膨胀石墨对环境污染物的吸附及竞争吸附性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨胀石墨是一种可再生环境修复材料。它是以天然鳞片石墨为原料,利用电化学氧化或化学氧化的方法使某些原子或原子团插入石墨层间,得到的一种石墨层间化合物(可膨胀石墨),可膨胀石墨经过瞬时高温处理后发生膨胀,形成的一种具有丰富的孔隙结构、低堆积密度、高化学稳定性的物质。
     本文以硫酸作为插层剂,高锰酸钾为氧化剂制备膨胀石墨,并利用X-ray衍射图谱、能量色散谱、比表面积、孔径、孔容积等对原料石墨、可膨胀石墨、膨胀石墨等进行了表征。研究了膨胀石墨对聚乙烯醇的吸附性能以及对二甲酚橙和蒽醌-1-磺酸钠的竞争吸附性能。
     聚乙烯醇(PVA)是由聚醋酸乙烯醇解而得到的,性能介于橡胶和塑料之间。由于PVA具有良好的黏附性、浆膜强韧性和耐磨性,在纺织工业中得到广泛应用,但其非环保性也成为长期困扰印染废水处理的难题。由PVA构成的有机污染物浓度高且难被生物降解(B/C小于0. 1)。含PVA的印染废水排入水体后,PVA会在水环境中大量积累,使水体表面泡沫增多,黏度加大,影响好氧微生物的活动,从而造成严重的环境问题。本文以膨胀石墨为吸附剂,系统地考察了膨胀石墨对聚乙烯醇(500),聚乙烯醇(700),聚乙烯醇(1750)吸附热力学及动力学规律。
     动力学研究表明膨胀石墨对聚乙烯醇的吸附过程可以用二级模型来表示,且吸附过程为内扩散控制。热力学研究表明膨胀石墨对聚乙烯醇的吸附等温线为I型,吸附过程是自发进行的,吸附性能不仅与聚乙烯醇浓度、吸附时间、溶液离子强度等因素有关,而且与聚乙烯醇的自身分子量有关。聚乙烯醇以平躺方式吸附于膨胀石墨表面,吸附等温线可以用Langmuir方程来表征。
     用蒽醌-1-磺酸钠和二甲酚橙染料作为分子量有差异的两种有机吸附质,本文研究了它们在不同膨胀容积的膨胀石墨上的吸附及竞争吸附特性。研究表明:膨胀石墨对二甲酚橙和蒽醌-1-磺酸钠都有一定吸附能力,在单组分吸附中,二甲酚橙在膨胀石墨上的吸附等温线为II型,而蒽醌-1-磺酸钠的吸附等温线为I型;在两组分共存竞争吸附中,第二种吸附质的存在会显著降低第一种吸附质在膨胀石墨上的吸附量,但竞争吸附质的存在不影响第一种吸附质的吸附等温线类型,与单组份时相同,二甲酚橙和蒽醌-1-磺酸钠在膨胀石墨相同结构位点上存在竞争吸附;吸附过程是自发进行的,增大溶液的离子强度和膨胀容积使膨胀石墨对二甲酚橙和蒽醌-1-磺酸钠的吸附量升高,但吸附剂膨胀容积不影响其吸附等温类型;二甲酚橙和蒽醌-1-磺酸钠单组分体系、双组分体系在膨胀石墨表面上的吸附过程均可以用准二级模型来描述,吸附速率常数随吸附过程温度的升高略有增加,但影响不大,吸附作用以物理吸附为主。
Expanded graphite (EG) is a renewable environment rehabilitation material. The graphite intercalation compound with some atomes and radicles is prepared through electrochemical oxidation methods or chemical oxidation methods using natural graphite falakes as raw materials. EG is obtained through the instant expand of the graphite intercalation compound. EG have many special characteristics, such as porous structure, low density and high chemical stability.
     In this paper, graphite intercalation compound is prepared with H2SO4 as inserting reagent and KMnO4 as oxidizing agent. EG is obtained through the instant expansion of the graphite intercalation compound under 900℃. The composition, structure and properties of the graphite intercalation compound are characterized and analyzed with XRD, EDS. Specific surface area, pore diameter and pore volume of EG are also detected. Adsorption capacities of EG for Polyvinyl Alcohol (PVA) and competitive adsorption for Sodium anthraquinone-1-sulfonate (SAS) and xylenol orange (XO) are investigated.
