基于不同基因组序列的十字花科分子系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十字花科是一个公认的自然分类大科,尽管进行了很多的研究,十字花科族和属的划分仍然存在许多问题。许多分子生物学证据表明,具有相似形态学特征的物种有的系统学关系较远,而不同形态的物种却有着较近的系统学关系,伴随着来自于渐渗和谱系筛选所产生的问题,经常会导致物种树和基因树不一致的现象,因此需要更多的分子生物学证据来对该科内物种的系统学关系进行进一步的分析。出于这个目的,本研究使用了5个非编码序列(trnS-trnG, trnD-trnT, trnS-rpS4-trnT-trnL, nad7second intron, PI first intron)和1个编码序列(matK)来对十字花科的部分属种的系统学关系进行进一步的确认和划分。
     研究表明,白花菜作为十字花科的外类群位于十字花科系统树的基部,而Aethionemeae则是十字花科内部离其它族系统学关系最远的族,位于十字花科内部的基部。该科中大多数的族可以划分到3个主要的世系Lineage Ⅰ-Ⅲ中,在三大世系外的族多为单系族。
     Lineage Ⅰ包括了Cardamineae(碎米荠族),Camelineae(亚麻荠族),Descurainieae(播娘蒿族),Erysimeae(糖芥族),Lepideae(独行菜族),Smelowskieae(芹叶荠族)。糖界属和亚麻荠族的其它属在分析结果中是相互分离的,增加了将其划分为一个新族的可信度。豆瓣菜属的物种和碎米荠族的物种的系统学关系比和蔊菜属物种的关系近,不支持将豆瓣菜属作为蔊菜属合并的建议。Turritis最早被划分入鼠耳芥族中,但本研究支持将其划入亚麻荠族的结论。大多数的分子生物学证据支持将臭荠属和群心菜属放入独行菜族中。鼠耳芥族包含两个分支,一个分支位于Lineage Ⅰ中,并且和Halimolobeae, Boechereae系统学关系较近,另外一个分支在三大世系之外,由Arabis, Aubrieta, Draba和Baimashania组成。
     Lineage Ⅱ包括Brassiceae(芸苔族),Isatideae(菘蓝族),Sisymbrieae(大蒜芥族)。本研究中,萝卜(Raphanus sativus)位于芸苔属的两个世系B. rapa/B. oleracea和B. nigra.之间,支持萝卜属起源于两个世系的假说。线果芥属应该从芸苔族中移出,但并不支持其作为一个独立的族存在,而应该划入菘蓝族中。中国特有的诸葛菜复合体包括太白诸葛菜,铺散诸葛菜,湖北诸葛菜和诸葛菜,本研究认为诸葛菜属应从芸苔族中移出,作为单独的一个分支存在。
     Lineage Ⅲ包括Anchonieae, Chorisporeae(离子芥族),Dontostemoneae(花旗杆族),Hesperideae(香花芥族),Euclidieae(鸟头荠族)。爪花芥应该放入棒果芥当中。涩荠的系统学位置不稳定,取决于片段的选择。香花芥族是一个单属的族,并和花旗杆族系统学关系较近。Desideria和Phaeonychium都应该属于Solms-laubachia, Desideria是多系的而Solms-laubachia自身的物种则是单系存在的。
     同时发现,四棱荠属被划分到了一个新界定的族Calepineae中,并且和菥莫族和山嵛菜族都不相连。沙芥属物种形成了一个单系分支,但其系统学位置还不能确定。庭荠族总是多系的,但是其系统学位置取决于片段的选择。
The Brassicaceae or mustard family is a large family. Despite much research, the tribal and genus classification of Brassicaceae has remained problematic and not well understood phylogenetically. Many molecular phylogenetic data have shown that species with similar morphology may be unrelated, whereas species with different morphology may be closely related. This situation, accompanied by questions regarding introgression and lineage sorting, often results in incongruent gene and species trees. Thus, more molecular data are needed to infer phylogenetic relationships in this family. For this purpose, five non-coding DNA sequences (trnS-trnG, trnD-trnT, trnS-rpS4-trnT-trnL, nad7second intron, PI first intron) and one coding sequence (matK) were used to study the Brassicaceae taxa to help verify the phylogenetic relationships of taxa within this family, and some results were obtained.
