复方萘酚阿奇对延缓恶性疟原虫抗性的实验性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究目的
     1.1观察对照组(对照组单一用萘酚喹)与实验组(萘酚喹与阿奇霉素联合用药)恶性疟原虫在体外药物刺激(压力)下,疟原虫对其敏感性的变化情况或产生速度。
     1.2用WHO推荐的Rieckmann体外测定不同阶段对照组与实验组恶性疟原虫对萘酚喹、阿奇霉素、复方萘酚阿奇的敏感性,计算半数抑制量(IC50)。
     1.3阐述两药物联用体外抗疟作用的特点;评价两药物联合有或无延缓抗性的作用或潜力。为疟疾的联合用药的临床治疗方案提供科学依据。
     2.研究方法
     2.1虫株与培养:恶性疟原虫FccSM/YN株,该株采自位于中老、中缅边境地区云南思茅,按Trager等蜡烛缸培养法,通过实验室驯化,建立体外传代培养,实验室长期保种虫株。
     2.2药物作用观察:用体外剂量递增间隔接触法进行抗性培育
     2.3体外测定:测试采用Rieckmann体外微量测定法。将同步化处理过的疟原虫稀释到20,000-60,000个/μl血,加5倍培养基稀释,混匀后加入测定板各药井,从低浓度到高浓度每井加50μl,每个浓度同时测定两组(2行)。37℃培养20-24h后收获1个对照井,视其疟原虫发育情况决定收获时间。用ICEstimator software计算IC50。
     2.4判别标准接触药物后的恶性疟原虫的IC50较亲代上升5倍以上,可认为对该药的敏感性下降。在相同的抗性培育时间内,接触萘酚喹/阿奇霉素的恶性疟原虫的IC50分别较亲代上升5倍,可认为对该药的敏感性下降;萘酚喹/阿奇霉素对恶性疟原虫的IC50分别与亲代相比,无明显上升或者虽然有所上升,但明显低于对照组,可认为该联合用药有延缓抗性作用。
     3.结果
     3.1药物接触的次数、浓度及结果对照组恶性疟原虫接触萘酚喹120天,共接触药物15次,药物浓度分别为2.56nmol/L5次,160nmol/L2次,5、10、20、40、80、320、625、1280nmol/L各1次。接触药物前,敏感株(亲代系)的IC50为2.11nmol/L,药物刺激15次后,其IC50增至65.47nmol/L。为亲代原虫的31倍。实验组恶性疟原虫接触萘酚喹/阿奇霉素共120天,共接触药物19次,药物浓度分别为0.31/0.256nmol/L 8次,2.49/2.135 nmol/L 5次,0.625/0.53、4.98/4.27、9.735/8.34、19.47/16.685、38.94/33.375、77.88/66.755nmol/L各一次。接触药物前,敏感株(亲代系)的IC50为0.18 nmol/L、0.15nmol/L,药物刺激19次后,其IC50增至2.89 nmol/L、2.68 nmol/L,分别为亲代原虫的16.1倍、17.9倍。
     3.2用药前恶性疟原虫的敏感性测定结果在恶性疟原虫未接触药物前,在萘酚喹测定板、阿奇霉素测定板及萘酚喹/阿奇霉素复合测定板中测定疟原虫的敏感性,在单一萘酚喹测定板中测得IC50为2.11nmol/L;在单一的阿奇霉素测定板中测得IC50为3.21 nmol/L;在萘酚喹/阿奇霉素复合测定板中测得萘酚喹与阿奇霉素的IC50分别为0.18nmol/L、0.15 nmol/L。单一测定板中萘酚喹的IC50是复合测定板的11.7(2.11/0.18)倍;阿奇霉素的IC50是复合测定板的21.4(3.21/0.15)倍。
     3.3对照组恶性疟原虫接触萘酚喹前后(药物刺激15次,历时120天)的敏感性测定结果对照组恶性疟原虫在单一接触萘酚喹后的IC50为单一接触萘酚喹前的31.0(65.47/2.11)倍。对照组疟原虫在单一接触萘酚喹后对阿奇霉素的敏感性是单一接触萘酚喹前的21.4(68.58/3.21)倍。
     3.4实验组恶性疟原虫接触萘酚喹/阿奇霉素前后(药物刺激19次,历时120天)的敏感性测定结果实验组疟原虫在接触萘酚喹/阿奇霉素后对萘酚喹的IC50为接触药物前的16.8(35.47/2.11)倍。实验组疟原虫在接触萘酚喹/阿奇霉素后对阿奇霉素的IC50为接触药物前的15.6(50.04/3.21)倍。
     3.5萘酚喹/阿奇霉素联用与萘酚喹单用对恶性疟原虫作用的比较对照组在接触药物120天后在单一萘酚喹测定板中的IC50为65.47nmol/L,在单一阿奇霉素测定板中测得IC5。为68.58nmol/L,在萘酚喹/阿奇霉素复合测定板中的IC50分别为10.34nmol/L/8.46nmol/L。实验组在接触药物120天后在单一萘酚喹测定板中的IC50为35.47nmol/L,在单一阿奇霉素测定板中测得IC50为50.04nmol/L,在萘酚喹/阿奇霉素复合测定板中的IC50分别为2.89nmol/L、2.68 nmol/L。
     4.结论
     4.1恶性疟原虫在单一接触萘酚喹后一段时间敏感性有明显的下降,其IC50远远高于亲代的5倍以上,进一步证实用人工培养的方法可以培育出恶性疟原虫抗萘酚喹耐药株。
     4.2萘酚喹与阿奇霉素配伍对恶性疟原虫的作用观察显示,无论对敏感株(对照组)还是抗药株在萘酚喹/阿奇霉素复合测定板中测的IC50显著低于单一的萘酚喹测定板和阿奇霉素测定板,提示萘酚喹与阿奇霉素配伍对恶性疟原虫的作用明显大于单一用药,两种药物联用有明显增效作用。
     4.3实验组恶性疟原虫对药物耐受性的增长远远慢于对照组,前者在药物刺激120天后萘酚喹、阿奇霉素、萘酚喹/阿奇霉素的IC50分别上升16.8倍、15.6倍、16.1/17.9倍,后者在药物刺激120天后萘酚喹、阿奇霉素、萘酚喹/阿奇霉素的IC50分别上升31.0倍、21.4倍、57.4/56.4倍,提示萘酚喹与阿奇霉素两种药物联用有明显延缓抗性作用。
