改性TiO_2协同H_2O_2光催化降解间硝基苯磺酸钠的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间硝基苯磺酸钠(3NBSAS)使用广泛、结构稳定、毒性较大,对水体污染大。利用TiO_2光催化降解有机物,具有催化材料来源方便、无毒无害、光电性能优良等特点。本文旨在通过对TiO_2进行负载、掺杂,在H_2O_2协同下,可见光催化降解以3NBSAS为代表的生物难降解有机物质,同时保证催化剂具有良好的稳定性能和可回收性能。
     采用溶胶-凝胶法制备了以铁掺杂的TiO_2光催化剂,通过正交实验,考察影响催化剂性能的主要参数。结果发现:当钛酸丁酯:无水乙醇:去离子水:硝酸的体积比为20: 120: 12: 1、铁的掺杂比为1.25wt%、煅烧温度为500℃时,催化剂性能最好,反应2h,对3NBSAS的去除率为67.2%;浓度范围为0~100mg/L时,催化去除效果较好,当3NBSAS浓度为25mg/L时,pH为6,H_2O_2量为0.8mL/L,催化剂量为1.2g/L,反应2h,去除率为69.3%。
     将溶胶-凝胶法制备Fe/TiO_2光催化剂负载于活性炭上,结果表明:负载后催化剂活性得到提高,当TiO_2与活性炭的配比为0.52时,负载催化剂活性最高,反应2h,此时3NBSAS的去除率达到81.4%。循环使用五次后,该负载催化剂可回收率均高于97%,3NBSAS的去除率均高于80%。
     为实现催化剂在可见光下的活性,对负载催化剂进行S、Ce掺杂,掺Ce的载体催化剂对可见光没有响应,而掺S的载体催化剂对可见光有响应,当S的配比为1.5%时,反应4h,催化剂在可见光下对3NBSAS(25mg/L)的去除率可达到45.5%。
3-nitro-benzenesulfonic aci sodium (3NBSAS) is a widely used chemical intermediate. Due to its stability、toxicity and severe environmental pollution to the water body, the removal of 3NBSAS has become an increasingly hot topic. Photocatalytic methods using TiO_2 is favovered in the degradation of organic matter for its poisonlessness, harmlessness, excellent photoelectricity properties and high avalability of catalytic mateiral. This paper aims to remove 3NBSAS using the doped and loaded TiO_2 under visible light while ensuring the stability and recyclablity of the catalyst.
     In this paper, Fe/TiO_2 photocatalyst is prepared with sol-gel method. The influence of ethanol, deionized water, nitric acid, iron doping and calcination temperature on catalyst performance was examined by gorthogonal experiments. It was found that the catalyst had the best performance when the volume ratio of butyl titanate: ethanol: deionized water: nitric acid was 20:120:12:1.0, iron doped ratio was 1.25wt%, and calcination temperature was 500℃. The substrate removal rate was 67.2% under above conditions. The effect of reaction conditions, including solution pH, H_2O_2 volume ,amount of catalyst, substrate concentration, reaction time on catalyst performance was also considered. The results showed that the substrate concentration was the key factor. The catalyst removal efficiency was satisfactory when substrate concentration was less than 100mg/L. The substrate removal rate was 69.3%, when the substrate concentration was 25mg/L, pH was 6, H_2O_2 was 0.8mL/L, and catalyst amount was 1.2mg/L.
     Fe/TiO_2 was loaded on the activated carbon with sol-gel method. The results showed: the photocatalytic activity had been increased after loading. The removal rate of 3NBSAS is 81.4%, with a 14.2% increacement, when the proportion of TiO_2 and activated carbon is 0.52. After 5 times catalyst recycle, the recyclable rates of catalyst were higher than 97% and the substrate removal rates were all higher than 80%.
     Then the loaded catalyst was doped with S, Ce, for higher catalytic activity under visible light. The one doped with S responsed to the visible light, but the Ce-doped catalyst did not. The removal rate of 3NBSAS (25mg/L) was about 45.5% with 1.5wt% S.
引文
[1] Yuan S. Limitation of Reverse Osmosis in Electroplating and Wastewater Treatment Applications[J]. Electroplating & Finishing. 2010: 48-52.
    [2] Shah B A, Shah A V, Singh R R, et al. Reduction of Cr (Vi) in Electroplating Wastewater and Investigation On the Sorptive Removal by Wbap[J]. ENVIRONMENTAL & SUSTAINABLE ENERGY. 2011, 30(1): 59-69.
    [3]董国华.催化湿式过氧化氢氧化法降解间硝基苯磺酸钠[D].吉林大学, 2007.
