HRP分子生物活性的变化。
     辣根体内HRP的活性随La~(3+)浓度的升高也呈现出低促高抑现象。低浓度的La~(3+)处理辣根,稀土离子不能进入细胞内部,在细胞壁和细胞膜上有少量稀土存在,细胞超微结构完整,叶绿体类囊体的片层结构增加,能促进HRP的酶蛋白的合成和营养元素的吸收利用,如,钙,铁。低浓度La~(3+)对辣根生长起到促进作用,此时,辣根体内没有La-HRP生成。高浓度的La~(3+)处理辣根,稀土能进入细胞内部,细胞结构受损,HRP大多集中在细胞壁上,造成细胞衰老,对辣根植物生长起到抑制作用。在该条件下,辣根体内生成La-HRP配合物,其中La~(3+)和HRP肽链上的氧原子或氮原子结合,La-HRP的分子量为43833 Da,pI 8.76,大约1摩尔的La~(3+)键合到1摩尔的HRP上形成1摩尔的La-HRP。HRP和La-HRP的性质对比研究表明, La-HRP的构象和微结构不同于HRP。两者相比,La-HRP血红素基团的平面性增加,活性中心Fe(III)的电子云密度减小,从而使La-HRP的电化学和催化活性被抑制,这可能是La~(3+)抑制辣根体内过氧化物酶的机理之一。荧光显微镜的结果表明La-HRP经食物链进入生物体,将被吸附在细胞膜上而影响膜的正常生理功能,对细胞造成伤害。
     在模拟生理溶液中Tb~(3+)和HRP相互作用,主要是抑制HRP催化活性,Tb~(3+)的这种抑制作用程度随Tb~(3+)浓度的增加而增强。Tb~(3+)可以和HRP分子中多肽的酰胺发生相互作用,改变了HRP多肽链的构象,从而对活性中心产生微扰。Tb~(3+)使HRP分子中的多肽链构象的有序结构含量减少,无序结构含量增加,整个分子更趋近于松散,使血红素卟啉环中平面性增加,导致HRP分子血红素活性中心Fe(III)暴露程度的减弱,使得HRP分子电子传递更为困难,因而HRP分子的活性受抑制。MALDI-TOF/MS和XPS结果表明Tb~(3+)对HRP活性产生抑制作用的实质是有Tb_2-HRP配合物生成,其中平均每摩尔Tb_2-HRP含有约2摩尔的Tb~(3+)。在Tb_2-HRP配合物中,Tb~(3+)和HRP多肽链的氧原子形成共价键,使整个分子电子云密度重新分配,从而导致HRP分子生物活性的变化。
     Tb~(3+)处理辣根,Tb~(3+)对HRP的抑制作用是主要的,对各项生理指标都表现出伤害效应,此时Tb~(3+)起到重金属离子的作用。电镜自显影结果显示Tb~(3+)大多集中分布在细胞壁上,少量Tb~(3+)能进入原生质体,并主要分布在液泡内,叶绿体内和叶绿体膜上。而此时HRP大多集中在细胞壁上,造成细胞衰老,对辣根植物生长起到抑制作用。在该条件下,辣根体内生成Tb4-HRP配合物,Tb4-HRP的分子量为44336 Da, pI 8.80,大约4摩尔的Tb~(3+)键合到1摩尔的HRP上形成1摩尔的Tb4-HRP,同时有0.21摩尔的钙被Tb~(3+)取代。HRP和Tb4-HRP的性质对比研究表明,Tb4-HRP的形成改变了HRP的构象和微结构,导致血红素基团的平面性增加,活性中心Fe(III)的暴露程度减小,从而使Tb4-HRP的电化学和催化活性被抑制,这可能是Tb~(3+)抑制辣根体内过氧化物酶活性的机理之一。荧光显微镜的结果表明Tb4-HRP经食物链进入生物体,将被吸附在细胞膜上而影响膜的正常生理功能,对细胞造成伤害。
     在稀土农用时,我们要慎重选择稀土离子应该为轻稀土离子如镧,并控制在较低的浓度范围。重稀土离子如铽对植物生长是有害的,应避免施用。
In the recent years, the rare earth elements (REEs) have been widely applied in many fields. Especially,the microfertilizers of REEs have been widely and successfully used in agriculture in China and other countries to promote the plant growth and to improve the quality of products for more than 30 years. It was reported that the concentration of REEs is suitable, the REEs can play a positive role in promoting the plant growth, improving the quality of products and increasing the resistance of adversity of plants. When their concentration is high, they would result in a negative effect on plants. The above effect was called the“hormesis effect”. The biological investigation indicated that the protective enzymes, such as catalase, peroxidase (POD), superoxide dismutase are very sensitive to the REEs in the plants, thus POD served as an indicator to investigate the interaction between enzymes and REEs is meaningful. However, until now, the effect and its mechanism of the REEs on the distribution and the activity of POD in the plant cells as well as the relationship between the biological activity and the structure of POD in the plants with increasing the concentration of the REEs are not known due to the barrier effect of the cell wall of the plants. Horseradish peroxidase (HRP) is one of the POD superfamily, it is mainly produced from the horseradish root and has been successfully isolated, purified and characterized. In this thesis, HRP is used as a typical model of POD, the effects of a light rare earth element La~(3+) and a heavy rare earth element Tb~(3+) on the activity and structure of HRP in vivo and in vitro were investigated by the interdisciplinary cooperation. The original results from our experiments can be mainly concluded as follows:
     The results from the investigation in vitro indicated that La~(3+) could clearly change the activity of HRP in the simulated physiological solution and show the“hormesis effect”with increasing the concentration of La~(3+). It is due to the interaction between La~(3+) and HRP, and changed the conformation of HRP. When the concentration of La~(3+) is low, the content of ordered structure of HRP was increased and the content of random coil was decreased, the non-planarity of the heme group in HRP was increased and then the exposure extent of the active center, Fe(III), in the heme group was increased. The electron transfer is promoted, thus the activity HRP is enhanced. When the concentration of La~(3+) is high, the content of ordered structure of HRP was decreased and the content of random coil was increased, the planarity of the heme group in HRP was increased and then the exposure extent of the active center, Fe(III), in the heme group was decreased. The electron transfer is inhibited, and thus the activity of HRP is inhibited. When HRP is in the presence of the low concentration of La~(3+), La~(3+) only altered the conformation of HRP, and the complex of La-HRP is not formed. However, when HRP is in the presence of the high concentration of La~(3+), La~(3+) could interact with O and/or N atoms in the polypeptide chain of HRP, and formed the complex of La0.88-HRP. The formation of the complex of La0.88-HRP disrupted the conformation of HRP and disturbed the active center, leading to the redistribution of electron density in HRP, and thus inhibited the activity of HRP.
     In horseradish, La~(3+) could significantly change the peroxidase activity and also show the“hormesis effect”with increasing the concentration of La~(3+). When horseradish is treated with the low concentration of La~(3+), La~(3+) is not entered the cell, and mainly distributed on the cell wall and plasma membrane of horseradish cell. Meanwhile, the cell ultrastructure is not destroyed, La~(3+) located on the plasma membrane can promote the uptake of the nutrients elements in cell, such as Ca, Fe. HRP distribution scope is increased, physiological index result also indicated that the low concentration of La~(3+)can promote horseradish growth. Under this condition, no La-HRP is formed in horseradish. When horseradish is treated with the high concentration of La~(3+), a large amount of La~(3+) is distributed on cell wall, some of La~(3+) has been entered into the protoplast of horseradish,leading to the distortion of the protoplast in horseradish. Meanwhile,the uptake of the nutrient elements in cell are clearly inhibited by La~(3+). In addition, the cell ultrastructure is destroyed; HRP is mainly distributed on cell wall to accelerated cell senescence; physiological index results also indicated that the horseradish growth is inhibited by La~(3+). Under this condition, a new peroxidase complex containing La~(3+) (La-HRP) was obtained from horseradish treated with the high concentration of La~(3+), in which the molecular weight of the complex of La-HRP is near 43682Da, pI is about 8.76, 1 molar of La~(3+) is bond to 1 molar of HRP. La~(3+) could interact with O and/or N atoms in the polypeptide chain of HRP. Comparing investigation of HRP and La-HRP complex indicated that the conformation and microstructure of the complex of La-HRP is different from HRP. The formation of the complex of La-HRP, redistributed the electron density of HRP, and decreased the electron density of Fe(III) in heme group and then inhibited electron transfer in HRP, thus the activity of HRP is inhibited. Therefore, the formation of the complex of La-HRP might be an inhibition mechanism of La~(3+) on peroxidase activity in horseradish. The fluorescence result indicated that La-HRP entered living organisms through food chain, it would be adsorbed on the cell membrane and disturb the cell membrane physiological function, and do harm to the cell.