1. Objective
     1.1 Observation of the experimental group (Naphthoquine combination with Azithromycin) and the control group (control group:single Naphthoquine use) of Plasmodium falciparum in vitro drug stimulation (pressure), in order to sensitivity and its changes in speed.
     1.2 With the WHO recommended Rieckmann in vitro determination of the sensitivity of the different stages Plasmodium falciparum to Naphthoquine and Azithromycin, Naphthoquine/Azithromycin in control group and experimental group to calculate the amount of half inhibition (IC50).
     1.3 Described the characteristics of the action for the two drugs combination in vitro and evaluated the two drugs combination whether or not delay resistance or potential. Combination therapy may provide a scientific basis for the clinical treatment malaria programs.
     2. Methods
     2.1 Strain and culture:Culture the Plasmodium falciparum strain selected from samples by Trager method in vitro
     2.2 Observation the effect of drug:The resistant Plasmodium falciparum strains were stimulated by corresponding drugs with increasing concentrations disconnectedly.
     2.3 In vitro assay:Rieckmann's in vitro micro-technique was used for assay. The concentration of in vitro cultured Plasmodium falciparum strain were diluted to 20,000-60,000/μ1 with culture medium, which was added to pre-prepared drug plates at 50μ/well after synchronization. Selected Plasmodium falciparum cultured in one of control wells after 20-24hours'culture in 37℃, the harvested time was determined by the growth of Plasmodium falciparum. Based on the number of schizonts in control well, counted the inhibitive ratio of schizonts in each well, calculated half inhibitive dose (IC50) of every drug to parasite by ICEstimator software.
     2.4 Estimated standard:When IC50 of Plasmodium falciparmst to artesunat was 5 time than that of parent, then we consider corresponding P. falciparum as artesunate-resistant strain. During the same period of resistance culturing in vitro, if IC50 value of P. falciparumst to artesunat combined with clindamycin was 5 times than that of parent, which could be deemed that the P. falciparumst had resistance to the tow drugs; otherwise, the IC50 did not rise obviously or much more lower than that of parent, however, artesunate combined with clindamycin exhibit an apparent synergistic effect in vitro.