    [4] Chauhan D, Sankararamakrishnan N. Modeling and Evaluation On Removal of Hexavalent Chromium From Aqueous Systems Using Fixed Bed Column[J]. JOURNAL OF HAZARDOUS MATERIALS. 2011, 185(1): 55-62.
    [5] Kwak I S, Won S W, Choi S B, et al. Sorptive Removal and Recovery of Nickel(Ii) From an Actual Effluent of Electroplating Industry: Comparison Between Escherichia Coli Biosorbent and Amberlite Ion Exchange Resin[J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING. 2011, 28(3): 927-932.
    [6] Priya P G, Basha C A, Ramamurthi V. Removal of Ni(Ii) Using Cation Exchange Resins in Packed Bed Column: Prediction of Breakthrough Curves[J]. CLEAN-SOIL AIR WATER. 2011, 39(1): 88-94.
    [7] Gautam S, Kamble S P, Sawant S B, et al. Photocatalytic Degradation of 3-Nitrobenzene-Sulfonic Acid in Aqueous Tio2 Suspensions[J]. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY. 2006, 81(3): 359-364.
    [8] Malato S, Blanco J, Vidal A, et al. Photocatalysis with Solar Energy at a Pilot-Plant Scale: An Overview[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2002, 37(1): 1-15.
    [9] Ravichandran L, Selvam K, Swaminathan M. Mineralization of Pentafluorophenol Using Photo-Fenton Processes[J]. DESALINATION. 2010, 260(1-3): 18-22.
    [10] Pera-Titus M, Garcia-Molina V, Banos M A, et al. Degradation of Chlorophenols by Means of Advanced Oxidation Processes: A General Review[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2004, 47(4): 219-256.
    [11] Zhang G K, Gao Y Y, Zhang Y L, et al. Fe2O3-Pillared Rectorite as an Efficient and Stable Fenton-Like Heterogeneous Catalyst for Photodegradation of Organic Contaminants[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY.2010, 44(16): 6384-6389.
    [12] Ma Y F, Zhang J L, Tian B Z, et al. Synthesis and Characterization of Thermally Stable Sm,N Co-Doped TiO2 with Highly Visible Light Activity[J]. JOURNAL OF HAZARDOUS MATERIALS. 2010, 182(1-3): 386-393.
    [13] Singha B, Das S K. Biosorption of Cr(Vi) Ions From Aqueous Solutions: Kinetics, Equilibrium, Thermodynamics and Desorption Studies[J]. COLLOIDS AND SURFACES B-BIOINTERFACES. 2011, 84(1): 221-232.
    [14] Bachmann R T, Wiemken D, Tengkiat A B, et al. Feasibility Study On the Recovery of Hexavalent Chromium From a Simulated Electroplating Effluent Using Alamine 336 and Refined Palm Oil[J]. SEPARATION AND PURIFICATION TECHNOLOGY. 2010, 75(3): 303-309.
    [15] Sharma S, Malik A, Satya S, et al. Development of a Biological System Employing Aspergillus Lentulus for Cr Removal From a Small-Scale Electroplating Industry Effluent[J]. ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING. 2011, 6(1): 55-63.
    [16]郑爽.用催化湿式过氧化氢氧化法降解3NBSAS[D]. 2008.
    [17]郑爽,董国华,王健,等.用催化湿式过氧化氢氧化法降解3NBSAS的影响因素[J].吉林大学学报(理学版). 2008, 46(3).
    [18]李鱼,刘建林,董国华,等.催化湿式过氧化物法(CWPO)降解3NBSAS动力学研究[J].安全与环境学报. 2007, 7(4).
    [19]姚书山.新型可见光催化剂制备及评价[D].山东大学, 2009.
    [20] M Hagfeldta. Gratzel. Light一Indueed Redox Reactions in Nanocrystalline Systems[J]. Chemical reviews. 1995, 95(1): 49-68.
    [21]石建稳.纳米TiO2光催化剂掺杂改性与负载的研究[D].中国石油大学, 2007.
    [22]刘亚兰.活性炭纤维负载二氧化钛光催化剂的制备及性能评价[D].东北林业大学, 2009.
    [23] Parilti N B, Akten D. Application of Box-Wilson Experimental Design Method for the Solar Photocatalytic Degradation of Textile Dyestuff with Fe(Iii)/H2O2/Solar Uv Process[J]. DESALINATION. 2010, 260(1-3): 193-198.
    [24] Tachikawa T, Fujitsuka M, Majima T. Mechanistic Insight Into the Tio2 Photocatalytic Reactions: Design of New Photocatalysts[J]. JOURNAL OF PHYSICAL CHEMISTRY C. 2007, 111(14): 5259-5275.