     PVA is obtained by alcoholysis of polyvinyl acetate, and its performance is between rubber and plastic. PVA has been widely used in the textile industry because it’s good adhesion, film toughness and wear resistance, but it also has the non-environment friendly problems. PVA waste water has the characteristics of high organic pollutant concentration and difficult to be biodegradable (B/C is less than 0.1). After discharging into the water body, PVA will accumulate in water body, so that it makes the water surface foam and viscosity increase, and also affect the activities of aerobic microorganisms. So it can result in serious environmental problems. In the present study, EG is used as an adsorbent, and its adsorption capacity for PVA with different polymerization degrees (DP) of 500, 700, 1750, is studied. We investigate the adsorption kinetic and thermodynamic characteristics of EG for PVAs in aqueous solution.
     Kinetic studies show that the kinetic data can be delineated by pseudo second-order kinetic model, and internal diffusion may dominate the overall adsorption kinetics. The thermodynamic studies show that the adsorption of PVA on EG is spontaneous and the adsorption isotherm on EG is type I. Adsorption capacities are not only dependent on initial concentration of PVA, adsorption time and ionic strength, but also relate with the polymerization degree of PVA. The adsorption characteristics can be described with Langmuir isotherms equation, and the adsorbed PVA molecules lie flat on the surface of EG.
     In the research, two compounds of Sodium anthraquinone-1-sulfonate (SAS) and xylenol orange (XO) with obvious difference in molecular weights were selected as organic adsorbates. The adsorption and competitive adsorption characteristics on EG were studies. The results are: EG has adsorption capacity for both SAS and XO. In the adsorption of single component system, the isotherm of SAS on EG is type I; while, isotherm of XO is type II. In the competitive adsorption of dual component system, the existence of the other component SAS or XO would greatly decrease the adsorbance of EG for XO or SAS, which might be caused by the competitive adsorption of SAS and XO for the same adsorbing site on EG. But the existence of competitive adsorbates doesn’t affect the adsorption isotherm, it is the same as the one-component system. Adsorption of SAS or XO on EG is spontaneous, and the increase of ionic strength, temperature and expansion volume of adsorbates would cause the increase of SAS or XO adsorbance, but expansion volume does not affect adsorption isotherm type. No matter the adsorption of single component system of SAS or XO, or the competitive adsorption of dual component system of SAS and XO, the adsorption kinetics models can all be well described with pseudo second-order kinetic model. Adsorption rate increases with the increase in temperature. Physical adsorption is the main action between EG with SAS or EG with XO.
引文
[1] Schafhaeutl C. On the combinations of carbon with silicon and iron, and other metals, forming the different Species of Cast Iron, steel, and malleable iron [J]. Phil. Mag.1840, 16: 570-590.
    [2]郑树彬.膨胀石墨的制备及其吸附性能研究[D].福建师范大学, 2007.
    [3]林雪梅.可膨胀石墨的化学氧化法制备研究进展[J].碳素, 2005, (4): 44-46.
    [4]张启彪,乔英杰,甄捷.膨胀石墨制备及性能研究[J].炭素, 2005, (3): 18-20.
    [5] Toyoda M. , Inagaki M. . Heavy oil sorption using exfoliated graphite New application of exfoliated graphite to protect heavy oil pollution [J]. Carbon, 2000, 38: 199-210.
    [6]沈万慈,曹乃珍,温诗铸,等.膨胀石墨对有机化合物的吸附[J].炭素技术, 1996, (3): 1-5.
    [7]曹乃珍,温诗铸,沈万慈.膨胀石墨的微观结构及吸附性能[D].清华大学机械系,1997.
    [8]黎梅,高风格.一种新型的工程材料-膨胀石墨[J].化学教育, 1999, (4): 1-3.
    [9]肖丽,金为群,张华蓉.膨胀石墨与柔性石墨及其应用[J]中国非金属矿工业导刊, 2005, (6): 17-18.
    [10]蒋舒,杨伟,李媛.可膨胀石墨阻燃聚丙烯的结构与阻燃性能[J].塑料工业, 2006, 126(3): 48-50.
    [11]阎爱华,周志强,吴泽.可膨胀石墨/聚磷酸铵协同阻燃聚乙烯的研究[J].化学工程, 2006, 126(3): 48-50.
    [12]陈志刚,张勇,杨娟,等.膨胀石墨的制备、结构和应用[J].江苏大学学报(自然科学版), 2005, 3(26): 248-252.
    [13]张宝杰,宋南哲,杨雪彬,等.柔性石墨增强密封材料的制备工艺[J].哈尔滨理工大学学报, 2006, (03).
    [14]王厚山.膨胀石墨的化学氧化法制备研究进展[J].中国非金属矿工业导刊, 2008, 4(69): 8-20.
