氮素对温室水果型黄瓜果实生长及经济产量影响的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus)是国内外温室栽培的主要作物之一,黄瓜的经济产量主要取决于单果的大小、鲜重、采收日期及单株的总鲜重。氮素是影响温室黄瓜生长和经济产量形成的重要营养元素,而作物模型是辅助温室作物生产环境优化调控和栽培管理的有力工具,因此建立氮素对温室水果型黄瓜果实生长和经济产量影响的模拟模型是实现我国温室黄瓜生产与环境调控的优化管理、提高温室黄瓜生产经济和生态效益的重要途径。本研究分别于2005年和2007年,在上海(E121.5°,N31.2°)农科院的荷兰Venlo型现代化自控温室和上海孙桥现代化农业园区的2,4-连栋大棚中进行了对水果型黄瓜‘戴多星’(Cucumis Sativus cv.'Deltastar')的不同氮素处理、播期和栽培基质的四个试验。通过对试验2数据的系统分析,以光温指标(photo-thermal index, PTI)为尺度,首先定量分析了氮素对温室水果型黄瓜单株叶面积的影响,及单株最大叶面积对该株化果速率和采果速率的影响,建立了氮素对温室水果型黄瓜源库比影响的模拟研究;然后利用该模型建立了氮素对该株上每一个果实生长影响的预测模型;最后利用该果实生长的预测模型建立了氮素对温室水果型黄瓜经济产量影响的模拟模型。用与建立模型相独立的试验数据对整个模型进行了检验。结果表明,模型对温室水果型黄瓜果实生长及经济产量的预测结果较好。
     (1)氮素对温室水果型黄瓜单株叶面积、生长着果数及源库比影响的模拟研究。首先以累积光温指标(PTI)为尺度,建立了各氮素处理的温室水果型黄瓜叶片含氮量、单株叶面积和单株生长着果数随PTI变化的函数关系。然后定量分析氮素对单株叶面积的影响,结果表明,随着施氮水平的增加,单株最大叶面积增加。单株生长着的果数是通过该株的出果数、采果数和化果数计算得来。试验数据显示,氮素对出果速率基本没有影响,而化果和采果速率都受到该株叶面积的影响,最大叶面积越大,它的化果速率越小,采果速率越大,最后不同氮素浓度下的单株生长着果实数基本没有太大的差异。对于果菜类作物,叶片是主要的源器官,而果实是主要的库器官,因此氮素主要是通过影响了单株的叶面积来影响该株的源库比(叶面积/单株生长着的果数)。根据这些定量关系,可以预测不同施氮水平下温室水果型黄瓜在花后任何一天的单株源库比。
     (2)氮素对温室水果型黄瓜果实生长及经济产量影响的模拟研究。氮素影响黄瓜果实的生长,而且是通过影响单株源库比从而间接的影响黄瓜果实的伸长速率。试验数据表明,植株上每一个果实生长期间所需的辐热积随其所在植株的平均源库比的增加而减少,因此果实在生长期间的平均伸长速率就较大。结合氮素对单株源库比影响的模拟模型,就可以预测出黄瓜植株上每一个果实在任何一天的果长。
     黄瓜的经济产量主要取决于单果的果长、鲜重、采收期和单株的总鲜重。试验结果表明单果的鲜重可以通过它的果长来确定,而且当该果的果长达到采收标准时就可以确定它的采收日期;知道植株上每一个果实的采收日期,因此就可以得出该株每天的累积采果数;结合单果鲜重及单株采果数最后可以计算出单株的总鲜重。由于氮素通过影响源库比而间接的影响了单果的伸长速率,而且伸长速率越慢的果实达到采收标准所需的时间越长,最后影响了果实的采收时间、整个生育期的单株采果数和单株总鲜重。因此确定了最佳的源库比(叶面积/单株生长着果数)是0.26 m2 fruit-1时单株总鲜重最大,则对应的植株生长期间适宜的最小叶片含氮量大约是1.0g m-2。由于叶片含氮量不仅受到施氮浓度的影响,而且受到温度光照的影响,因此春夏季和冬春季所对应的最适宜施氮浓度不同。当适宜的最小的叶片含氮量大约为1.0 g m-2,对应的适宜营养液浓度在不同季节的变化范围为110-160 mgL-1。
     在预测氮素对温室水果型黄瓜果实生长及经济产量影响的模拟研究中,模型对单株的叶面积、生长果数、源库比,单果的果长、鲜重、采收时间和单株总鲜重的预测值与实测值之间基于1:1直线之间的R2分别为0.92、0.90、0.90、0.91、0.90、0.92、0.94,相对回归标准误rRMSE分别为0.22、0.24、0.23、0.22、0.23、0.21、0.19。本模能较好地预测不同氮素水平下温室水果型黄瓜的果实生长及经济产量。
     本研究建立的模型可以根据定植日期、营养液供氮水平和温室内的太阳辐射与温度资料,动态预测上海地区温室水果型黄瓜单蔓整枝方式下,氮素对果实生长及经济产量的影响。此模型不仅可以用来确定一个最适合水果型黄瓜生长的营养液氮素浓度,为我国温室水果型黄瓜生产的氮肥优化管理提供决策支持;而且还可以通过调控单株叶面积和生长着果实数来控制该植株上果实的生长及采收情况,以实现更高的经济产量及更大的经济效益。
Cucumber (Cucumis sativus) is one of main greenhouse crops in the world; the economic yield of cucumber mainly depends on the fruit size, fresh weight and harvest date of individual fruit and the total fresh weight per plant. Nitrogen is a kind of important nutritive elements affecting cucumber fruit growth and economic yield, and crop model is a powerful tool of optimizing of environment management for greenhouse crop production; therefore, it is a important method to develop a model of for predicting the effects of nitrogen on fruit growth and economic yield so as to facilitate the optimization of environment management and promote economic yield for cucumber crop production in greenhouses. Four experiments with different nitrogen supply rates and planting dates on cucumber(Cucumis Sativus cv. Deltastar) were, respectively, conducted in Dutch Venlo automatic greenhouse and 2,4-th solar greenhouse located at Shanghai (32°N,121°N) during 2005 and 2007. Based on the data of experiment 2, firstly, quantitatively studying the effect of nitrogen leaf area per plant which affected the rate of fruit abortion and harvest using the index of radiation and temperature (photo-thermal index, PTI), we established a model of predicting the effect of nitrogen on the source/sink ratio in greenhouse fruit cucumber. Secondly, we developed a model of predicting the effect of nitrogen on individual fruit growth based on this model. Finally, we can predict the effect of nitrogen on the economic yield per plant of greenhouse fruit cucumber. Independent experimental data from other experiments were used to validate the model. The results show that our model gives satisfactory predictions of cucumber fruit growth and economic yield under different nitrogen supply and growing season conditions.