     1. Results
     3.1 Frequency, concentration and results of drug touching. The control group falciparum contact Naphthoquine 150 days, total contact drug 15 times, drug concentration tools 2.56 nmol/L five times,160nmol/L twice,5,10,20,40,80,320,625,1280nmol/L each time respectively. Contact drugs before, sensitive strains (parental department) of IC50 of 2.11 nmol/L, drug stimulates 15 times, after the IC50 to 65.47 nmol/L. Approximately dictated protozoon 31 times. Experimental falciparum contact Naphthoquine/Azithromycin 120 days, total contact drug nineteen times, drug concentration respectively for 0.31/0.256 nmol/L eight,2.49/2.135 nmol/L five times,0.625/0.53、4.98/4.2、 9.735/8.34、19.47/16.685、38.94/33.375、77.88/66.755nmol/L each time. Contact drugs before, sensitive strains (parental department) of IC50 for 0.18 nmol/L、0.15 nmol/L, drug stimulates nineteen times and its IC50 to 2.68 nmol/L、2.89nmol/L respectively, approximately dictated protozoon 16.1 times、17.9times.
     3.2 Sensitivity of P. falciparum before adding drugs. In P. falciparum not contact with drugs, before Naphthoquine determination board, Azithromycin determination board and Naphthoquine/Azithromycin composite plate determination plasmodium P. falciparum determination sensitivity, in a single Naphthoquine determination plate IC50 of 2. llnmol/L, In a single Azithromycin determination plate measured IC50 for 3.21nmol/L, In Naphthoquine/Azithromycin composite determination boards measured with quetiapine alpha-naphthol of Azithromycin IC50 were detected 0.15 nmol/L. A single measurementboards Naphthoquine IC50) is the determination of the composite board 11.7 times (2.11/0.18). The determination of Azithromycin IC50 is composite plate 21.4 times (3.21/0.15).
     3.3 Sensitivity of P. falciparum before and after adding Naphthoquine i.n contrast group The control group in a single contact Naphthoquine plasmodium falciparum IC50 for a single after contact with Naphthoquine before 31.0(65.47/2.11) times. The control group in a single contact Naphthoquine plasmodium falciparum to the sensitivity of the question of Azithromycin is single contact Naphthoquine 21.4 (65.58/3.21) times.
     3.4 Sensitivity of P. falciparum before and after adding Naphthoquine/ Azithromycin in test group Experimental Plasmodium falciparumin contact Naphthoquine/Azithromycin after contact with drugs for IC50 before 16.8(35.47/2.11) times. Experimental plasmodium falciparum in contact Naphthoquine/Azithromycin after contact with drugs for IC50 before 15.6 (50.04/3.21) times.
     3.5 Compare the effect of artesunate clindamycin combination and aretsunate single used to P. falciparum The control group in contact with drugs in a single Naphthoquine IC50 for the determination of board 65.47 nmol/L, in a single Azithromycin determination boards measured for IC50 68.58nmol/L, in Naphthoquine/Azithromycin compound respectively in the determination of board IC50 10.34nmol/L,8.46nmol/L. After the experimental drug in contact in a single Naphthoquine determination for the IC50 35.47nmol/L plate in a single/L, determination of Azithromycin plate measured for IC50 50.04nmol/L, in Naphthoquine/Azithromycin composite board of determination IC50 respectively 2.89 nmol/L,2.68nmol/L
     4. Conclusions
     4.1 Falciparum parasites in a single contact Naphthoquine after a period of time can produce resistance, and its IC50 far outclass dictated by more than 5 times, further confirmed that the artificial cultivation method can cultivate anti Naphthoquine resistant falciparum strains.
     4.2 Drug tolerability growth on experimental falciparum far slower than control group, so it hints Naphthoquine and Azithromycin two drugs coupled have obvious synergy and delay the resistance and deserves further study.