    [15] Toyoda M. , Moriya K. J. , Aizawa J. I. , et al. Sorption and recovery of heavy oils by using exfoliated graphite. Part I: Maximum sorption capacity[J]. Desalination 2000, 128: 205?211.
    [16] Toyoda M ., Inagaki M. . Sorption and recovery of heavy oils by using exfoliated graphite [J]. Spill Science & Technology Bulletin, 2003, 8(5): 467-474.
    [17] Toyoda M. , Aizawa J. , Inagaki M. . Sorption and recovery of heavily oil by using exfoliated graphite [J]. Desalination, 1998, 115 : 199-201.
    [18]曹宏,宾晓蓓,陈加藏.膨胀石墨对机油吸附性能的实验研究[J].岩石矿物学杂志, 2003, 22(4): 374-376.
    [19] Zheng Y. P. , Wang H. N. , Kang F. Y. , et al. Sorption capacity of exfoliated graphite for oils-sorption in and among worm-like particles[J]. Carbon, 2004, 42 : 2603-2607.
    [20] Inagaki M. , Konno H. , Toyoda M. , et al. Sorption and recovery of heavy oils by using exfoliated graphite-partⅡ: Recovery of heavy oil and recycling of exfoliated graphite[J]. Desalination, 2000,128 : 213-218.
    [21]李增新,王彤,孟韵,等.膨胀石墨在环境污染治理中的应用[J].环境工程学报, 2007, 1(2): 69-72.
    [22]孙力学,陈志刚,赵晓兵,等.改性膨胀石墨对甲醛的吸附性能研究[J].炭素, 2007, 4(132): 36-39.
    [23]王凯.氯化钙/膨胀石墨混合吸附剂的吸附特性及其在双热管吸附制冷系统中的应用[D].上海交通大学2007.
    [24]曹乃珍,沈万慈,金传波.新型石墨材料对水中油性物质脱除的实验研究[J].中国环境科学, 1997, 17(2): 188-190.
    [25]周伟,兆恒,胡小芳,等.膨胀石墨水中吸油行为及机理的研究[J].水处理技术, 2001, 6(27) :335-337.
    [26]卓仪若,邱滔,吕新宇,等.膨胀石墨吸附环己胺废气的研究[J].安徽农业科学, 2008, 36(1): 304, 343.
    [27]李冀辉,高元哲,刘淑芬,等.膨胀石墨对酸性染料废水的吸附脱色作用[J].四川大学学报, 2007, 2(44): 399-402.
    [28]陈国华,吴翠玲,吴大军,等.聚甲基丙烯酸甲酯/石墨薄片纳米复合及其导电性能研究[J].高分子学报, 2003, (5): 742-745.
    [29]黄启忠,谢有赞,吴国锋,等.颗粒膨胀石墨在干电池中的应用研究[J].碳素, 1993, 3: 45-49.
    [30]赖奇,李玉峰,刘国钦.细鳞片膨胀石墨在燃料电池中的应用分析[J].攀枝花学院学报, 2007, 6(24).
    [31] Shen W. C. , Wen S. Z. , Cao N. Z. , et al. Expanded graphite—a new kind of biomedical material [J]. Carbon, 1999, 37(2) : 356-358.
    [32]张占辉,默丽萍.石墨催化的有机化学反应[J].河北师范大学学报(自然科学版), 2000, 24(3): 366-370.
    [33]刘占荣,张萍,许保恩,等.可膨胀石墨催化合成乳酸正丁酯[J].化学试剂, 2007, 29(11): 639-694.
    [34]刘占荣,张萍,魏青,等.可膨胀石墨催化合成三乙酸甘油酯[J].河北师范大学学报(自然科学版), 2006, 30(3): 329-335.
    [35]赵少飞,庞秀言,李瑞芳,等.可膨胀石墨对动物油脂的催化酯交换反应研究[J].炭素, 2007, (4): 19-22.
    [36]梁晓娜.用于红外/毫米波干扰材料的可膨胀石墨制备及性能研究[D].南京理工大学, 2007.
    [37]曹宏,李儒,蔡细荣,等. CoCl2-FeCl3-膨胀石墨层间化合物电学及磁学性能表征[J].炭素技术, 2008, 2(27): 15-18.
    [38]曹宏,宾晓蓓,蔡细荣,等. CoCl2-FeCl3-膨胀石墨层间化合物制备[J].化学与生物工程, 2006,23(5): 9-11.
    [39]任慧,康飞宇,焦清介,等.掺杂磁性铁粒子膨胀石墨的制备及其对毫米波的干扰作用[J].新型炭材料, 2006, 1(21).