     (1) Quantifying the effects of nitrogen on leaf area per plant, the number of fruits growing on a plant and the source/sink ratio of greenhouse fruit cucumber. Based on the experimental data, seasonal time courses of leaf nitrogen content (NL), leaf area per plant (LA) and the number of fruits growing per plant (NFG) under different nitrogen supply rates were, respectively, determined as functions of a photo-thermal index (PTI). By researching the impact of NL on LA, the result showed that the maximum leaf area per plant (LAmax) increased with the increasing nitrogen supply rate. The number of fruits growing on a plant (NFG) is calculated as a function of the rates of fruits appearance, fruit abortion and fruit harvest. Our experimental data demonstrated that the number of fruits appeared was not influenced by nitrogen supply rate while the number of fruits aborted and harvested, respectively, decreased and increased with increasing nitrogen supply rate. Rate of fruit abortion was found to be a negative exponential function of LAmax whereas rate of fruit harvest a positive exponential function of LAmax. For fruit vegetables, leaf and fruit is, respectively, the main source and sink organs. Since LAmax is dependent on leaf nitrogen content, nitrogen has an indirect impact on number of fruit aborted and harvested on a plant, hence, on the sink/source ratio (LA/NFG) through its effect on LA. Based on these quantitative relationships, we can predict the source/sink ratio of greenhouse fruit cucumber under different nitrogen supply rates in everyday.
     (2) Quantifying the effects of nitrogen on fruit growth and economic yield of greenhouse fruit cucumber. Fruit growth was affected by nitrogen indirectly based on the effect of nitrogen on the source/sink ratio. Our experiment data confirmed that the elongation rate of cucumber fruit had a positive correlation with LA/NFG·Based on the effect on nitrogen on the source/sink ratio of greenhouse fruit cucumber, we can predict individual fruit length on the cucumber plant on day j.
     The economic yield of cucumber is mainly depends on the fruit size, fresh weight and harvest date of individual fruit and the total fresh weight per plant. Cucumber fruit fresh weight has a positive relationship with cubic meter of its length; and harvest date of individual fruit growing on a plant can then be determined as the date when its length on day j reaches LF(H); and then the number of fruits harvested on a plant on day j (NFH(j)) can be estimated based on harvest date of individual fruit growing on the plant; at last, the total fresh weight per plant can be calculated based on these quantitative relationships. Since fruit growth was affected by nitrogen indirectly based on the effect of nitrogen on the source/sink ratio, and the fruit with the slower growth rate required a longer time to reach LF(H), nitrogen impacted the economic yield per plant of greenhouse fruit cucumber.