     4.3 Group of drug falciparum tolerated growth far slower than the control group, the former in drug stimulates 120 acquired Naphthoquine, Azithromycin, Naphthoquine/Azithromycin IC50 were up by 16.8 times of 15.5 times, and 16.1/17.9 times, the latter stimulate 120 days Naphthoquine, Azithromycin, Naphthoquine/Azithromycin IC50 were up by the victims times,31.0 times、21.4times、57.4/56.4 times, suggesting Naphthoquine and Azithromycin two drugs have obvious delay the resistance role.
引文
[1]詹希美主编.《人体寄生虫学》(第1版).北京:人民卫生出版社,2005年,97-114.
    [2]王钊主编译.《疟疾学》(第1版).青岛:海洋大学出版社,1992年,27-456.
    [3]郑祖佑,张再兴,杨恒林等。《云南疟疾特征与防治》(第1版).云南:科技出版社,2003年,9-10.
    [4]世界卫生组织.2008年世界疟疾报告[J]. (RWHO/HTM/GMP)2008年1月.
    [5]《中华人民共和国传染病防治法》(修订)2004年8月28日中华人民共和国主席令第十七号公布.
    [6]肖丹,龙泳,王善青.国内外疟疾疫情研究进展[J].中国热带医学,2010,10(1):113-115
    [7]Yang HL, Liu DQ, Huang KG, et al. In vitro response of Plasmodium falciparum on the China-Vietnam border to nine antimalarials [J]. South J Trop Med Public Health,1995,26(1):7-9.
    [8]Yang HL, Liu DQ, Yang YM, et al. In vitro sensitivity of Plasmodium falciparum to eight antimalarials in China-Myanmar, and China-Laos border areas [J]. South J Trop Med Public Health,1997,28(3):460-464.
    [9]杨恒林.云南省恶性疟监测与防治对策探讨[J].中国寄生虫病防治杂志,1997,10(1):63-64.
    [10]刘德全,冯晓平,杨恒林等我国恶性疟原虫对氯喹抗性的消长[J].中国寄生虫学与寄生虫病杂志,2005,23:27-29.
    [11]杨恒林,李兴亮,杨品芳等.萘酚喹对云南间日疟和抗药性恶性疟的预防效果[J].中国寄生虫学与寄生虫病杂志.2003;16(3):137.
    [12]宋杰,江钢锋,陈沛泉.海南省恶性疟原虫氯喳抗性相关基因pfcrt多态性分析[J].中国寄生虫病防治杂志,2005,(3):175-177.
    [13]陈继锋 石凯绍 林英仔 王经进.磷酸萘酚喹片预防疟疾的现场观察[J].中国寄生虫学与寄生虫病杂志.1998;16:236.
    [14]Andersen SL, Ager AL, Mcgreevy P,etal. Efficacy of azithromycin as a causal prophylactic agent against murine malaria[J]. Antimicrob Agents Chemother,1994,38(8):1862-1863.
    [15]Gingras BA, Jensen JB. Activity of azithromycin (CP-62,993) and erythromycin against chloroquine sensitive and chloroquine resistant strains of Plasmodium falciparum in vitro [J].Am J Trop MedHyg,1992,47:378-382.
    [16]Robert A Kuschner, D Gray Heppner, Steven L Andersen et al. Azithromycin prophylaxis against a chloroquine-resistant strain of plasmodium falciparum [J]. The Lancet. June4,1994; vol 343, pgl396.
    [17]Andersen SL et al:Prophylaxis of Plasmodium falciparum Malaria with Azithromycin to Volunteers. Ann. Intern. Med.1995; 123:771-773.
    [18]Andersen SL, Oloo AJ, Gordon DM, etal. Successful double blinded, randomized, placebo controlled field trial of azithromy cin and doxycycline as prophylaxis for malaria in western Kenya [J].Clin Infect Dis,1998,26:146-150.
    [19]Kuschner RA, Heppner DG, Andersen SL, etal. Azithromycin prophylaxis against a chloroquine resistant strain of Plasmodium falciparum [J]. Lancet,1994,343:1396-1397.
    [20]Krudsood S, Silachamroon U, Wilairatana P, etal. A randomized clinical trial of combinations of artesunate and azithromycin for treatment of uncomplicated Plasmodium falciparum malaria in Thailand [J]. SoutheastAsianJTropMedPublic Health,2000,31:801-807.