     In current analysis, Cleome gynandra, used as the outgroup, was sister to the members of the Brassicaceae family, while Aethionemeae was the "basal" tribe and supported the sister relationship to all other tribes and taxa of Brassicaceae. Most of the tribes analyzed could be grouped into Lineages Ⅰ-Ⅲ (Beilstein et al.,2006) as well as some small monophyletic groups.
     Lineage Ⅰ included Cardamineae, Camelineae, Descurainieae, Erysimeae, Lepideae, Smelowskieae. Erysimum was separated from other Camelineae genera, which increased the confidence that it is a new tribe. Nasturtium is more closely related to Cardamineae than to Rorippa, suggested that Nasturtium should be treated as an alias of Rorippa was probably unreasonable. Turritis was previously placed in Arabideae, but our analyses determined that it should be included in Camelineae. Most molecular data to date suggest place Coronopus and Cardaria within Lepideae. Arabideae included two subclades, one of which was nested within Lineage I and was closely related to Halimolobeae and Boechereae, while the other did not fit within Lineages Ⅰ-Ⅱ and comprised Arabis, Aubrieta, Draba, and Baimashania.
     Lineage Ⅱ contained Brassiceae, Isatideae, Sisymbrieae. B. rapa/B. oleracea and Raphanus were combined with B. nigra, supporting that Raphanus was hybridized from B. rapa/B. oleracea and B. nigra. Our analysis supported the exclusion of Conringia from Brassiceae and Conringia should not be recognized as a new tribe and should be placed within the Isatiseae tribe. Pachypterygium and Tauscheria were considered to be included in Isatideae. O. violaceus complex included O. taibaiensis, O. diffusus, O. hupehensis, O.violaceus and should be excluded from Brassiceae.
     Lineage Ⅲ comprised tribes of Anchonieae, Chorisporeae, Dontostemoneae, Hesperideae, Euclidieae. Oreoloma should be a member of Sterigmostemum. The position of Malcolmieae was unstable according to the DNA makers we used. Hesperideae was defined as a unigeneric tribe and was sister to Dontostemoneae. We found Desideria and Phaeonychium were grouped into Solms-laubach, Desideria was found to be polyphyletic, while all species of Solms-laubachia formed a monophyletic clade.
     Goldbachia laevigata was assigned to a newly defined tribe, Calepineae, and it was neither related to Thlaspideae nor to Eutremeae. Pugionium formed a monophyletic clade, but its phylogenetic position remains unresolved. Alysseae is polyphyletic and its position was mainly dependent on the maker used.
引文
邓科君,杨足君,刘成,赵为,刘畅,冯娟,任正隆.红景天线粒体had7基因内含子2序列测定及其系统发育意义.遗传,2007,29:371-375.
    田欣,李德铢.DNA序列在植物系统发育研究中的应用.云南植物研究,2002,24:170-184.
    Akeroyd JR. Arabis. In:Tutin TG et al. (Eds.), Fl. Europaea,2nd edn., vol.1. University Press, Cambridge,1993, pp.352-356.
    Alonso-Blanco C, Aarts M.G.M, Bentsink L, Keurentjes J.J.B, Reymond M, Vreuqdenhil D, Koornneef M. What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell,2009,21:1877-1896.
    Alvarez A, Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol,2003,29:417-434.
    Al-Shehbaz IA. The genera of Brassiceae (Cruciferae; Brassicaceae) in the southeastern United States. J. Arnold Arbor,1985,66:279-351.
    Al-Shehbaz IA. Transfer of most North American species of Arabis to Boechera (Brassicaceae). Novon 2003,13:392-395.
    Al-Shehbaz IA. Nomenclatural notes on Eurasian Arabis (Brassicaceae). Novon 2005, 15:519-524.
    Al-Shehbaz IA, Price RA. Delimitation of the genus Nasturtium (Brassicaceae). Novon 1998,8:124-126.