     The coefficient of determination (R2) and the relative root mean square error (rRMSE) between the predicted and measured values are, respectively,0.92 and 0.22 for leaf area per plant,0.90 and 0.24 for the number of fruits growing on a plant,0.90 and 0.23 for the source/sink ratio per plant,0.91 and 0.22,0.90 and 0.23 and 0.92 and 0.21, respectively, for the length, harvest date and fresh weight of individual fruit growing on the plant,0.94 and 0.19 for the total fresh weight per plant. The results show that our model gives satisfactory predictions of cucumber fruit growth and economic yield under different nitrogen supply and growing season conditions.
     Our model can predict both individual fruit growth and economic yield of cucumber grown in Shanghai based on planting date, nitrogen supply rate and radiation and temperature in greenhouse. The model can be not only used to determine an optimal nitrogen supply rate for greenhouse fruit cucumber, but also used to control individual fruit growth by changing leaf area per plant and number of fruit growing on the plant to get more economic yield and benefit for greenhouse managers.
引文
[1]Lemaire, G., Gastal, F. Quantifying Crop Responses to Nitrogen Deficiency and Avenues to Improve Nitrogen Use Efficiency. Crop Physiology,2009,171-211.
    [2]廖桂平,官存云,黄璜.作物生长模拟模型研究概述[J].作物研究,1998,(3):45-48.
    [3]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京,高等教育出版社,2003.
    [4]Dayan E., Van Keulen., Jones H., et al. Development, calibration and validation of a greenhouse tomato growth model:I. Description of the model [J]. Agricultural System,1993,43:148-163.
    [5]Dayan E., Van Keulen., Jones H., et al. Development, calibration and validation of a greenhouse tomato growth model:Ⅱ. Field calibration and validation [J]. Agricultural System,1993,43: 165-183.
    [6]http://news.qq.com/a/20091012/001689.htm
    [7]张真和.我国设施园艺产业发展对策研究[J].长江蔬菜,2010,(3).
    [8]李怀智.我国黄瓜栽培现状及其发展趋势[J].蔬菜,2003,(8):3-4.
    [9]http://www.zjagri.gov.cn/html/main/analyseView/200601253057.html
    [10]孙玉河,李文琴,马德华.我国黄瓜生产的现状、问题和发展趋势[J].天津农业科学,2003,9(3):54-56.
    [11]浙江农业大学.植物营养与肥料[M].J匕京:农业出版社,1995,(43).
    [12]Evan. Nitrogen and photosynthesis in flag of wheat (Triticum aestivum L) [J]. Plant Physiology, 1983,72:297-302.
    [13]Sinclair, T.R., Horie, T. Crop physiology & Metabolism:Leaf nitrogen, photosynthesis and crop radiation use efficiency:a review [J]. Crop science,1989,29:90-98.
    [14]蔡柏岩,葛青萍等.氮素水平对甜菜干物质积累和分配的影响.中国糖料,2004,(2):6-8.
    [15]汀建飞,妍素芝等.设施黄瓜干物质积累与NPK吸收规律,土壤通报,2005,36(5):708-711.
    [16]Ines, Cechin. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Science,2004,166:1379-1385.
    [17]孙羲,林荣新,马国瑞.水稻营养[C],1986,北京:科学出版社:1-13.
    [18]Lawlor, D.W. Carbon and nitrogen assimilation in relation to yield:mechanisms are the key to understanding production systems [J]. Exp. Botany,2002,23:773-787.
    [19]Toth, V.R, Meszkaros, I., Veres, S., et al. Effects of the available nitrogen on the photosynthesis activity and xanthophylls cycle pool of maize field [J]. Plant Physiology,2002,159:627-634.
    [20]林克强.施肥对农产品品质的影响[J].云南农业大学学报,1996,11(6):114-120.
    [21]曹志洪.科学施肥和我国粮食安全[J].土壤,1998,2:57-63.
    [22]Vos, J., Biemond, H. Effects of nitrogen on the development and growth of the potato plant. I. Leaf appearance, expansion growth, life spans of leaves and stem branching [J]. Annals of botany, 1992,70:25-27.
    [23]刘秀春,胡著春,宋士清.保护地黄瓜化瓜原因及防治措施[J].温室园艺,42:75-83.