     The investigation results from in vitro indicated that the inhibition effect of Tb~(3+) on the activity of HRP is dominant, and the inhibition effect is increased with increasing of the concentration of Tb~(3+). Tb~(3+) can interact with amide groups of HRP and change the conformation in HRP, and then disturb the active center. The content of ordered structure of HRP was decreased and the content of random coil was increased, the planarity of the heme group in HRP was increased and then the decrease in the exposure extent of the active center, Fe(III), in the heme group. The electron transfer is inhibited, thus the activity of HRP is decreased. MALDI-TOF/MS and XPS results indicated that the inhibition mechanism of Tb~(3+) on the activity of HRP is the formation of the complex of Tb_2-HRP. In which, 2 molar of Tb~(3+) bound to 1 molar of HRP, Tb~(3+) could interact with O atoms in the polypeptide chain of HRP, leading to the redistribution of electron density of HRP, and the inhibition of the activity of HRP.
     In horseradish, Tb~(3+) also significantly changes the activity of HRP, the inhibition effect of Tb~(3+) on the activity of HRP in horseradish is dominant. Tb~(3+) acts as a heavy metal element and brings negative effect on horseradish growth. Most of Tb~(3+) is distributed on cell wall, and some of Tb~(3+)can enter the protoplast and mainly locate in the vacuole, chloroplast and chloroplast membrane. Meanwhile, the cell ultrastructure is destroyed; HRP is mainly distributed on cell wall, accelerated cell senescence. After the horseradish treated with Tb~(3+), the morphological changes of protoplast are observed, protoplast is collapsed. Under this condition, Tb~(3+) can enter into the horseradish cell and interact with HRP, forming the complex of Tb4-HRP. The molecular weight of the complex of Tb4-HRP is near 44336Da, pI is about 8.80, and 0.21 molar of Ca(II) in 1 molar of HRP is substituted by Tb~(3+), and about 4 molar of Tb~(3+) is bound to 1 molar of HRP. The formation of the complex of Tb4-HRP in horseradish might be the dominant reason for the inhibition of the activity of HRP in horseradish. The formation of Tb4-HRP in horseradish, leading to the increase in the planarity of the heme group in HRP and then the decrease in the exposure extent of the active center, Fe(III), in the heme group, inhibit the electron transfer of HRP, and thus decrease the activity of HRP. The change in the structure of HRP in horseradish treated with Tb~(3+) may be one of the possible inhibition mechanisms of Tb~(3+) on the activity of HRP in horseradish. The fluorescence result indicated that Tb4-HRP entered living organisms through food chain, it would be adsorbed on the cell membrane and disturb the cell membrane physiological function, and do harm to the cell.
     When the rare earths were used in agriculture, we should be cautious to select the light rare earths, i.e. La~(3+), and limited the light rare earths with a low concentration, the heavy rare earths would do harm to plants, i.e. Tb~(3+), it should be avoid application.
引文
[1]王少先,彭克勤.稀土在农业上的应用及机理研究进展[J].河北农业科学,2003,6(1):66-69
    [2] Savostin, P V. The physiological action of rock phosphate (apatit) on plants[J]. Tr.Tomskogo Gos. Un-ta (in Russian) 1934,86:30-63
    [3] Savostin P V, Gobelev DP. Over the utilization of phosphoric acid from apatites by plants[J]. Tr. Tomskogo Biol. In-ta (in Russian) 1935,1:1-3
    [4] Savostin P V, Terner, I M. Catalytic action of several components of rock phosphate (apatit) on plants[J]. Tr. Biol. Nauch.-Issl. In-t. Serya Biologicheskaya. Isd. Tomskogo Un-ta. (in Russian) 1937,3:69-84
    [5] Drobkov A A. Influence of rare earths on the growth of plants[J]. Dokl AN SSSR (in Russian) 1937, 17(5):261-263
    [6] Drobkov A A. Influence of rare earths: cerium, lanthanum and samarium on the growth of peas[J]. Dokl. AN SSSR (in Russian) 1941,32(9):668-669
    [7] Drobkov A A. Influence of radioactive elements (Ra) and rare earths (RE) on crop yield and multiplication of Kokh-Saghys[J]. Dokl. AN SSSR (in Russian) 1941,32(9):666-667
    [8] Kogan B I, Skripka I P. Rare-earth elements as trace fertilizers[J]. USSR Redk Elem (in Russian) 1973,9:8-36
    [9] Horovitz C T. The content of scandium, thorium, silver, and other trace elements in different plant species[J]. Plant Soil 1974,40:397-403
    [10] Evanova I A. Influence of cerium on growth and activity of oxidation enzymes in some cultivated plants[J]. Izvestija na. Instituta po Fiziologija na Rastenijata“Metodiy Popov”,Bolgarska Akademija na Naukite (Bulletin of the Methodi Popoff Institute of Plant Physiology, Bulgarian Academy of Science) 1964, T.14:243-251
    [11] Evanova I A. Influence of cerium on growth of culture plants[J]. Izvestija na. Instituta po Fiziologija na Rastenijata‘‘Metodiy Popov,’’Bolgarska Akademija na Naukite (Bulletin of the Methodi Popoff Institute of Plant Physiology Bulgarian Academy of Science) 1970,T.16:234-248
    [12] Kawasaki Y J. Plant Tonic Based on Natural Radioactive Rare Element Mineral[P]. Japan Patent (JP), 55 007 249,1980-01-19
    [13] Alejar A A, Macandog J R, Velasco J R, et al. Effects of lanthanum, cerium, and chromium on the germination and growth of some vegetable species[J]. Philippine Agriculturist, 1988,71:185-187
    [14] Diatloff E, Smith F W, Asher C J. Rare earth elements and plant growth. I. Effects of lanthanum and cerium on root elongation of corn and mungbean[J]. J Plant Nutr,1995,18:1963-1976
    [15] Meehan B, Peverill K, Maheswaran J, et al. The Application of Rare Earth Elements in Enhancement of Crop Production in Australia, Part 1[C]. In Proceedings of the 4th International Conference on Rare Earth Development and Application. Beijing, China: 2001.16-18
    [16] Wahid P A, Valiathan M S, Kamalam N V. Effect of rare earth elements on growth and nutrition of coconut palm and root competition for these elements between the palm and Calotropis gigantean[J]. J Plant Nutr, 2000,23(3):329-338
    [17]郭伯生,竺伟民,熊炳昆,等.农业中的稀土[M].北京:中国农业科学技术出版社,1988.23-208
    [18] Liu C, Hong F, Wu K, et al. Effect of Nd~(3+) ion on carboxylation activity of ribulose-1,5-bisphosphate[J]. Biochem Biophys Res Commun, 2006,342:36-43
    [19]郭伯生.稀土农用大有作为[J].科学中国人,1995,4:35-39
    [20]熊炳昆.稀土生物功能化合物的应用研究[J].中国稀土学报,1994,12(4):358-365
    [21]郭伯生.稀土在生物领域中的应用进展[J].稀土,1999,20(1):64-68
    [22]熊炳昆,陈蓬.稀土农林研究与应用[M].北京:冶金工业出版社,2000.342-345
    [23] Huang X H, Zhou Q, Zhang G S. Advances on rare earth application in pollution ecology[J]. J. Rare Earths, 2005,23(1):5-11
    [24] Zhang Z Y, Wang Y Q, Li F L. Distribution characteristics of rare earth elements in plants from a rare earth ore area[J]. J Radioanal Nucl Chem, 2002,252 (3):461-465
    [25] Miekeley N, Casartelli E A, Dotto R M. Concentration levels of rare-earth elements and thorium in plants from the Morro do Ferro environment as an indicator for the biological availability of transuranium elements [J]. J Radioanal Nucl Chem, 1994,182(1):75-89
    [26]王玉琦,孙景信,陈洪民,等.中子活化法研究稀土矿区植物体中稀土元素的分布特征[J].中国稀土学报,1997,15 (2):160-164
    [27]魏正贵,宛寿康,张巽,等.感耦等离子体发射光谱法研究土壤-铁芒萁系统中稀土元素的分布、累积和迁移特征[J].应用生态学报,2001,12(6):863-866
    [28] Wei Y Z, Zhou X B, Maalim M O. Effect of foliar application of neodymium on the growth and nutrition of Brassica napus L[J]. Materials Sci Forum, 1999,315:348-353
    [29] Wen B , Yuan D A , Shan X Q , et al. The influence of rare earth element fertilizer application on the distribution and bioaccumulation of rare earth elements in plants under field conditions[J]. Chem Spec Bioavail, 2001,13(2):39-48
    [30]钟淑琳,闵蔚宗.茶叶中分离出一种稀土-脂多糖[J].科学通报,1994,39(9):863-863
    [31] Wang X P, Shan X Q, Zhang S Z. Distribution of rare earth elements among chloroplast components of hyperaccumulator Dicranopteris dichotoma[J]. Anal Bioanal Chem, 2003,376(6):913-917
    [32] Nagahashi G, Thomson W W. The casparian strip as a barrier to the movement of Lanthanum in corn roots[J]. Science,1974,183:670-671
    [33] Taylor A R D, Hall J L. Fine structure and cytochemical properties of tobacco leaf. protoplasts and comparison with the source tissue[J]. Protoplasma,1978,96:113-126.