    [21]Taylor W R, Richie T L, Fryauff KJ, etal. Tolerablility of Azithromycin as malaria prophylaxis in adults in Northeast Papua, Indonesia[J]. AntimicrobAgents and Chemother,2003,47(7):2199-2203.
    [22]复方萘酚阿奇片化学药品注册资料16:药理毒理研究资料.
    [23]单成启, 刘光裕, 焦岫卿.磷酸荼酚喹治疗恶性疟的疗效初步观察.[J]寄生虫与医学昆虫学报..2003,(04)
    [24]王善青,蒙锋,沈恒,等.双氢青蒿素与磷酸萘酚喹伍用治疗恶性疟的疗效观察.[J]寄生虫学与寄生虫病杂志.2002,(03).
    [25]王京燕,李国福,赵京花,等.磷酸萘酚喹与青蒿素伍用增效和延缓疟原虫抗药性的研究[J].寄生虫与医学昆虫学报,2008,15(3):331-334.
    [26]宋建平,徐颖,欧凤珍,等.复方萘酚喹治疗恶性疟疾的剂量探索[J].广州中医药大学学报,2001,18(1):19-21.
    [27]高白荷,杨恒林,黄开国.云南省恶性疟原虫抗青蒿琥酯株的体外培育[J].中国寄生虫病防治杂志,2000,13(3):215-216.
    [28]杨恒林,高白荷,黄开国.青蒿琥酯敏感与抗性株恶性疟原虫对本芴醇、蒿甲醚、双氢青蒿素的体外敏感性[J].中国寄生虫病防治杂志,2000,13(1):14-15.
    [29]杨亚明,杨恒林,董莹.中缅边境地区恶性疟原虫对7种抗疟药敏感性测定[J].实用寄生虫病杂志,1994,2(3):23-26.
    [30]刘德全,刘瑞军,张春勇,等.我国恶性疟原虫对抗疟药敏感性的现状.寄生虫学与寄生虫病杂志,[J],1996,01:37-40.
    [31]杨恒林,高白荷,黄开国.咯萘啶、甲氟喹和奎宁对青蒿琥酯敏感株与抗性株恶性疟原 虫的体外作用[J].中国寄生虫学与寄生虫病杂志,2000,18:51.
    [32]李春富,杨恒林,李丽青蒿琥酯分别与诺氟沙星、甲硝唑伍用的体内、外抗恶性疟作用[J],中国寄生虫病防治杂志,2002,(15):2081.
    [33]杨恒林,陈国伟,杜尊伟云南省疟疾防治技术方案[J]云南预防医学杂志2003,(8):23.
    [34]齐小秋主编.《疟疾防治手册》北京:人民卫生出版社,2007:179-207.
    [35]Trager W, Jensen JB. Human malaria parasites in continuous culture[J]. Science,1976,193:673.
    [36]刘德全,任道性,刘瑞君,等.抗氯喹恶性疟原虫体外微量测定用冰冻干燥培养基的制备及涂氯喹板的改进[J].寄生虫学与寄生虫病杂志,1983,1:44-48.
    [37]上海地区疟疾免疫组.《疟疾研究》免疫专集,1973,71.
    [38]Rieckmann KH, Sax LJ, Campbell GH. Drug sensitivity of Plasmodium falciparum. An In vitro microtechnique[J]. Lancet,1978,1:22.
    [39]Kaddouri H, Nakache S, Houze S, Mentre F, Le Bras J. Drug Susceptibility of Plasmodium falciparum Clinical Isolates from Africa using Plasmodium Lactate Dehydrogenase Immunodetection Assay and inhibitory Emax model for precise IC50 measurement. Antimicrobial Agents and Chemotherapy,2006,50:3343-3349.
    [40]薛庆善主编.《体外培养的原理与技术》北京:科学出版社,2001:797-806.
    [41]李锐,瘳灶引,黄桂英等.青蒿酯钠体内动力学研究[J].中草药,1981,12(5):20.
    [42]Kannan R, Sahal D, Chauhan VS. Hemeartemisinin adducts are crucial mediators of the ability of artemisinin to inhibit home polymerization[J]. Chem Biol, 2002,9 (3):321-332.