    [24]李冬梅,魏珉,孔祥波,等.氮磷钾不同用量及配比对日光温室黄瓜产量和品质的影响[J].中国 农学通报,2005,21(7):262-265.
    [25]陈志杰,杨世选,张淑莲,张锋.黄瓜苦味形成原因及预防措施[J].西北园艺,2006,1.
    [26]陈新华,龚松旺.黄瓜畸形的原因与防治措施[J].新疆农业科技,2003.
    [27]徐坤范,艾希珍,张晓慧,徐康乐.氮素水平对日光温室黄瓜品质的影响[J].西北农业科学报,2005,14(1):162-166.
    [28]王润屹,洪春来,等.不同施肥水平下黄瓜体内硝酸盐和亚硝酸盐积累与分配的研究[J].上海农业科技,2004,3:185-195.
    [29]冯伟,王永华,谢迎新,等.作物氮素诊断技术的研究综述[J].中国农学通报,2008,11:179-185.
    [30]江苏省农学会.江苏麦作科学[M],南京:江苏科学技术出版社,1994:183-185.
    [31]Papastylianou, Puckridge. Tem nitrogen and yield of wheat in a permanent rotation experiment [J].Australian Journal of Agricultural Resource,1983,4:599-606.
    [32]Engel, R.E., Zubriski, J.C. Nitrogen content ratio in spring wheat at several growth stages [J]. Commun. J. Soil Sci. Plant Anal,1982,15 (7):531-544.
    [33]Elliott., Reuter, D.J., Growden, B., et al. Improved states for diagnosing and correcting nitrogen deficiency in spring wheat [J]. Plant N utr,1987,10(9-16):1761-1770.
    [34]王彧.中国农业植被净初级生产力模拟研究[D].南京农业大学硕士学位论文,2006,11-13.
    [35]张俊平,陈常铭.水稻群体生长过程和产量的动态模拟[J].生态学报,1990,10(4):311-316.
    [36]Daia, T., Wiegert, R.G.A. field Study of photosynthetic capacity and its response to nitrogen fertilization in spartina alterniflora [J]. Estuarine, Coastal and Shelf Science,1997,45:273-283.
    [37]Yin, X.Y. A generic equation for nitrogen-limited leaf area index and its application in crop growth models for predicting leaf senescence [J].Annals of Botany,2000,85:579-585.
    [38]Zhu, J. H., Li, X. L., Christie, P., Li, J. L. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agriculture, Ecosystems and Environment,2005,111,70-80.
    [39]马文奇等.山东大棚蔬菜施肥中存在的问题及对策.李晓林等主编:平衡施肥与可持续优质蔬菜生产.北京:中国农业大学出版社,2000,41-47.
    [40].卢育华,中玉梅.黄瓜规范化施肥的研究.山东农业大学学报,1990,21(3):52-57.
    [41]Overman, A.R., Robinson, D., Wilkinson, S.R. Coupling of dry matter and nitrogen accumulation in ryegrass [J]. Fertil Res,1995(40):105-108
    [42]Hansen, S., Jensen, H.E., Nielsen NE, et al. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY [J]. Fertil Res,1991 (27): 245-259.
    [43]Hunt, L.A, Pararajasingham, S. CROPSIM-Wheat:A model describing the growth and development of wheat [J]. Can J Plant Sci,1995 (75):619-632.
    [44]Jones, C.A., Kiniry, J.R. CERES-Maize. A Simulation model of maize growth and development [J]. Texas:Texas A & M University Press.1986.
    [45]Gabrielle, B., Denoroy, P., Gosse, G., et al. Development and evaluation of a CERE-rape model for winter oilseed rape [J]. Field Crop Res,1998 (57):209-222.
    [46]Porter, J.R. AFRCWHEAT2:A model of the growth and development of wheat incorporating responses to water and nitrogen [J]. Eur J Agron,1993 (2):69-82.
    [47]Stockle, CO., Debaeke, P. Modeling crop nitrogen requirements:A critical analysis [J]. Eur J Agron,1997(7):161-169.
    [48]Jeuffroy, M.H., Recous, S. A simple model simulating the date of nitrogen deficiency for decision support in wheat fertilization [J]. Eur J Agron,1999 (10):129-144.
    [49]Aggarwal, P.K, Kalra, N., Singh, A.K., et al. Analyzing the limitations set by climatic factors, genotype, water and nitrogen availability on productivity of wheat I. The model description, parameterization and validation [J]. Field Crops Res,1994 (38):73-91.