    [34]董倍,吴兆明,汤锡珂.氯化镧对缺钙黄瓜根系生理的影响[J].中国稀土学报,1993,11(1):65-68
    [35]刘敏,周世恭.稀土元素镧在植物细胞生理研究中应用的进展[J].植物学通报,1995,12(4):32-37
    [36]周世恭.镧在植物体中能谱分析和超微结构定位[J].电子显微学报,1993,12(5): 400-403
    [37]周世恭.小麦不同部位组织中镧和其它元素的X-射线能谱分析[J].植物学报,1995, 37(11):889-894
    [38]周世恭,刘敏.镧在小麦不同部位组织细胞中X射线能谱分析[J].植物学报,1998, 40(2):180-183
    [39]周世恭.镧在植物学研究中的一些应用.植物学通报,1992,9(2):26-29
    [40]高小彦,郭一松,吴敦肃.研究镧在水稻幼苗组织中分布的冰冻置换法[J].植物生理学通讯.1998,34(4):270-273
    [41] Hanzely L, Harmet K H. Effect of lanthanum on cell wall elongation in Avena coleopitle segments: physiological and ultrastractural studies[J]. Zeitschrift fur Pflanzenphysiologie, 1982,107:223-230
    [42]倪嘉缵.稀土生物无机化学[M],北京:科学出版社,1995.1-8
    [43]李齐,沈应柏,柳维波.Ce在I-69杨根中的吸收、分布及其对其它元素吸收的影响[J].中国稀土学报,1995,13(4):355-360
    [44]沈志强,康林,金承志.轻稀土钕离子Nd~(3+)可以被纤维裸藻(Euglena gracilis)277摄入细胞内部[J].科学通报,1999,44(15):1590-1598
    [45]安宜.铕对小麦根细胞钙调素及NAD激酶的影响研究[J].中国稀土学报,2005,23(6):757-761
    [46]方能虎,洪法水,赵贵文.稀土元素对水稻种子萌发初期呼吸速率动态变化的影响及其定位初探[J].稀土,2000,21(5):41-43
    [47] Gao Y, Zeng F, Yi A, et al. Research of the entry of rare earth elements Eu~(3+) and La~(3+) into plant cell[J]. Biol Trace Elem Res, 2003,91(3):253-265
    [48] Evans C H. Biochemistry of the lanthanides[M]. New York: Penum Press, 1990. 212-217
    [49] Brown P H, Rathjen A H, Graham R D, et al. Rare earth elements in biological systems. In Handbook on the Physics and Chemistry of Rare Earths[M]. New York: Elsevier Sciences Publisher BV, 1990. 423-453
    [50] Squier T C, Bigelow D J, Fernandez-Belder F J, et al. Calcium and lanthanide binding in the sarcoplasmic reticulum ATPase[J]. J Biol Chem,1990,265(23):13713-13720
    [51] Leonard R T, Nagahashi G, Thomson W W. Effect of lanthanum on ion absorption in corn roots[J]. Plant Physiol, 1975,55:542-546
    [52] Pantoja O, Gelli A, Blumwald E. Voltage-dependent calcium channels in plant vacuoles[J]. Science, 1992, 225:1567-1570
    [53] Diatloff E, Smith F W, Asher C J. Rare earth elements and plant growth. II. Responses of corn and mungbean to low concentrations of lanthanum in dilute, continuously flowing nutrient solutions[J]. J Plant Nutr, 1995,18:1977-1989
    [54] Hodick D, Sievers A. The action potential of Dionaea muscipula Ellis[J]. Planta, 1988,174:8-18
    [55] Ogurusu T, Wakabayashi S, Shigekawa M. Functional characterization of lanthanide binding sites in the sarcoplasmic reticulum Ca~(2+)-ATPase: do lanthanide ions to the calciumtransport site?[J]. Biochemistry, 1991,30:9966-9973
    [56] Rengel Z. Distribution of cell Ca~(2+) homeostasis as a primary in aluminum rhizotoxicity. I. Inhibition of root growth is not caused by reduction of calcium uptake[J]. J Plant Physiol, 1994,143:47-51
    [57]翁莉萍,廖辉,邢金铭.缺钙时镧、铈对黄瓜白菜的生长及根系碱性磷酸酶活性的影响[J].华北农学报,1990,5(2):55-59
    [58]张金红,魏继中,吴隽平,等.几种镧系元素离子对人红细胞膜Ca~(2+),Mg~(2+)-ATPase活性影响的研究[J].中国稀土学报,1993,11(2):163-167
    [59] Li X, Ni J, Chen J, et al. Interaction lanthanum and calcium with human erythrocyte membranes[J]. J Rare Earths,1995,13(3):212-216
    [60] Cheng Y, Chen B, Lu J, et al. The reaction of lanthanide ions with n-doxyl stearic acids and its utilization for the ESR study on the permeability of lipid-bilayer of erythrocyte membrane to gadolinium ions[J]. J Inorg Biochem, 1998,69(2):1-7
    [61]邢金铭,翁莉萍.钙和稀土元素镧、铈对萝卜叶片衰老过程的延缓[J].稀有金属,1991,15(4):262-266
    [62]焦根林,汤锡珂,吴兆明.氯化钕对玉米根切段钾离子外渗影响的动力学研究[J].植物学报,1993,35(4):286-290
    [63]田文勋,赵景阳,白宝璋.稀土元素对甜菜种子萌发、幼苗生长及块根产量的影响[J].植物学通报,1990,7(2):37-40
    [64] Shen H, Yan X L. Membrane permeability in roots of crotalaria seedlings as affected by low temperature and low phosphorus stress[J]. J Plant Nutr, 2002,25(5):1033-1047
    [65] Petersheim M, Halladay H N, Blodnieks J. Tb~(3+) and Ca~(2+) binding to phosphatidylcholine A study comparing data from optical,NMR,and infrared spectroscopies [J]. Biophys J, 1989,56:551-557
    [66] Diatloff E, Asher C J, Smith F W. Effect of rare earth elements on the growth and mineral nutrition of plants[J]. Rare Earth Agric Seminar, 1995,(1):11-23
    [67] Wahid P A, Valiathan M S, Kamalam N V, et al. Effect of rare earth elements on growth and nutrition of coconut palm and root competition for these elements between the palm and Calotropis gigantean[J]. J Plant Nutr, 2000,23(3):329-338
    [68] Xie Z B, Zhu J G, Chu H Y, et al. Effect of lanthanum on rice production , nutrient uptake, and distribution[J]. J Plant Nutr, 2002,25(10):2315-2331
    [69] Zeng F L, Shi P, Zhang M F, et al. Effect of lanthanum on ion absorption in cucumberseedling leaves[J]. Biol Trace Elem Res, 2000,78(1-3):265-270
    [70]潘廷国,王元贞,柯玉琴.喷施稀土对甘蔗植株ATP酶和根际土壤酶活性的影响[J].作物学报,1993,19(2):133-138
    [71]聂毓秀,陈玉兰,王晓辉,等.镧、钐、铕及镱化合物对体外培养HeLa细胞的作用[J].中国稀土学报,1989,7(4):58-64
    [72]陆定志,傅家瑞,宋松泉.植物衰老及其调控[M].北京:中国农业出版社,1997.11-22
    [73]安建平,陈靠山,周樊.氯化钕对渗透胁迫引起的膜损伤和ABA含量的影响[J].中国稀土学报,1994,12(4):348-351
    [74]王金胜,郭春绒,程玉香.铈离子清除超氧自由基的机理[J].中国稀土学报,1997,15(2):151-154
    [75] Yan S, Huang X, Zhou Q, Effect of Lanthanum(III) on reactive oxygen metabolism of soybean seedlings under supplemental UV-B irradiation[J]. J. Rare Earths, 2007,25:352-358
    [76] Wei Y, Zhou X.Effect of neodymium on physiological activities in oilseed rape during calcium starvation[J]. J Rare Earths, 2000,18(1):57-61
    [77] Zeng F, An Y, Zhang H T et al. The effects of La(III) on the peroxidation of membrane lipids in wheat seedling leaves under osmotic stress[J]. Biol. Trace Elem Res, 1999,69(2):145-150
    [78]汤锡珂.稀土元素与植物生长[M].北京:中国农业科技出版社,1989.20-25
    [79] Fairclough R H, Miake-Lye R C, Stroud R M, et al. Location of terbium binding sites on acetylcholine receptor-enriched membrane[J]. J Mol Biol, 1986,189(4):673-680