    [43]Jambou R, Legrand E, Niang M, et al. Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCQ-type PfATPase6. Lancet,2005,366 (9501):1960-3
    [44]杨恒林,高白荷,黄开国.萘酚喹、甲硝唑、诺氟沙星对抗青蒿琥酯敏感株与抗性株恶性疟原虫作用的比较[J].实用寄生虫病杂志,1999,7(2):52-54.
    [45]杨恒林,高白荷,黄开国.咯萘啶分别与甲氟喹等5种药物伍用的体外抗疟作用[J].中国寄生虫病防治杂志,2000,13(4):252-254
    [46]梁瑞玲,刘天伟,屈凌波等.基于过氧键裂解的青蒿素抗疟机制量子化学研究,药学学报,2006,41(6):544-547
    [47]Olliaro PL, Haynes RK, Meunier B, etal. Possible modes of action of the artemisinin2type compounds[J]. Trends Parasitol,2001,17:122-126
    [48]Kapetanaki S, Varotsis C, Ferryl2oxo heme intermediate in the antimalarial mode of Artemisinin[J]. FEBS Lett,2000,474:238-241
    [49]Macreadie I, Ginsburg H, Sirawaraporn W, etal. Antimalarial drug development and new targets[J]. Parasitol Today,2000,16:438-444
    [50]Meshnick SR, Artemisinin:echanism of action, resistance and toxicity[J]. Int J Parasitol,2002,32:1655-1660
    [51]牟凌云,王琴美,倪奕昌.瑞香素对体外培养恶性疟原虫超氧化物酶活性及DNA合成的影响[J].中国寄生虫学与寄生虫病杂志,2003,21:157-159
    [52]Boutlis CS, Tjitra E, Maniboey H, et al. Nitric oxide production and bononuclear cell nitric oxide synthaseactivity in malaria tolerant Papuan adults[J]. Infect Immun,2003,71:3682-3689.
    [53]董莹,邹成钢,张再兴等.叔丁基羟基化合物体外抗疟活性初步观察[J].寄生虫病与感染性疾病,2007,5(3):161-163.
    [54]钱锋,潘卫庆.在减毒伤寒杆菌CVD908疫苗株中四环素诱导表达恶性疟原虫MSP1231片段基因[J].第二军医大学学报,2002 23(1):51-52.
    [55]郑春福,吴少庭,陈雅棠等.恶性疟原虫FCC21/HN株裂殖子表面抗原2(MSA22)基因在卡介苗BCG中的表达[J].寄生虫与医学昆虫学报,2002,9(4):193-197.
    [56]Mueller AK, Labaied M, Kappe SH, etal. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine[J]. Narure,2005,433 (7022):164-167.
    [57]薛长贵,王梅英,张跃曾等.恶性疟原虫红内期的体外培养及其影响因素.郑州大学学报(医学版),1988,23(3):230-233.
    [58]管惟滨,周元昌,黄文锦.用兔血清培养恶性疟原虫的实验报告[J].第二军医大学学报,1981,(1):29-35.
    [59]Chen, et al. Studied on the cultivation of erythrocytic stage plasmodium in-vitro[J]. Chinese Medical Journal.1980,93 (1):31-35.
    [60]Butcher GA. Factor affecting the in vitro culture of Plasmodium falciparum and Plasmodium knowlesi[J]. Bulletin of World Health Organization.1979 57:17-26.
    [61]潘卫庆.一种省时的恶性疟原虫体外培养方法,寄生虫学与寄生虫病杂志[J].1986,4(1):71.
    [62]Baird J K. Effectiveness of antimalarial drugs [J].N Engl J Med,2005,352 (15):1565-1577.
    [1]WHO World Malaria Report 2009 [EB/OL]. http://www.who.int/malaria/world malaria report 2009
    [2]潘卫庆.疟疾疫苗研究的现状和展望[J].第二军医大学学报,2004,25(1):1-4.
    [3]周家莲,杨恒林.抗疟药研究现状与发展趋势[J].中国病原生物学杂志,2008,11(3):865-7.
    [4]王衣祥,曹诚,马清钧.疟疾疫苗[J].生物技术通讯,2001,12(4):285-9.
    [5]Glyde DF. Immunity to falctparum and vivax malaria induced by trradiated review of the university of Maryland studies,1971-1975[M]. Bull WHO,1990.9-12.