    Al-Shehbaz IA, O'Kane SL, Price RA. Generic placement of species excluded from Arabidopsis. Novon 1999,9:296-307.
    A1-Shehbaz IA, O'Kane SL. Taxonomy and phylogeny of Arabidopsis (Brassicaceae). In:Somerville CR, Meyerowitz EM. (Eds.), The Arabidopsis Book, American Society of Plant Biologist, Rockville, MD,2002a.
    Al-Shehbaz IA, Mummenhoff K, Appel O. Cardaria, Coronopus and Stroganowia are united with Lepidium (Brassicaceae). Novon,2002,12:5-11.
    Al-Shehbaz IA, Beilstein MA, Kellogg EA. Systematics and phylogeny of the Brassicaceae (Cruciferae):an overview. P1. Syst. Evol.2006,259:89-120.
    Al-Shehbaz IA, Warwick SI. Two new tribes (Dontostemoneae and Malcolmieae) in the Brassicaceae (Cruciferae). Harv. Pap. Bot.2007,12:429-433.
    Al-Shehbaz IA, Mutlu B, Donmez AA. The Brassicaceae (Cruciferae) of Turkey, updated. Turk. J. Bot.2007,31:327-336.
    Bailey CD, Price RA, Doyle JJ. Systematics of the halimolobine Brassicaceae: Evidence from three loci and morphology. Syst. Bot.2002,27:318-332.
    Bailey D, Carr TG, Harris SA, Hughes CE. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molec. Phylogenet. Evol,2003, 29:435-455.
    Bailey CD, Koch MA, Mayer M, Mummenhoff K, O'Kane SL, Warwick SI, Windham MD, Al-Shehbaz IA. Toward a global phylogeny of the Brassicaceae. Mol. Biol. Evol.2006,23:2142-2160.
    Baldwin BG, Markos S. Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA:congruence of ETS and ITS trees of Calycadenia. Molec. Phylogenet. Evol,1998,10:449-463.
    Beilstein MA, Al-Shehbaz IA, Kellogg EA. Brassicaceae phylogeny and trichome evolution. Am. J. Bot.2006,93:607-619.
    Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA. Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data:tribes and trichomes revisited. Am. J. Bot.2008,95:1307-1327.
    Bena G, Jubier MF, Olivieri I, Lejeune B. Ribosomal external and internal transcribed spacers:combined used in the phylogenetic analysis of Medicago (Leguminosae). J. Mol. Evol.1998,46:299-306.
    Bo Z, Lei L, Dunyan T, Jianbo W. Analysis of phylogenetic relationships of Brassicaceae species based on Chs sequences. Molec. Phylogenet. Evol,2010, 38:731-739.
    Botschantzev VP. Two new genera of the family Cruciferae. Botanicheskii Zhurnal (Moscow and Leningrad) 1980,65:425-427
    Bowman JL, Bruggemann H, Lee JY, Mummenhoff K. Evolutionary changes in florstructure within Lepidium L. (Brassicaceae). Int. J. P1. Sci,1999,160:917-929.
    Bowman JL. Molecules and morphology:comparative development genetics of the Brassicaceae. In Evolution and Phylogeny of the Brassicaceae (Koch MA. and Mummenhoff K. eds), P1. Syst. Evol,2006,259:199-215.
    Busch A, Zachgo S. Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proc. Natl. Acad. Sci.2007,104:16714-16719.
    Chan R, Baldwin BG, Ornduff R. Cryptic goldfields:a molecular phylogenetic reinvestigation of Lasthenia californica sensu lato and close relatives (Compositae: Heliantheae sensu lato). Amer. J. Bot.2002,89:1103-1112.
    Chase MW, Soltis DE, Olmstead RG, et al. Phylogenetics of seed plants:An analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 1993,80:528-580.
    Clegg MT, Gaut BS, Learn GH. Rate and patterns of chloroplast DNA evolution. Proc. Natl. Acad. Sci,1994,91:6795-6801.
    Couvreur TLP, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummenhoff K. Molecular phylogenetics, temporal diversification and principles of evolution in the mustard family (Brassicaceae). Mol. Biol. Evol,2010,27:55-71.