    [40]乔小晶,张同来,任慧,等.爆炸法制各膨胀石墨及其干扰功能[J].火炸药学报, 2003, 26(1): 70-73.
    [41]赖奇,李敏杰,刁毅,等.膨胀石墨颗粒对黑曲霉生长的影响[J].安徽农业科学, 2008, 36(7): 2620, 2623.
    [42]兆恒,周伟,曹乃珍,等.膨胀石墨的孔隙结构及其在液相吸附/吸着时的变化[J].材料科学与工程, 2002, 20(2): 153-159.
    [43]靳通收,马艳然,李强.可膨胀石墨的制备[J].无机化学学报, 1997, 13(2): 231-233.
    [44]金为群,权新军,蒋引珊,等.用磷酸酐制备无硫可膨胀石墨的研究[J].非金属矿, 2000, 23(1): 17-18.
    [45]刘淑芬,李冀辉.低硫高倍膨胀石墨的制备研究[J].炭素, 2005, 123: 36-38.
    [46]赵正平.电解法制备无硫可膨胀石墨研究[J].非金属矿, 2003, 26(2): 18-19.
    [47]魏兴海,张金喜,史景利.无硫高倍膨胀石墨的制备及影响因素探讨[J].新型炭材料, 2004, 19(1): 45-48.
    [48]国家技术监督局.石墨化学分析方法GB/T 3521-1995 [S].北京:中国标准出版社, 1995, 1-10.
    [49]郭丽.脱浆废水中聚乙烯醇的回收研究[D].东华大学, 2008.
    [50]历成宣,范雪荣,王强.退浆废水中PVA对环境的影响及其降解性能[J].印染助剂, 2007, 24(6):7-10.
    [51]朱谱新,姚永毅. PVA浆料的生物降解性及应用前景[J].棉纺织技术, 2005, 33(2): 62-64.
    [52]张惠珍,刘白玲,罗荣. PVA及其复合材料生物降解研究进展[J].中国科学院研究生院学报,2005,22(6):657-666.
    [53]孙丽琴.聚乙烯醇的生产及市场前景分析[J].石油化工技术经济, 2002, 18(3): 33~36.
    [54]万洪安.水溶性高分子化合物聚乙烯醇类型牌号及应用[J].造纸化学品,2003(3): 45-46.
    [55]胡惠仁,徐立新,董荣业.造纸化学品[M].北京:化学工业出版社, 2002. 360-362
    [56]钱鹭生,曹丽云,凌永龙,等.涂布加工纸技术手册[M].北京:中国轻工业出版社, 2000. 89-91.
    [57]严瑞萱.水溶性高分子[M].北京:化学工业出版社, 1998. 70-81.
    [58]戚昌民,郭庆怀,李欣.纸板用高分子树脂粘合剂[J].北京:中国轻工业出版社, 1993, (6): 13-14.
    [59]田炳寿,郭建萍,贾向群.聚乙烯醇降解的研究[J].湖南化工, 1997,3 , 27(1): 23-24, 31.
    [60] Lee J. A. , Kim M. N. . Isolation of new and potent poly(vinyl alcohol)-degrading strains and their degradation activity[J]. Polymer Degradation and Stability, 2003, 81(2): 303-308.
    [61]林少宁,方柏容. F8633菌降解聚乙烯醇特性的研究[J].中国纺织大学学报, 1990, 16(3): 18-23.
    [62]林健.生化技术在PVA行业废水治理的应用[J].福建轻纺, 2005, 10: 36-41.
    [63] Porter J. J. Recovery of polyvinyl alcohol and hot water from textile wastewater using thermally stable membranes[J]. Journal of Membrane Sciebce, 1998, 15(1): 45-53.
    [64]董声雄,龚琦,赵素英.超滤法分离PVA退浆水的研究[J].纺织学报, 2004, 25(2): 73-75.
    [65]阎德顺.凝结法回收退浆废水中的聚乙烯醇[J].纺织学报, 1984, 5(8): 42-46.
    [66] Tadros T. F.. Adsorption of polyvinyl alcohol on silica at various pH values and its effect on the flocculation of the dispersion[J]. Journal Colloid Interface Science, 1978, 64: 36-47.
    [67] Tadros T. F., Vincent B.. The influence of electrolytes on adsorption of polyvinyl alcohol on polystyrene particles and the stability of polymer coated particles[J]. Journal Colloid Interface Science, 1979, 72: 505-514.