    [6]Ballou WR, Cahill CP. Two decades of commitment to malaria vaccine development: glaxosmithkline biologicals[J]. The American Society of Tropical Medicine and Hygiene,2007,77(6):289-95.
    [7]Grtchen V. A complex mew vaccine shows promise[J]. Science,2004,306:587-9.
    [8]Jose AS, Gray D, Heppner JR. Phase 1 Safety and immunogenicity trial of malaria vaccine RTS, S/AS02A in adults in a hyperendemic region of Western Kenya[J]. Am. J. Trop. Med. Hyg2006,75 (1):166-70.
    [9]周华,孙立新,朱昌亮.疟疾疫苗研究的主要进展[J].国外医学寄生虫病分册,2005,32(2): 72-76.
    [10]朱艳琴,叶炳辉.疟疾疫苗的研究现状和难度[J].微生物学免疫学进展,1997,25(4)74-6.
    [11]Cevayir C, Ken JI, Anthony WS. Effect of CpG oligodeoxynucleotides on the immunogenicity of Pfs25, a Plasmodium falciparum transmission-blocking vaccine antigen[J]. Infect Immu,2004,1:584-8.
    [12]Takeshi A, Ai K, Hitoshi 0. Nasal immunization with a malaria transmission-blocking vaccine candidate, Pfs25, induces complete protective immunity in mice against field isolates of Plasmodium falciparum[J]. Infect Immu,2005,11:7375-80.
    [13]Andre L, Petra S, Marcel D. Age-dependent distribution of Plasmodium falciparum gametocytes quantified by PFS25 real-time QT-Nasba in across-sectional Stydt in burkina faso[J]. The American Society of Tropical Medicine and Hygiene,2007, 76(4):626-30.
    [14]Godfree M, Jorge M, Nirbhay K, Murine model for assessment of Plasmodium falciparum transmission-blocking vaccine using transgenicPlasmodium berghei parasites expressing the target antigen Pfs25[J]. Infect Immu,2008,5: 2018-24.
    [15]王华,谭光宏,黄风迎,等.伯氏疟原虫裂殖子表面蛋白PbMSP4/5基因高效植物表达载体的构建[J].现代预防医学,2009,36(7):63-7.
    [16]赖秀球,朱家勇.恶性疟原虫裂殖子表面蛋白2融合HBS基因重组质粒的免疫原性研究[J].中国人兽共患病杂志.2003,19(3):63-7.
    [17]高慧萍,张冬梅,潘卫庆.恶性疟原虫裂殖子表面蛋白3功能区片段的制备及其免疫原性分析[J].热带医学杂志.2008,12(8):1199-202.
    [18]王瑞,钱锋,曲莉,等.恶性疟原虫融合抗原PfcP-2.9的单克隆抗体制备及功能分析[J].中国寄生虫学与寄生虫病杂志,2006,24(4):247-50.
    [19]张忠广,赵恒梅,宫玉秀.恶性疟原虫主要裂殖子表面蛋白1C未端片段在毕赤酵母表达系统的高效表达与纯化[J].中国人兽共患病杂志,2005,21(12):1047-51.
    [20]赖秀球,朱家勇.恶性疟原虫裂殖子表面蛋白疟疾疫苗的研究进展[J].国外医学寄生虫病分册,2002,11(6)250-4.
    [21]潘卫庆,汤林华.分子寄生虫学[M].上海:科学出版社,2004.255-267.
    [22]曹俊,高琪.疟疾疫苗现场试验研究进展[J].中国寄生虫学与寄生虫病杂志,2008,26(2):472-5.
    [23]张瑾,辛晓芳.疟疾疫苗研究进展[J].国外医学预防诊断治疗用生物制品分册,2005,28(1): 27-9.
    [24]Takafumi T, Satoru T. Wheat germ cell-free system-based production of malaria proteinsfor discovery of novel vaccine candidates[J]. Infect Immu,2008,4: 1702-8.
    [25]Joel GB, Martin SA. Conquering the intolerable burden of malaria:what's new, what's needed:a summary[J]. The American Society of Tropical Medicine and Hygiene,2004,71(2):1-15.
    [26]Siddhartha M, Allan S. Progress in the development of recombinant and synthetic blood-stage malaria vaccines[J]. J Exp Biol,2003,206(21):3781-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700