    Crawford DJ. Plant macromolecular systematics in the past 50 years:one view. Taxon 2000,49:479-501.
    Curtis SE, Clegg MT. Molecular evolution of chloroplast DNA sequences. Mol. Biol. Evol.1984,1:291-301.
    De Bolt S, Maere S, De Peer YV. Genome duplication and the origin of angiosperms. Trends Ecol. Evol.2005,20:591-597.
    Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet.2005,6:361-375.
    Demesure B, Sodzi N, Petit RJ. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol. Ecol.1995,4:129-131.
    DeWitt Smith S, Baum DA. Phylogenetics of the florally diverse Andean clade Iochrominae (Solanaceae). Amer. J. Bot.2006,93:1140-1153.
    Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus 1990,12:13-15
    Dudly TR, Cullen J. Studies in the Old World Alysseae Hayek. Feddes Repert.1965, 71:218-228.
    Dvorak F. (1973) The importance of the indumentum for the investigation of evolutional relationship in the family Brassicaceae. Osterr. Bot. Zeit.1973, 121:155-164.
    Edger PP, Pires JC. Gene and genome duplications:the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res.2009,17:699-717.
    Emshwiller E, Doyle JJ. Chloroplast-expressed glutamine synthetase (ncpGS): Potential utility for phylogenetic studies with an example from Oxalis (Oxalidaceae). Mol. Phylogent. Evol.1999,12:310-319.
    Evans RC, Alice LA, Campbell CS, Kellogg EA, Dickinson TA. The granule-bound starch synthase (GBSSI) gene in the Rosaceae:Multiple loci and phylogenetic utility. Mol. Phylogent. Evol.2000,17:388-400.
    Fawcett JA, Maere S, de Peer YV. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl. Acad. Sci.2009,106:5737-5742.
    Franzke A, Mummenhoff K. Recent hybrid speciation in Cardamine (Brassicaceae)-conversion of nuclear ribosomal ITS sequences in statu nascendi. Theor. Appl. Genet.1999,98:831-834.
    Franzke A, German D, Al-Shehbaz IA, Mummenhoff K. Arabidopsis family ties: molecular phylogeny and age estimates in the Brassicaceae. Taxon 2009,58: 425-437.
    Friesen N, Fritsch RM, Pollner S, Blattner. Molecular and morphological evidence for an origin of the aberrant genus Milula within the Himalayan species of Allium (Alliaceae). Molec. Phylogenet. Evol.2000.17,209-218.
    Galloway GL, Malmberg RL, Price RA. Phylogenetic utility of the nuclear gene arginine decarboxylase:an example from Brassicaceae. Mol. Biol. Evol.1998,15: 1312-1320.
    Gaskin JF, Schaal BA. Molecular phylogenetic investigation of U.S. Invasive Tamarix. Syst. Bot.2003,28:86-95.
    German DA, Al-Shehbaz IA. Five additional tribes (Aphragmeae, Biscutelleae, Calepineae, Conringieae and Erysimeae) in the Brassicaceae (Cruciferae). Harv. Pap. Bot.2008,13:165-170.
    German DA, Friesen N, Neuffer B, Al-Shehbaz IA, Hurka H. Contribution to ITS phylogeny of the Brassicaceae, with special reference to some Asian taxa. Pl. Syst. Evol.2009,283:33-56.
    Guindon S, Gascuel O. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol.2003,52:696-704.
    Hall JC, Sytsma KJ, Iltis HH. Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Amer. J. Bot.2002,89:1826-1842.
    Hamilton MB. Four primer pairs for the amplification of plast intergenic regions with intraspecific variation. Mol. Eco.1999,8:521-523.
    Hauser LA, Crovello TJ. Numerical analysis of generic relationships in Thelypodieae (Brassicaceae). Syst. Bot.1982,7:249-268.
    Hayek, A. Entwurf eines Cruciferen-systems auf phylogenetischer Grundlage. Beih. Bot. Centralbl.1911,27:127-335.