    [80] Reuben J, Aqueous lanthanide shift reagents. 4. Interaction of Pr~(3+), Nd~(3+), and Eu~(3+) with xylitol. Origin of induced shifts in polyols[J]. J Am Chem Soc, 1977,99:1765-1768
    [81] Brittain H G, Richardson F S, Martin R B. Terbium(III) emission as a probe of calcium(II) binding sites in proteins[J]. J Am Chem Soc, 1976,98:8255-8260
    [82] Gariepy J, Sykes B D, Hodges R S. Lanthanide-induced peptide folding: Variations in lanthanide affinity and induced peptide conformation[J]. Biochemistry, 1983,22:1765-1772
    [83] Hadad N, Zable A C, Abramson J J, et al. Ca2+ binding sites of the ryanodine receptor/Ca2+ release channel of sarcoplasmic reticulum. Low affinity binding site(s) as probed by terbium fluorescence[J]. J Biol Chem, 1994,269:24864-24869
    [84] Liu X, Su M, Liu C, et al. Effects of CeCl3 on energy transfer and oxygen evolution in spinach photosystem II[J]. J Rare Earths, 2007,25:624-630
    [85] Zhang S, Shan X. Speciation of rare earth elements in soil and accumulation by wheatwith rare earth fertilizer application[J]. Environ Pollut, 2001,112:395-405
    [86] Wang K, Li R, Cheng Y, et al. Lanthanides-the future drugs?[J]. Coord Chem Rev, 1999,190-192:297-308
    [87] Hu Z, Richter H, Sparovek G, et al. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review[J]. J Plant Nutr, 2004,27:183-220
    [88] Welinder K G.. Amino acid sequence studies of horseradish peroxidase. Amino and carboxyl termini, cy,anogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase C[J]. Eur J Biochem, 1979,96(3):483-502
    [89] Gajhede M, Schuller D J, Henriksen A, et al. Crystal structure of horseradish peroxidase C at 2.15? resolution [J]. Nat Struct Biol, 1997,4:1032-1038
    [90] Smulevich G, Paoli M, Burke J F, et al. Characterization of recombinant horseradish peroxidase C and three site-directed mutants, F41V, F41W, and R38K by resonance raman spectroscopy[J]. Biochemistry, 1994,33:7398-7407.
    [91] Henriksen A, Smith AT, Gajhede M, et al. The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolic substrates[J]. J Biol Chem, 1999,274:35005-35011
    [92] Smulevich G., English A M, Mantini A R, et al. Resonance raman investigation of ferric ion in horseradish peroxidease and its aromatic donor complexes at room and low temperature[J]. Biochemistry, 1991,30:772-779
    [93] Veitch N C. Horseradish peroxidase: a modern view of a classic enzyme[J]. Phytochemistry, 2004,65:249-259
    [94]刘稳.植物过氧化物酶超家族的分子结构[J].生命科学,2002,14(4):212-214
    [95] Pettigrew G W, Prazeres S, Costa C, et al. The structure of an electron transfer complex containing a cytochrome c and a peroxidase[J]. J Biol Chem, 1999,274(16):11383-11389
    [96] Berglund G I, Carlsson G H, Smith A T, et al. The catalytic pathway of horseradish peroxidase at high resolution[J]. Nature, 2002,417(6887):463-468
    [97] Shi Q, Chen X, Lu T, et al. The immobilization of proteins on biodegradable polymer fibers via click chemistry[J]. Biomaterials, 2008,29:1118-1126
    [98] Wang S F, Chen T, Zhang Z-L, et al. Activity and stability of horseradish peroxidase in hydrophilic room temperature ionic liquid and its application in non-aqueous biosensing[J]. Electrochem Commun, 2007,9:1337-1342
    [99] Liu Y, Lei J, Ju H. Amperometric sensor for hydrogen peroxide based on electricwirecomposed of horseradish peroxidase and toluidine blue-multiwalled carbon nanotubes nanocomposite[J]. Talanta, 2008,74:965-970
    [100] Yan R, Zhao F, Li J, et al. Direct electrochemistry of horseradish peroxidasein gelatin-hydrophobic ionic liquid gel films[J]. Electrochim Acta 2007,52:7425-7431
    [101] Zhang L, Zhang Q, Lu X, et al. Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets[J]. Biosens Bioelectron, 2007,23:102-106
    [102] Wang Z, Li M, Su P, et al. Direct electron transfer of horseradish peroxidase and its electrocatalysis based on carbon nanotube/thionine/gold composites[J]. Electrochem Commun, 2008,10:306-310
    [103] Xiao P, Garcia B B, Guo Q, et al. TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing[J]. Electrochem Commun, 2007,9:2441-2447
    [104] Gao F, Yuan R, Chai Y, et al. Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on nano-Au/Thi/poly ( p-aminobenzene sulfonic acid)-modified glassy carbon electrode[J]. J. Biochem Biophys Methods, 2007,70:407-413
    [105] Hong J, Moosavi-Movahedi A A, Ghourchian H, et al. Direct electron transfer of horseradish peroxidase on Nafion-cysteine modified gold electrode[J]. Electrochim Acta, 2007,52:6261-6267
    [106] Shi Y-T, Yuan R, Chai Y-Q, et al. Amplification of antigen–antibody interactions via back-filling of HRP on the layer-by-layer self-assembling of thionine and gold nanoparticles films on Titania nanoparticles/gold nanoparticles-coated Au electrode[J]. J Electroanal Chem, 2007,604:9-16
    [107] Hofmann S, Wong Po Foo C T, Rossetti F, et al. Silk fibroin as an organic polymer for controlled drug delivery[J]. J Contr Rel, 2006,111:219-227
    [108] Yang X, Chen X, Zhang X, et al. Intercalation of methylene blue into layered manganese oxide and application of the resulting material in a reagentless hydrogen peroxide biosensor[J]. Sens Actuat B, 2008,129:784-789
    [109] Jutila A, Zhu K, Patkar S A, et al. Detergent-induced conformational changes of Humicola lanuginosa lipase studied by fluorescence spectroscopy[J]. Biophys J, 2000,78(3):1634-1642
    [110] Zhu K, Jutila A, Tuominen E K J, et al. Effects of i-propanol on the structural dynamics of Thermomyces lanuginosa lipase revealed by tryptophan fluorescence[J]. Protein Sci, 2001,10:339-351