    [25] Dwyer J, Lant P. Biodegradability of Doc and Don for Uv/H2O2 Pre-Treated Melanoidin Based Wastewater[J]. BIOCHEMICAL ENGINEERING JOURNAL. 2008, 42(1): 47-54.
    [26]孙旭辉,高扬,郭凤坤,等.硅胶负载钛酸铋催化剂的制备及催化臭氧化性能[J].给水排水. 2010(05): 129-135.
    [27]马益平,胡晓云,周引穗,等.稀土掺杂TiO2基质发光特性[J].西北大学学报(自然科学版). 2010(03): 395-398.
    [28]马红超,初婷婷,付颖寰,等.水热法制备V-Al-O催化剂及其异丁烷脱氢性能[J].大连工业大学学报. 2010(03): 178-181.
    [29]张绍岩,次立杰,丁士文,等.载Ag二氧化钛纳米线的制备及其光催化性能[J].人工晶体学报. 2010(03): 761-765.
    [30]李宁.二氧化钛光催化剂的制备与改性及光电催化性能研究[D].燕山:燕山大学, 2009.
    [31]王玉萍.改性TiO2光催化剂的制备及对萘系化合物的光降解研究[D].南京理工大学, 2008.
    [32] Zhang Y, Li Q, Tang R, et al. Electrocatalytic Reduction of Chromium by Poly(Aniline-Co-O-Aminophenol): An Efficient and Recyclable Way to Remove Cr(Vi) in Wastewater[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2009, 92(3-4): 351-356.
    [33] Li L, Duan L, Xu Y, et al. A Photoelectrochemical Device for Visible Light Driven Water Splitting by a Molecular Ruthenium Catalyst Assembled On Dye-Sensitized Nanostructured TiO2.[J]. Chem Commun (Camb). 2010, 46(39): 7307-7309.
    [34] Jung J M, Wang M, Kim E J, et al. Enhanced Photocatalytic Activity of Au-Buffered TiO2 Thin Films Prepared by Radio Frequency Magnetron Sputtering[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2008, 84(3-4): 389-392.
    [35]夏慧丽.新型纳米光催化剂的制备、表征及其性能研究[D].东华大学, 2007.
    [36] Zhang Z, Shao C, Zhang L, et al. Electrospun Nanofibers of V-Doped TiO2 with High Photocatalytic Activity.[J]. J Colloid Interface Sci. 2010, 351(1): 57-62.
    [37] Chakraborty A K, Qi Z, Chai S Y, et al. Formation of Highly Crystallized TiO2(B) and its Photocatalytic Behavior[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2010, 93(3-4): 368-375.
    [38] Guo H F, Kemell M, Heikkila M, et al. Noble Metal-Modified TiO2 Thin Film Photocatalyst On Porous Steel Fiber Support[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2010, 95(3-4): 358-364.
    [39] Janus M, Morawski A W. New Method of Improving Photocatalytic Activity of Commercial Degussa P25 for Azo Dyes, Decomposition[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2007, 75(1-2): 118-123.
    [40]王幸宜.催化剂表征[M].上海:华东理工大学出版社, 2008: 23-111.
    [41] Adan C, Martinez-Arias A, Malato S, et al. New Insights On Solar Photocatalytic Degradation of Phenol Over Fe/TiO2 Catalysts: Photo-Complex Mechanism of Iron Lixiviates[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2009, 93(1-2): 96-105.
    [42]晏翠琼,陶昌,陈光学,等. Fe3+,Ce3+共掺杂纳米TiO2的制备及其光催化性能[J].云南大学学报(自然科学版). 2010(32(4)): 429-432.
    [43] Yalcin Y, Kilic M, Cinar Z. Fe3+ Doped Tio2: A Combined Experimental and Computational Approach to the Evaluation of Visible Light Activity[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2010, 99(3-4): 469-477.
    [44]候莉,孙佳佳,刘宽,等. Fe3+掺杂TiO2溶胶—凝胶法合成及其光催化性能研究[J].硅酸盐通报. 2005(03): 46-53.
    [45]马建伟.常压干燥溶胶—胶法制备Al2O3气凝胶[D].天津:天津大学, 2009.
    [46] Arconada N, Duran A, Suarez S, et al. Synthesis and Photocatalytic Properties of Dense and Porous Tio2-Anatase Thin Films Prepared by Sol-Gel[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2009, 86(1-2): 1-7.
    [47]崔兆杰,高连存,宋华.悬浮态TiO2光催化降解苯系物的方法研究[J].环境工程. 2002(04): 74-78.