    Hedge IC. A systematic and geographical survey of Old World Cruciferae. In: Vaughan, J. G., MacLeod, A. J., Jones, B.M.G. (Eds.) The biology and chemistry of the Cruciferae. Academic Press, London,1976,pp 1-45.
    Hedge IC, Kjaer A, Malver O. Dipterygium-Cruciferae or Capparaceae? Notes Roy. Bot. Gard. Edinburgh 1980,38:247-250.
    Henry Y, Bedhomme M, Blanc G History, protohistory and prehistory of the Arabidopsis thaliana chromosome complement. Trends Plant Sci.2006, 11:267-273.
    Hoot SB, Napier NS, Taylor WC. Revealing unknown or extinct lineages within Isoetes (Isoetaceae) using DNA sequences from hybrids. Amer. J. Bot.2004, 91:899-904.
    Janchen, E. Das System der Cruciferen. Osterr. Bot. Zeit.1942,91:1-21.
    Jordon-Thaden I, Koch M. Species richness and polyploid patterns in the genus Draba (Brassicaceae):a first global perspective. Plant Ecol. Diver.2008,1:1-10.
    Kamelin RV, German DA. New species of the genus Sterigmostemum Bieb. (Cruciferae) from East Kazakhstan. Turczaninowia 2001,4(3):5-9.
    Kandpal RP, Kandpal G, Weissman SM. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers. Proc. Natl. Acad. Sci.1994,91:88-92.
    Koch MA, Haubold B, Mitchell-Olds T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol. Biol. Evol.2000,17:1483-1498.
    Koch MA, Haubold B, Mitchell-Olds T. Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Amer. J. Bot. 2001,88:534-544.
    Koch MA, Al-Shehbaz IA. Taxonomic and phylogenetic evaluation of the American "Thlaspi" Species:identity and relationship to the Eurasian genus Noccaea (Brassicaceae). Syst. Bot.2004,91,114-124.
    Koch MA, Dobes C, Schmickl R, Klimes L, Lysak MA. Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. Mol. Biol. Evol.2007,24:63-73.
    Koch MA, Al-Shehbza IA. Molecular systematics and evolution. In Biology and Breeding of Crucifers (Gupta S. eds), pp.1-18, CRC
    Koelling VA, Mauricio R. Genetic factors associated with mating system cause a partial reproductive barrier between two parapatric species of Leavenworthia (Brassicaceae). Am. J. Bot.2010,97:412-422.
    Krizek BA, Meyerowitz EM. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 1996,122:11-22.
    Kumar S, Tamura K, Nei M. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence aligment. Brief. Bioinform.2004,5:150-163.
    Lagercrantz U, Lydiate D. Comparative genome mapping in Brassica. Genetics 1996,144:1903-1910.
    Lapegue SD, Pemonge MH, Petit RJ. An enlarged set of consensus primers for the study of organelle DNA in plants. Mol. Evol.1997,6:393-397.
    Lee J-Y, Mummenhoff K, Bowman JL. Allopolyploidization and evolution of species with reduced floral structures in Lepidium L (Brassicaceae). Proc. Natl. Acad. Sci. 2002,99:16835-16840.
    Leinonen PH, Sandring S, Quilot B, Clauss MJ, Mitchell-Olds T, Agren J, Savolainen. Local adaptation in European populations of Arabidopsis lyrata (Brassicaceae). Am. J. Bot.2009,96:1129-1137.
    Linkies A, Graeber K, Knight C, Leubner-Metzger G. The evolution of seeds. New Phytol.2010,186:817-831.
    Lysak MA, Koch MA, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res.2005,15:516-525.
    Lysak MA, Berr A, Pecinka A. Schmidt R, McBreen K, Schubert I. Mechanism of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci.2006,103:5224-5229.
    Lysak MA, Cheung K, Kitschke M, Bures P. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol.2007,145:402-410.
    Mandakova T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 2010a,22:2277-2290.
    Mandakova T, Heenan PB, Lysak MA. Island species radiation and karyotypic stasis in Pachycladon allopolyploids. BMC Evol. Biol.2010b 10:367.