    [111] Lasagna M, Gratton E, Jameson D M, et al. Apohorseradish peroxidase unfolding andrefolding: intrinsic tryptophan fluorescence studies[J]. Biophys J, 1999,76(1):443-450
    [112] Das T K, Mazumdar S. pH-induced conformational perturbation in horseradish peroxidase Picosecond tryptophan fluorescence studies on native and cyanide-modified enzymes[J]. Eur J Biochem, 1995,227:823-828
    [113] Pina D G, Shnyrova A V, Gavilanes F. et al. Thermally induced conformational changes in horseradish peroxidase[J]. Eur J Biochem, 2001,268:120-126
    [114] Debnath S, Das D, Das P K. Unsaturation at the surfactant head: Influence on the activity of lipase and horseradish peroxidase in reverse micelles[J]. Biochem Biophys Res Commun, 2007,356:163-168
    [115] Chattopadhyay K, Mazumdar S. Structure and conformation stability of horseradish peroxidase: effect of temperature and pH[J]. Biochemistry, 2000,39:263-270
    [116] Venkatesh B, Hori H, Miyazaki G, et al. Coordination geometry of Cu-porphyrin in Cu(II)-Fe(II) hybrid hemoglobins studied by Q-band EPR and resonance Raman spectroscopies[J]. J Inorg Biochem, 2002,88:310-315
    [117] Oliva C, Freddi G, Repetto S. et al. Electron paramagnetic resonance and ultraviolet/visible study of compounds I and II in the horseradish peroxidase-H2O2-silk fiber reaction system[J]. Spectrochim Acta Part A, 2003,59:1911-1917
    [118] Houen G, Struve C, S?ndergaard R, et al. Substrate specificity of the bovine serum amine oxidase and in situ characterisation of aminoaldehydes by NMR spectroscopy[J]. Bioorg Med Chem, 2005,13:3783-3796
    [119] Xu Q, Zhu J J, Hu X Y. Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction[J]. Anal Chim Acta, 2007,597:151-156
    [120] Bora U, Kannan K, Nahar P. A simple method for functionalization of cellulose membrane for covalent immobilization of biomolecules[J]. J Membrane Sci, 2005,250:215-222
    [121]亓昭鹏,陈婷婷,周青,等.稀土铽离子对辣根过氧化物酶活力指数的影响[J].无机化学学报,2004,20(9):1097-1100
    [122]赵南明,周海梦.生物物理学[M].高等教育出版社&施普林格出版社,2000.282 -300
    [123]吉红念,陆天虹,李邨,等. La~(3+)离子对过氧化氢酶活性的影响[J].化学学报,2004, 62(11):1085-1088
    [124]杜秀莲,李荣昌,王夔.用同步荧光光谱法研究铽(III)与脱铁运铁蛋白的作用[J].科学通报,2001,45(5):394-396
    [1]倪嘉缵.稀土生物无机化学[M].北京:科学出版社,1995.18-25
    [2]王伟列,涂楚桥,王光辉.稀土离子与酶分子的相互作用研究进展[J].稀土,1998,19(3):57-65
    [3]左智颖,薄云红,杨晓达,等.稀土对血红蛋白载氧功能的抑制及与血红蛋白的作用[J].中国稀土学报,1996,14(4):336-340
    [4]李晓晶,王志强,陈继,等.稀土离子(III)与牛血清蛋白作用的紫外光谱[J].应用化学,1998,15(l):5-8
    [5]杨斌盛.稀土离子与伴清蛋白结合的紫外差光谱研究[J].中国稀土学报,1999.17(3):284-287
    [6]赵雨,徐金泽,赵大庆,等.共振喇曼光谱研究稀土离子Er~(3+)对肌红蛋白结构的影响[J].高等学校化学学报,2000,21(12):1913-1915
    [7]李晓晶,张善荣,张树功,等.稀土离子(III)与牛血清蛋白结合作用的研究[J].高等学校化学学报,1999,20(1):127-131
    [8] Hu Z, Richter H, Sparovek G, et al. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review[J]. J Plant Nutr,2004,27:183-220
    [9] Veitch N C. Horseradish peroxidase: a modern view of a classic enzyme[J]. Phytochemistry, 2004,65:249-259
    [10] Ferapontova E E, Grigorenko V G, Egorov A M, et al. Direct electron transfer in the system gold electrode–recombinant horseradish peroxidases[J]. J Electroanal Chem, 2001,509:19-26
    [11] Rodrigues A P, da Fonseca L M, de Faria Oliveira O M, et al. Oxidation of acetylacetone catalyzed by horseradish peroxidase in the absence of hydrogen peroxide[J]. Biochim Biophy Acta, 2006,1760:1755-1761
    [12] Chattopadhyay K, Mazumdar S. Structural and conformational stability of horseradish peroxidase: effect of temperature and pH[J]. Biochemistry, 2000,39:263-270
    [13] El Tahir K E, Ashour M M, Al-Harbi M M. The respiratory effects of the volatile oil of the Black seed (Nigella sativa) in guinea-pigs: elucidation of the mechanism(s) of action[J]. Gen Pharmacol, 1993,24:1115-1122
    [14] Lefevre-Groboillot D, Dijols S, Boucher J L, et al. N-hydroxyguanidines as new heme ligands UV-Visible, EPR, and Resonance Raman studies of the interaction of various compounds bearing a C=NOH function with microperoxidase-8[J]. Biochemistry, 2001,40:9909-9917
    [15] Goyal R K, He X D. Evidence for NO·redox form of nitric oxide as nitrergic inhibitory neurotransmitter in gut[J]. Am J Physiol, 1998,275(Gastrointest Liver Physiol 38):G1185-G1192
    [16] Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based on horseradish peroxidase- labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer[J]. Anal Chim Acta, 1999,391:73-82
    [17] Pahari D, Patel A B, Behere D V. Spectroscopic studies on calcium depleted horseradish peroxidase: observation of tryptophan sensitized bound terbium (Ш) fluorescence[J]. J Inorg Biochem, 1995,60:245-255
    [18] Chen Y, Zhang X, Gong Y, et al. Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles[J]. J Colloid Interface Sci, 1999,214:38-45
    [19] Chen Y, Mao H, Zhang X, et al. Thermal conformational changes of bovine fibrinogen by differential scanning calorimetry and circular dichroism[J]. Int J Biol Macromol, 1999,26:129-134
    [20] Wang K, Li R, Cheng Y, et al. Lanthanides-the future drugs?[J]. Coord Chem Rev, 1999,190-192:297-308
    [21] Tang J L, Jiang J G., Song Y H, et al. Conformation change of horseradish peroxidase in lipid membrane[J]. Chem Phys Lipids, 2002,120:119-129
    [22] Qi Z, Li X, Sun D, et al. Effect of Tris on catalytic activity of MP-11[J]. Bioelectrochemistry, 2006,68:40-47
    [23] Zhang Y, He P, Hu N. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis [J]. Electrochim Acta, 2004,49:1981-1988
    [24] Welinder K G. Amino acid sequence studies of horseradish peroxidase. Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase C[J]. Eur J Biochem, 1979,96(3):483-502.