    [68] Kaj B. , Jarl B. , Rosen H., et al. The influence of surface chemical properties of kaolin surfaces on the adsorption of poly(vinyl alcohol) [J]. Colloids and Surface A: Physicochemical Engneering Aspects, 2006, 275: 133-141.
    [69] Bajpai A. K., Vishwakarma N.. Adsorption of polyvinyl alcohol onto Fuller’s earth surfaces[J]. Colloids and Surface A: Physicochemical Engneering Aspects, 2003, 220: 117-130.
    [70] Bussetti S. G., Fereiro E. A.. Adsorption of polyvinyl alcohol on Montmorillonite[J]. Clays Clay Mineral, 2004, 52(3): 334-340.
    [71] Behera S. K. , Kim J. H., Guo X. J., et al. Adsorption equilibrium and kinetics of polyvinyl ajcohol from aqueous solution on powered activated carbon[J]. Hazardous Materials, 2008, 153(3): 1207-1214.
    [72]陈荣平,张兴.废水中聚乙烯醇的分光光度法测定[J].北方环境, 2004, 829(4): 68-70.
    [73] Wu Z J, Joo H, Lee K. Kinetics and thermodynamics of the organic dye adsorption on the mesoporous hybrid xerogel[J]. Chemical Engineering Journal, 2005, 112: 227-236.
    [74] Aksu Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling[J]. Biochemical Engineering, 2001, 7: 79-84.
    [75] Wu Z J, Joo H, Lee K. Kinetics and thermodynamics of the organic dye adsorption on the mesoporous hybrid xerogel[J]. Chemical Engineering Journal, 2005, 112: 227-236.
    [76] Pang X. Y. . Study on the adsorption kinetics and thermodynamics characteristics of expanded graphite for polyethyene glycol[J]. E-Journal of Chemistry, 2010, 7(4): 1258-1265.
    [77] Aksu Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling[J]. Biochemical Engineering, 2001, 7: 79-84.
    [78] Kang F .Y., Zheng Y. P., Zhao H., et al. Sorption of heavy oils and biomedical liquids into exfoliated graphite-research in China [J]. New Carbon Mater, 2003, 18(3): 161-173.
    [79]梁志荣.染料废水物理化学处理技术的现状与进展[J].四川环境, 2003, 22(6): 25~29
    [80]徐颖,赵菊香,朱加征.物化一生化法处理染料中间体生产废水[J].环境保护科学, 2002, 112(28): 15-17
    [81]陆朝阳,沈莉利,张全兴.吸附法处理染染料废水的工艺及机理研究进展[J].工业水处理, 2004,24(3): 12-16.
    [82]李因.染料废水处理技术的研究进展[J].化工时刊, 2005, 19(10):60-64.
    [83]华彬,陆永生.外循环三相流化床处理染料废水[J].过程工程学报, 2002, 2(2): 107-111.
    [84]肖继波,王汉道.染料脱色菌的筛选及对活性艳红X~3B的脱色研究[J].环境保护科学, 2005, 131(31): 131-133.
    [85]高宝玉,刘保东,王淑仁.一种染料废水涂色絮凝剂(PSAM)的制备和效果实验[J].环境科学, 1992, 13(1): 54-59.
    [86]刘开平,周敬恩.膨胀石墨化学氧化法制备技术研究进展[J].长安大学学报,地球科学版, 2003, 25(4): 85-91.
    [87]雷阳明,申哲民,贾金平,等.电化学氧化法和高铁混凝法处理染料废水的研究[J].环境科学与技术, 2006, 29(2): 75-77.
    [88]陶庆会,唐鸿宵.两种染料与阿特拉津在沉积物上的竞争吸附[J].中国环境科学, 2004, 24(2): 129-133
    [89]方春芽.阳离子嫩黄染料与苯酚在活性炭上竞争吸附的研究[D].清华大学硕士论文, 1987.
    [90]刘福强,陈金龙.复合功能吸附树脂对双组分萘系化合物的竞争吸附研究[J].复合功能树脂, 2003, 10: 17-20.
    [91] Pelekani C., Snoeyink V. L.. A kinetic and equilibrium study of competitive adsorption between atrazine and Congo red dye on activated carbon: the importance of pore size distribution[J]. Carbon, 2001, 39 (1): 25-37.
    [92]胡巧开,揭武.改性粉煤灰对二甲酚橙的吸附研究[J].上海化工, 2006, 31(9): 5-7.
    [93]王珊,郑燕敏,叶光辉,等.空心壳聚糖微粒对二甲酚橙的吸附性能研究[J].环境污染与防治, 2008, 30(12): 43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700