    Mason-Gamer RJ, Weil CF, Kellogg EA. Granule-bound starch synthase:Structure, function, and phylogenetic utility. Mol. Biol. Evol.1998,1658-1673.
    Mathews SR, Tsai C, Kellogg EA. Phylogenetic structure in the grass family (Poaceae):evidence from the nuclear gene phytochrome B. Am. J. Bot.2000, 87:96-107.
    McClintock B. Mutable loci in maize. Carnegie Inst Wash Yearb 1948,47:155-169.
    Ming R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya L.).2008, Nature 452:991-996.
    Mulligan GA. Synopsis of the genus Arabis (Brassicaceae) in Canada, Alaska and Greenland. Rhodora 1996,97:109-163.
    Mummenhoff K, Bruggemann H, Bowman JL. Chloroplast DNA phylogeny and biogeography of Lepidium (Brassicaceae). Amer. J. Bot.2001,88,2051-2063.
    Ochieng JW, Muigai AWT, Ede GN. Phylogenetics in plant biotechnology:principles, obstacles and opportunities for the resource poor. Afr. J. Biotechnol.2007, 66:639-64.
    O'Kane SL, Al-Shehbaz IA. Phylogenetic position and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear ribosomal DNA. Ann. Missouri Bot. Gard.2003,90:603-612.
    Palmer JD. Plastid chromosomes:Structure and evolution, in Bogorad L, Vasil I K (Eds.), The molecular biology of plastids, Cell culture and somatic cell genetics of plants, Academic Press, San Diego, California, USA.1991,7A:5-53.
    Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 2005,171:765-781.
    Poncet BN, Herrmann D, Guerli F, Taberlet P, Holderegger R, Gielly L, Rioux D, Thuiller W, Aubert S, Manel S. Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpine. 2010,19:2896-2907.
    Posada D, Crandall K. Modeltest:testing the model of DNA substitution. Bioinformatics 1998,14:817-918.
    Price RA, Palmer JD, A1-Shehbaz IA. Systematic relationships of Arabidopsis:A molecular and morphological perspective. In:C. R. Somerville and E. M. Meyerowitz, eds., Arabidopsis, pp.7-19. Cold Spring Harbor Laboratory Press, New York,1994.
    Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW. The earliest angiosperms:evidence from mitochondrial, plastid and nuclear genomes. Nature 1999,402:404-407.
    Rollins RC. The Cruciferae of Continental North America, Stanford University Press, Stanford.1993
    Sakai M, Kanazawa A, Fujii A, Thseng FS, Abe J. Shimamoto Y. Phylogenetic relationships of the chloroplast genomes in the genus Glycine inferred from four intergenic spacer sequences. P1. Syst. Evol.2003,239:29-54.
    Sang T, Crawford DJ, Stuessy TF. Chloroplast phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot.1997a.84:1120-1136.
    Sang T, Donoghue MJ, Zhang D. Evolution of alcohol dehydrogenase genes in peonies (Paeonia):phylogenetic relationships of putative nonhybrid species. Mol. Biol. Evol.1997b,14:994-1007.
    Schranz ME, Mitchell-Olds T. Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 2006,18:1152-1165.
    Schranz ME, Lysak MA, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. Trends Plant Sci.2006, 11:535-542.
    Smale ST, Kadonaga JT. The RNA polymerase Ⅱ core promoter. Annual. Rev. Biochem.2003,72:449-479.
    Schulz OE. Cruciferae. In:Engler, A., Prantl, K. (Eds.), Die natu rlichen Pflanzenfamilien, Vol.17B. Verlag von Wilhelm Engelmann, Leipzig.1936, pp. 227-658.
    Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng CF, Sankoff D, dePamphilis CW, Wall PK, Soltis PS. Polyploidy and angiosperm diversification. Am. J. Bot.2009,96:336-348.
    Stappen JV, Marant S, Volckaert G. Molecular characterization and phylogenetic utility of the rDNA external transcribed spacer region in Stylosanthes (Fabaceae). Theor. Appl. Genet.2003,207:291-298.
    Swofford DL. PAUP*:Phylogenetic analysis using parsimony (*and Other Methods). Sinauer Associates, Sunderlande, MA.2003
    Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Mol. Bio.1991,17:1105-1109.