    [25] Irace G., Bismuto E, Sary F, et al. Unfolding pathway of myoglobin: molecular properties of Intermediate forms[J]. Arch Biochem Biophy, 1986,224:459-469
    [26] Carvalho A S L, Melo E P, Ferreira B S, et al. Heme and pH-dependent stability of an anionic horseradish peroxidase[J]. Arch Biochem Biophys, 2003,415:257-267
    [27] Jiang H J, Huang X H, Wang X F, et al. Promoter effect of La~(3+) on the electrochemical reaction of microperoxidase-11[J]. J Electroanal Chem, 2003,545:83-88
    [28] Huang X, Guo S, Zhou Q, et al. Effect of La~(3+) on structure and electrochemical reaction of microperoxidase-11 in imitated physiological solution[J]. J Electroanal Chem, 2007,600:227-235
    [29] Haschke R H, Friedhoff J M. Calcium-related properties of horseradish peroxidase[J]. Biochem Biophys Res Commun, 1978,80:1039-1042
    [30] Highsmith S R, Head M R. Tb~(3+) binding to Ca2+ and Mg2+ binding sites on sarcoplasmic reticulum ATPase[J]. J Biol Chem, 1983,258:6858-6862
    [31] Petersheim M, Halladay H N, Blodnieks J. Tb~(3+) and Ca2+ binding to phosphatidylcholine. A study comparing data from optical, NMR, and infrared spectroscopies[J]. Biophys J, 1989,56:551-557
    [32] Squier T C, Bigelow D J, Fernandez-Belda F, et al. Cacium and lanthanide binding in the sarcoplasmic reticulum ATPase[J]. J Biol Chem, 1990,265:13713-13720
    [33] Wu Q H, Liu M, Jaegermann W. X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3[J]. Mater Lett, 2005,59:1980-1983
    [34] Zhang Y, Wang H, Shang S X, et al. X-ray photoelectron spectroscopy study of La-modified Bi2Ti2O7 thin film[J]. Mater Lett, 2004,58:1056-1058
    [35] Beamson G, Briggs D. High Resolution XPS of Organic Polymers[M]. New York: JohnWiley and Sons,1992.85-105
    [36] Wirde M, Gelius U, Nyholm L. Self-assembled monolayers of cystamine and cysteamine on gold studied by XPS and voltammetry[J]. Langmuir, 1999,15:6370-6378
    [37] Limaye S N, Saxena M C. Relative complexing tendencies of O-O, O-N, and O-S donor (secondary) ligands in some lanthanide-EDTA mixed-ligand complexes[J]. Can J Chem, 1986,64:865-870
    [1] Zhang S, Shan X. Speciation of rare earth elements in soil and accumulation by wheat with rare earth fertilizer application[J]. Environ. Pollut, 2001,112:395-405
    [2]倪嘉缵.稀土生物无机化学[M].北京:科学出版社,1995.18-37
    [3] Wang K, Li R, Cheng Y, et al. Lanthanides-the future drugs?[J]. Coord Chem Rev, 1999,190-192:297-308
    [4] Sun H Y, Lin H, Cao Y, et al. Tb~(3+) binding to human erythrocyte spectrin resulting in conformation change and aggregation[J]. J Inorg Biochem, 1995,59:29-37
    [5] Achyuthan K E, Mary A, Greenberg C S. Tb(III)-ion-binding-induced conformational changes on platelet factor XIII[J]. Biochem J, 1989,257:331-338
    [6] Aogaichi T, Evans J, Gabriel J, et al. The effects of calcium and lanthanide ions on the activity of bovine heart nicotinamide
    [12] Ichihashi H, Morita H, Tatsukawa R. Rare earths elements (REEs) in naturally grown plants in relation to their variation in soils[J]. Environ Pollut, 1992,76:157-162
    [13] Gajhede M, Schuller D J, Henriksen A, et al. Crystal structure of horseradish peroxidase C at 2.15? angstrom resolution[J]. Nature Struct Biol, 1997,4:1032-1038
    [14] Veitch N C. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 2004,65:249-259
    [15] Haschke R H, Friedhoff J M. Calcium-related properties of horseradish peroxidase[J]. Biochem Biophys Res Commun, 1978,80:1039-1042
    [16] Arnon D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris[J]. Plant Physiol, 1949,24:1-15
    [17] Chen H H, Shen Z Y, Li P H. Adaptability of crops plants to high temperature stress[J]. Crop Sci, 1982,22:719-725
    [18] Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear[J]. Plant physiol, 1977,59:411-416
    [19] Caro L G, Van Tubergen R P. high-resolution autoradiography I. Methods[J]. J Cell Biol, 1962,15:173-188
    [20] Caro L G. High-risolution autoradiography ??. The problerm of resolution[J]. J Cell Biol, 1962,15:189-199
    [21] Andrews J, Adams S R, Burton K S, et al. Subcellular localization of peroxidase in tomato fruit skin and the possible implications for the regulation of fruit growth[J]. J Exp Bot, 2002,53:2185-2191
    [22] Saraiva J A, Nunes C S, Coimbra M A. Purification and characterization of olive (Olea europaea L.) peroxidase-Evidence for the occurrence of a pectin binding peroxidase[J]. Food Chem., 2007,101:1571-1579
    [23] Hendry G A F, Baker A J M, Ewart C F. Cadmium tolerance and toxicity. Oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive clones of Holcus Lanatus L[J]. Acta Bot Neerl, 1992,41:271-281
    [24] Dhindsa R S. Glutathione status and protein synthesis during drought and subsequent rehydration in tortula ruralis[J]. Plant Physiol, 1987,83:816-819
    [25] Peterson P J. The distribution of Zine-65 in Agrosis tenuis and A. stoloniera L. tissues4[J]. J Experi Bot, 1969,20:863-875
    [26] Poulter A, Collin H A, Thurman D A, et al. The role of cell wall in the mechanism of lead and zinc tolerance in Anthoxanthum odoratum L[J]. Plant Sci, 1985,42:61-66
    [27]徐勤松,施国新,杜开和.重金属镉、锌在菹草叶细胞中的超微定位观察[J].云南植物研究,2002,24(2):241-244
    [28]施国新,杜开和,解凯彬,等.汞,镉污染对黑藻叶细胞伤害的超微结构研究[J].植物学报,2000,42(4):373-378
    [29]徐勤松,施国新,杜开和.六价铬污染对水车前叶片生理生化及细胞超微结构的影响[J].广西植物,2002,22(1):92-96
    [30] Dejong D W. An investigation of the role of plant peroxidase in cell wall development by the histochemical method[J]. J Histochem Cytochem, 1967,15:335-346
    [31] Liu E H, Lamport D T A. An accounting of horseradish peroxidase isozymes associated with the cell wall and evidence that peroxidase does not contain hydroxyproline[J]. Plant Physiol, 1974,54:870-876
    [32] Nepovím A, PodlipnáR, Soudek P, et al. Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase[J]. Chemosphere, 2004,57:1007-1015
    [33] Davey M R, Anthony P, Power J., et al. Plant protoplasts: status and biotechnological perspectives[J]. Biotech Adv, 2005,23:131-171
    [34] Pan Z G, Liu C Z, Murch S J, et al. Plant regeneration from mesophyll protoplasts of the Egyptian medicinal plants Artemisia judaica L. and Echinops spinosissimus Turra[J]. Plant Sci, 2003,165:681-687
    [35] Cheng Y, Chen B, Lu J, et al. The reaction of lanthanide ions with n-doxyl stearic acids and its utilization for the ESR study on the permeability of lipid-bilayer of erythrocyte membrane to gadolinium ions[J]. J Inorg Biochem,1998,69:1-7
    [36] Hu Z, Richter H, Sparovek G, et al. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review[J]. J Plant Nutr, 2004,27:183-220