    [48]铁柏清,杨佘维,隆志方,等. UV/Fe3+/Cu2+/H2O2体系深度处理垃圾渗滤液[J].环境工程. 2009(05): 7-10.
    [49]刘丰良,刘淑君,薛志超,等. Fe(Ⅲ)改性金红石TiO2可见光催化H2O2降解阿特拉津的研究[J].水处理技术. 2010(01): 67-69.
    [50]熊梅,漆新华,徐英钊,等.掺硫改性TiO2对活性艳红X-3B的光催化降解性能研究[J].环境工程学报. 2010(6): 1208-1212.
    [51] Ku Y, Chiu P, Chou Y. Decomposition of Aniline in Aqueous Solution by UV/TiO2 Process with Applying Bias Potential.[J]. J Hazard Mater. 2010, 183(1-3): 16-21.
    [52] Chong M N, Jin B, Chow C, et al. Recent Developments in Photocatalytic Water Treatment Technology: A Review[J]. WATER RESEARCH. 2010, 44(10): 2997-3027.
    [53] Carvalho H W P, Batista A P L, Hammer P, et al. Photocatalytic Degradation of Methylene Blue by TiO2/Cu Thin Films: Theoretical and Experimental Study.[J]. J Hazard Mater. 2010, 184(1-3): 273-280.
    [54] Rachel A, Subrahmanyam M, Boule P. Comparison of Photocatalytic Efficiencies of TiO2 in Suspended and Immobilised Form for the Photocatalytic Degradation of Nitrobenzenesulfonic Acids[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2002, 37(4): 301-308.
    [55]刘守新,陈广胜,孙承林.活性炭的光催化再生机理[J].环境化学. 2005(24(4)): 405-408.
    [56] Thuan D B, Kimura A, Ikeda S, et al. Lowering of Photocatalytic Activity of TiO2 Particles During Oxidative Decomposition of Benzene in Aerated Liquid[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2010, 94(1-2): 186-191.
    [57] Lv K L, Li X F, Deng K J, et al. Effect of Phase Structures On the Photocatalytic Activity of Surface Fluorinated Tio2[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2010, 95(3-4): 383-392.
    [58] Li Y X, Jiang Y A, Peng S Q, et al. Nitrogen-Doped TiO2 Modified with Nh4F for Efficient Photocatalytic Degradation of Formaldehyde Under Blue Light-Emitting Diodes[J]. JOURNAL OF HAZARDOUS MATERIALS. 2010, 182(1-3): 90-96.
    [59] Pelaez M, Falaras P, Likodimos V, et al. Synthesis, Structural Characterization and Evaluation of Sol-Gel-Based NF-TiO2 Films with Visible Light-Photoactivation for the Removal of Microcystin-Lr[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2010, 99(3-4): 378-387.
    [60]丁建军.可见光响应型光催化剂的制备、结构和性能研究[D].合肥:中国科学技术大学, 2009.
    [61] Yang L X, Xiao Y, Liu S H, et al. Photocatalytic Reduction of Cr(Vi) On WO3 Doped Long TiO2 Nanotube Arrays in the Presence of Citric Acid[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2010, 94(1-2): 142-149.
    [62] Wang N, Zhu L H, Deng K J, et al. Visible Light Photocatalytic Reduction of Cr(Vi) On TiO2 in Situ Modified with Small Molecular Weight Organic Acids[J]. APPLIED CATALYSIS B-ENVIRONMENTAL. 2010, 95(3-4): 400-407.
    [63] Yang L, Luo S, Li Y, et al. High Efficient Photocatalytic Degradation of P-Nitrophenol On a Unique Cu2O/TiO2 P-N Heterojunction Network Catalyst.[J]. Environ Sci Technol. 2010, 44(19): 7641-7646.
    [64] Ang T P, Law J Y, Han Y F. Preparation, Characterization of Sulfur-Doped Nanosized TiO2 and Photocatalytic Degradation of Methylene Blue Under Visible Light[J]. CATALYSIS LETTERS. 2010, 139(1-2): 77-84.
    [65]张秀芳,董晓丽,马春,等.氮掺杂的二氧化钛可见光光催化降解亚甲基蓝[J].大连工业大学学报. 2010(01): 66-68.
    [66]许士洪,苏晓锋,张云龙,等.具有可见光活性的氮掺杂TiO2光催化剂的制备及光催化性能[J].环境污染与防治. 2010(05): 2-4.
    [67]胡华国,王玉萍,顾凌燕,等.活性炭负载N掺杂TiO2光催化剂的制备及其可见光催化活性研究[J].南京师大学报(自然科学版). 2010(01): 62-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700