    Takezaki N, Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 1996,144:389-399.
    Takhtajan A. Diversity and Classification of Flowering Plants.1997, Columbia University Press.
    Tang HB, Bowers JE, Wang XY, Ming R, Alam M, Paterson AH. Synteny and collinearity in plant genomes. Science 2008,320:486-488.
    Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic. Acids. Res.1989,17:6463-6471.
    Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat. Genet.2010,42:260-263.
    Warwick SI, Al-Shehbaz IA, Price RA, Sauder C. Phylogeny of Sisymbrium (Brassicaceae) based on ITS sequences of nuclear ribosomal DNA. Canad. J. Bot. 2002,80:1002-1017.
    Warwick SI, Sauder CA. Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can. J. Bot.2005, 83:467-483.
    Warwick SI, Al-Shehbaz IA. Brassica:chromosome number index and database on CD-Rom. Pl. Syst. Evol.2006,259:237-248.
    Warwick SI, Sauder CA, Al-Shehbaz IA, Jacquemoud F. Phylogenetic relationships in the tribes Anchonieae, Chorsiporeae, Euclidieae, and Hesperideae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Ann. Mo. Bot. Gard.2007,94:56-78.
    Warwick SI, Sauder CA, Mayer MS, A1-Shehbaz IA. Phlogenetic relationships in the tribes Schizopetaleae and Thelypodieae (Brassicaceae) based on nuclear ribosomal ITS region and plastid ndhF DNA sequences. Botany,2009,87: 961-985.
    Warwick SI, Mummenhoff K, Sauder CA, Koch MA, Al-Shehbaz IA. Closing the gaps:phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. P1. Syst. Evol,2010,285:209-232.
    Wasserman WW, Palumbo M, Thompson W, Fickett JW, Lawrence CE. Human-mouse genome comparisons to locate regulatory sites. Nat. Genet.2000, 26:225-228.
    Wendel JF, Doyle JJ. Phylogenetic incongruence:window into genome history and molecular evolution. In:Soltis DE, Soltis PS, Doyle JJ. (Eds.), Molecular systematics of plants Ⅱ:DNA sequencing. Boston:Kluwer.1998,265-296.
    Wheeler WC, Honeycutt RL. Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implications.Molec. Biol. Evol.1988,5:90-96.
    Wikstrom N, Savolainen V, Chase MW. Evolution of the angiosperms:calibrating the family tree. Proc. R. Soc. Lond. Ser. B 2001,268:2211-2220.
    Xu DH, Sakai AJ, Kanazawa M, Shimamoto A, Shimamoto Y. Sequence variation of non-coding regions of chloroplast DNA of soybean and related wild species and its implications for the evolution of different chloroplast haplotypes. Theor. Appl. Genet.2000,101:724-732.
    Yang YW, Lai KN, Tai PY, Ma DP, Li WH. Molecular phylogenetic studies of Brassica, Rorippa, Arabidopsis, and allied genera based on the internal transcribed spacer region of 18S-25S rDNA. Mol. Phylogenet. Evol.1999, 13:455-462.
    Yang YW, Tai PY, Li WH. A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA. Mol. Phylogenet. Evol.2002,23:268-275.
    Yoon HS, Baum DA. Transgenic study of parallelism in plant morphological evolution. Proc. Natl. Acad. Sci.2004,101:6524-6529.
    Yue JP, Sun H, Li JH, Al-Shehbaz IA. A synopsis of an expanded Solms-laubachia (Brassicaceae), and the description of four new species from Western China. Ann. Mo. Bot. Gard.2008,95:520-538.
    Zhou D, Zhou J, Meng L, Wang Q, Xie He, Guan Y, Ma Z, Zhong Y, Chen F, Liu J. Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae). Gene,2009,441:36-44.
    Zhou TY, Lu LL, Yang G, Al-Shehbaz IA. Brassicaceae (Cruciferae). In:Wu Z-Y, Raven HP eds. Flora of China. Beijing:Science Press; St. Louis:Missouri Botanical Garden Press.2001,8:1-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700