    [37] Squier T C, Bigelow D J, Demeist L, et al. Calcium and lanthanide binding in the sarcoplasmic reticulum ATPase[J]. J Biol Chem, 1990,265(23):13713-13720
    [38] Zeng F L, Shi P, Zhang M F, et al. Effect of lanthanum on ion absorption in cucumber seedling leaves[J]. Biol Trace Elem Res, 2000,78(1-3):265-270
    [39]潘廷国,王元贞,柯玉琴.喷施稀土对甘蔗植株ATP酶和根际土壤酶活性的影响[J].作物学报,1993,19(2):133-138
    [40]聂毓秀,陈玉兰,王晓辉,等.镧、钐、铕及镱化合物对体外培养HeLa细胞的作用[J].中国稀土学报, 1989,7(4):58-64
    [41] Collinge M, Trewavas A J. The location of calmodulin in the pea plasma membrane[J]. JBiol Chem, 1989,264:8865-8872
    [42]杨燕生,刘德龙,白娟,等.镧对小麦幼苗素质、蛋白质及钙调素水平的影响[J].稀土,1997,18(2):61-63
    [43] Irace G., Bismuto E, Savy F. Unfolding pathway of myoglobin: molecular properties of intermediate forms[J]. Biochem Biophys Arch, 1986,244:459-469
    [44] Quinn R, Mercer-Smith J, Burstyn J N. Influence of hydrogen bonding on the properties of iron porphyrin imidazole complexes-An internally hydrogen bonded imidazole ligand[J]. J Am Chem Soc, 1984,106:4136-4144
    [45] Veitch N C. Horseradish peroxidase: a modern view of a classic enzyme [J]. Phytochemistry, 2004,65:249-259
    [46] Keyhani J, Keyhani E, Zarchipour S, et al. Stepwise binding of nickel to horseradish peroxidase and inhibition of the enzymatic activity[J]. Biochim Biophys Acta, 2005,1722:312-323
    [47] Keyhani J, Keyhani E, Einollahi N, et al. Heterogeneous inhibition of horseradish peroxidase activity by cadmium[J]. Biochim Biophys Acta, 2003,1621:140-148
    [48] Beamson G, Briggs D. High Resolution XPS of Organic Polymers [M]. New York: John Wiley and Sons,1992.85-105
    [49] Wirde M, Gelius U, Nyholm L. Self-assembled monolayers of cystamine and cysteamine on gold studied by XPS and voltammetry[J]. Langmuir, 1999,15:6370-6378
    [50] Tang J L, Jiang J G., Song Y H, et al. Conformation change of horseradish peroxidase in lipid membrane[J]. Chem Phys Lipids, 2002,120:119-129
    [51] Qi Z, Li X, Sun D, et al. Effect of Tris on catalytic activity of MP-11[J]. Bioelectrochemistry, 2006,68:40-47
    [52] Zhang Y, He P, Hu N. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis[J]. Electrochim Acta, 2004,49:1981-1988
    [53] Myer Y P. Conformation of cytochromes II. Comparative study of circular dichrosim spectra, optical rotatory dispersion, and absorption spectra of horse heart cytochrome c[J]. J Biol Chem, 1968,243:2115-2122
    [54] Chen Y, Zhang X, Gong Y, et al. Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles[J]. J Colloid Interface Sci, 1999,214 :38-45
    [55] Jiang H J, Huang X H, Wang X F, et al. Promoter effect of La~(3+) on the electrochemical reaction of microperoxidase-11[J]. J Electroanal Chem, 2003,545:83-88
    [56] Huang X, Guo S, Zhou Q, et al. Effect of La~(3+) on structure and electrochemical reaction of microperoxidase-11 in imitated physiological solution[J]. J Electroanal Chem, 2007,600:227-235
    [1] Xu X, Zhu W, Wang Z, et al. Distributions of rare earths and heavy metals in field-grown maize after application of rare earth-containing fertilizer[J]. Sci Total Environ, 2002,293:97-105
    [2] Morrison J F, Cleland W W. Lanthanide-Adenosine 5’-Triphosphate Complexes: Determination of Their Dissociation Constants and Mechanism of Action as Inhibitor of Yeast Hexokinase[J]. Biochemistry, 1983,22:5507-5513
    [3] Evans C H, Ridella J D. Inhibition, by lanthanides, or neutral proteinases secreted by human, rheumatoid synovium[J]. Eur J Biochem, 1985,151 :29-32
    [4] Aogaichi T, Evans J, Gabriel J, et al. The effects of calcium and lanthanide ions on the activity of bovine heart nicotinamide adenine dinucleotide-specific isocitrate dehydrogenase [J]. Arch Biochem Biophys, 1980,204:350-360
    [5]张晓春,李邨,陆天虹,等.镧离子对植物体内过氧化物酶活性的影响[J].无机化学学报,2003,19:1285-1289
    [6]亓昭鹏,周青,杜江燕,等.Tb~(3+)离子与植物辣根过氧化物酶的作用方式探讨[J].化学学报,2005,63:1-4
    [7] Guo S, Zhou Q, Lu T, et al. Interaction between La~(3+) and MP-11 in the physiological solution[J]. Electrochim Acta, 2007,52:2032-2038
    [8] Chattopadhyay K, Mazumdar S. Structural and conformational stability of horseradish peroxidase: effect of temperature and pH[J]. Biochemistry, 2000,39:263-270
    [9] El Tahir K E, Ashour M M, Al-Harbi M M. The respiratory effects of the volatile oil of the Black seed (Nigella sativa) in guinea-pigs: elucidation of the mechanism(s) of action[J]. GenPharmacol, 1993,24:1115-1122
    [10] Lefevre-Groboillot D, Dijols S, Boucher J L, et al. N-hydroxyguanidines as new heme ligands UV-Visible, EPR, and Resonance Raman studies of the interaction of various compounds bearing a C=NOH function with microperoxidase-8[J]. Biochemistry, 2001,40:9909-9917
    [11] Goyal R K, He X D. Evidence for NO·redox form of nitric oxide as nitrergic inhibitory neurotransmitter in gut[J]. Am J Physiol, 1998,275(Gastrointest.Liver Physiol. 38):G1185-G1192
    [12] Gu H Y, Yu A M, Chen H Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode[J]. J Electroanal Chem, 2001,516:119-126
    [13] Zhao J, Henkens R W, Stonehuerner J, et al. Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodes[J]. J Electroanal Chem, 1992,327:109-119
    [14] Tang J L, Jiang J G, Song Y H, et al. Conformation change of horseradish peroxidase in lipid membrane[J]. Chem Phys Lipids, 2002,120:119-129
    [15] Qi Z, Li X, Sun D, et al. Effect of Tris on catalytic activity of MP-11[J]. Bioelectrochemistry, 2006,68:40-47
    [16] Sun D, Cai C, Li X, et al. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon[J]. J Electroanal Chem, 2004,566:415-421
    [17] Sackmann E. Supported membranes: scientific and practical applications[J]. Science, 1996, 271: 43-48
    [18] Gajhede M, Schuller D J, Henriksen A, et al. Crystal structure of horseradish peroxidase C at 2.15A resolution[J]. Nat Struct Biol, 1997,4:1032-1038
    [19] Thompson N L, Palmer A G. Model cell membranes on planar substrate[J]. Comments Mol Cell Biophys, 1988,5:39-56
    [20] Pahari D, Patel A B, Behere D V. Spectroscopic studies on calcium depleted horseradish peroxidase: observation of tryptophan sensitized bound terbium (Ш) fluorescence[J]. J Inorg Biochem, 1995,60:245-255
    [21] Chang C T, Wu C-S C, Yang J T. Circular dichroic analysis of protein conformation: inclusion of theβ-turns [J]. Anal Biochem, 1978,91:13-31
    [22] Myer Y P. Conformation of cytochromes II. Comparative study of circular dichroism spectra, optical rotatory dispersion, and absorption spectra of horseheart cytochrome c[J]. J Biol Chem,1968,243:2115-2122
    [23] Chen Y H, Yang J T, Martinez H M. Determination of the secondary structures ofproteins by circular dichroism and optical rotatory dispersion[J]. Biochemistry, 1972,22:4120-4131
    [24] Chen Y, Zhang X, Gong Y, et al. Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles[J]. J Colloid Interface Sci, 1999, 214:38-45
    [25] Veitch N C. Horseradish peroxidase: a modern view of a classic enzyme[J]. Phytochemistry, 2004,65:249-259
    [26] Hsu M C, Woody R W. The origin of the heme cotton effects in myoglobin and hemoglobin[J]. J Am Chem Soc, 1971,93:3515-3525
    [27] Jiang H J, Huang X H, Wang X F, et al. Promoter effect of La~(3+) on the electrochemical reaction of microperoxidase-11[J]. J Electroanal Chem, 2003,545:83-88
    [28] Das T K, Mazumdar S. pH-induced conformational perturbation in horseradish peroxidase. Picosecond tryptophan fluorescence studies on native and cyanide-modified enzymes[J]. Eur J Biochem, 1995,227:823-828
    [29] Chou J, Qu X G, Lu T H, et al. The effect of solution pH on synchronous fluorescence spectra of cytochrome c solutions[J]. Microchem J, 1995,52:159-165
    [30] Debnath D, Bhattacharya S, Chakrabarti A. Phospholipid assisted folding of a denatured heme protein: effect of phosphatidylethanolamine[J]. Biochem Biophys Res Commun, 2003,301:979-984
    [31] Pappa H S, Cass A E G.. A step towards understanding the folding mechanism of horseradish peroxidase Tryptophan fluorescence and circular dichroism equilibrium studies[J]. Eur J Biochem, 1993,212:227-235
    [32] Beamson G, Briggs D. High Resolution XPS of Organic Polymers[M]. New York: John Wiley and Sons, 1992.85-105
    [33] Wirde M, Gelius U, Nyholm L. Self-assembled monolayers of cystamine and cysteamine on gold studied by XPS and voltammetry[J]. Langmuir, 1999,15:6370-6378
    [34] Limaye S N, Saxena M C. Relative complexing tendencies of O-O, O-N, and O-S donor (secondary) ligands in some lanthanide-EDTA mixed-ligand complexes[J]. Can J Chem, 1986,64:865-870
    [35] Huang X, Guo S, Zhou Q, et al. Effect of La~(3+) on structure and electrochemical reaction of microperoxidase-11 in imitated physiological solution[J]. J Electroanal Chem, 2007,600:227-235
    [1]倪嘉缵.稀土生物无机化学[M].北京:科学出版社,1995.18-37
    [2] Jiang H, Wang X, Zhou Q, et al. Effect of lanthanum ion on peroxidase in plant[J]. J. Rare Earths, 2002,20:547-552
    [3] Hendry G A F, Baker A J M, Ewart C F. Cadmium tolerance and toxicity. Oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive clones of Holcus Lanatus L[J]. Acta Bot Neerl, 1992,41:271-281
    [4] Dhindsa R S. Glutathione status and protein synthesis during drought and subsequent rehydration in tortula ruralis[J]. Plant Physiol, 1987,83:816-819
    [5] Feig S, Harting J K. Ultrastructural studies of the primate parabigeminal nucleus: electron microscopic autoradiographic analysis of the tectoparabigeminal projection in Galalgo crassicaudatus[J]. Brain Res, 1992,595:334-338
    [6] Wei Y Z. Distribution, transportation and cytolocalization of neodymium in oilseed rape ( Brassica napus L.)[J]. J Rare Earths, 2001,19:157-160
    [7]周世恭,刘敏.镧在小麦不同部位组织细胞中X射线能谱分析[J].植物学报,1998,40(2):180-183
    [8]沈志强,康林,金承志.轻稀土钕离子Nd~(3+)可以被纤维裸藻(Euglena gracilis) 277摄入细胞内部[J].科学通报,1999,44(15):1590-1598
    [9]张智勇,王玉琦,孙景信,等.分子活化分析研究植物原生质体中的稀土元素[J].科学通报,2000,45(5):502-505
    [10]张智勇,王玉琦,李福亮,等.中子活化分析测定油菜叶绿体中的微量元素[J].分析化学,2001,29(4):494-494
    [11] Vitória A P, Da Cunha M, Azevedo R A. Ultrastructural changes of radish leaf exposed to cadmium[J]. Environ exp Bot, 2006,58:47-52
    [12] Cheng Y, Chen B, Lu J, et al. The reaction of lanthanide ions with n-doxyl stearic acid sand its utilization for the ESR study on the permeability of lipid-bilayer of erythrocyte membrane to gadolinium ions[J]. J Inorg Biochem, 1998,69(2):1-7
    [13] Dejong D W. An investigation of the role of plant peroxidase in cell wall development bythe histochemical method[J]. J Histochem Cytochem, 1967,15:335-346
    [14] Liu E H, Lamport D T A. An accounting of horseradish peroxidase isozymes associated with the cell wall and evidence that peroxidase does not contain hydroxyproline[J]. Plant Physiol 1974,54:870-876
    [15] Wang C, Shi G, Xu Q, et al. Toxic effect of Cd~(2+) on Potamogeton crispus alleviated by exogenous Nd~(3+)[J]. J Rare Earths, 2005,23:752-755
    [16] Gaspar T, Penel C, Castillo F J, et al. A two-step control of basic and acidic peroxidases and its significance for growth and development[J]. Physiol Plantarum, 1985,64:418-423
    [17] Ranieri A, Nali C, D’Urso G. Peroxidase activity in Cucurbita pepo L. leaves exposed to ozone[J]. Agr Mediterr, 1995,(Special volume):47-54
    [18] Irace G, Bismuto E, Savy F. Unfolding pathway of myoglobin: molecular properties of intermediate forms[J]. Biochem Biophys Arch, 1986,244:459-469
    [19] Quinn R, Mercer-Smith J, Burstyn J N. Influence of hydrogen bonding on the properties of iron porphyrin imidazole complexes-An internally hydrogen bonded imidazole ligand[J]. J Am Chem Soc, 1984,106:4136-4144
    [20] Keyhani J, Keyhani E, Zarchipour S, et al. Stepwise binding of nickel to horseradish peroxidase and inhibition of the enzymatic activity[J]. Biochim Biophys Acta, 2005,1722:312-323
    [21] Keyhani J, Keyhani E, Einollahi N, et al. Heterogeneous inhibition of horseradish peroxidase activityby cadmium[J]. Biochim Biophys Acta, 2003,1621:140-148
    [22] Tang J L, Jiang J G., Song Y H, et al. Conformation change of horseradish peroxidase in lipid membrane[J]. Chem Phys Lipids, 2002,120:119-129
    [23] Qi Z, Li X, Sun D, et al. Effect of Tris on catalytic activity of MP-11[J]. Bioelectrochemistry, 2006,68:40-47
    [24] Sun D, Cai C, Li X, et al. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon[J]. J Electroanal Chem, 2004,566:415-421
    [25] Myer Y P. Conformation of cytochromes II. Comparative study of circular dichrosim spectra, optical rotatory dispersion, and absorption spectra of horse heart cytochrome c[J]. J Biol Chem, 1968,243:2115-2122
    [26] Chen Y, Zhang X, Gong Y, et al. Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles[J]. J Colloid Interface Sci, 1999,214:38-45
    [27] Chen Y, Yang J T, Martinez H M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion[J]. Biochemistry, 1972,22:4120-4131
    [28] Veitch N C. Horseradish peroxidase: a modern view of a classic enzyme[J]. Phytochemistry, 2004,65:249-259
    [29] Jiang H J, Huang X H, Wang X F, et al. Promoter effect of La~(3+) on the electrochemical reaction of microperoxidase-11[J]. J Electroanal Chem, 2003,545:83-88
    [30] Huang X, Guo S, Zhou Q, et al. Effect of La~(3+) on structure and electrochemical reaction of microperoxidase-11 in imitated physiological solution[J]. J Electroanal Chem, 2007,600:227-235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700