    [50]Eckersten, H., Janson, P.E. Modeling water flow, nitrogen uptake and production for wheat [J]. Fertil Res,1991 (27):313-329.
    [51]Groot, J.J.R., De Willigen, P. Simulation of the nitrogen balance in the soil and a winter wheat crop [J]. Fertil Res,1991.27:261-272.
    [52]傅庆林,俞劲炎,王兆骞.旱地作物营养生态的氮素循环[J].应用生态学报,1993,4(2):146-149.
    [53]薛晓萍,陈兵林,郭文琦,等.棉花临界需氮量动态定量模型[J].应用生态学报,2006,17(12):2363-2370.
    [54]Marcelis, L.F.M. Effect of assimilate supply on the growth of individual cucumber fruit. Physiologia Plantarum,1993,87,313-320.
    [55]Chen, L.S., Cheng, L.L. Photosynthetic enzymes and carbohydrate metabolism of apple leaves in response to nitrogen limitation [J]. Journal of Horticultural Science & Biotechnology,2004,79 (6): 923-929.
    [56]浙江农业大学.植物营养与肥料[M].北京:农业出版社,1995,43.
    [57]Le, B.J., Adamowicz, S., Robin, P. Modelling plant nutrition of horticultural crops:a review [J]. Scientia Horticulturae,1998,74:47-82.
    [58]吴良欢,陈峰,方萍,等.水稻叶片氮素营养对光合作用的影响[J].中国农业科学,1995,28(增刊):104-107.
    [59]Cechin, I., Fumis, T.d.F. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Science,2004,166,1379-1385.
    [60]Mareelis, L.F.M., Gijzen, H. A model for Prediction of yield and quality of cucumber fruits [J]. Acta Hortieulturae,1998,476:237-242.
    [61]Toth, V.R., Meszkaros,1., Verse, S., et al. Effects of the available nitrogen on the Photosynthetic activity and xanthophylls cycle Pool of maize in field IJ]. Plant Physio,2002,159:627-634.
    [62]Dayan, E., Van, Keulen., Jones, H., et al. Development, calibration and validation of a greenhouse tomato growth model:1. Description of the model [J]. Agricultural System,1993,43(2):148-163.
    [63]Dayan, E. Development, calibration and validation of a greenhouse tomato growth model:11. Field calibration and validation [J].Agricultural System,1993,43 (2):165-183.
    [64]Heuvelink, E., Mareelis, L.F.M. Influence of assimilates supply on leaf formation in sweet pepper and tomato [J]. Journal of Horticultural Science,1996,71 (3):405-414.
    [65]Van Henten, E J. Validation of a dynamic lettuce growth model for greenhouse climate control [J]. Agricultural System,1994,45:55-72.
    [66]李永秀,罗卫红,倪纪恒等.基于辐射和温度热效应的温室水果黄瓜叶面积模型[J].植物生态学报,2006,30(s):561-867.
    [67]袁吕梅,罗卫红.温室网纹甜瓜干物质分配、产量形成与采收期的模拟研究[J].中国农业科学,2006,39(2):353-363.
    [68]倪纪恒,罗卫红.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005,38(8):1635-1639.
    [69]J. Vos, P.E.L., van der Putten, C.J., Birch. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (ZeamaysL.) Field Crops Research,2005,93:64-73.
    [70]Trapani, N., Horie, T. Effect of leaf position and nitrogen supply on the expansion of leaves of field grown sunflower (Helianthus annuus L.) [J]. Plant soil,1996,184:331-340.
    [71]Nora, T., Antonio, J.H., Mare, W. Effects of Constant and Variable Nitrogen Supply on Sunflower (Helianthus annuus L.) Leaf Cell Number and Size [J]. Annals of Botany,1999,84:599-606.
    [72]Qifu, M., Nancy, L., Miles, D. Nitrogen Deficiency Slows Leaf Development and Delays Flowering in Narrow-leafed LuPin [J].Annals of Botany,1997,79:403-409.
    [73]XINYOU YIN., AD H.C.M. SCHAPENDONK., MARTIN J.KROPFF., MARCEL VAN OIJEN., PREM S.BINDRABAN. A Generic Equation for Nitrogen-limited Leaf Area Index and its Application in Crop Growth Models for Predicting Leaf Senescence [J]. Annals of Botany,2000,85: 579-585.
    [74]Marcelis, L.F.M. Fruit growth and dry matter partitioning in cucumber [D].The Netherlands: Wageningen University,1994.
    [75]Challa, H., Van de Vooren. A strategy for climate control in greenhouse in early winter production [J]. Acta Horticulturea,1980,106:159-164.
    [76]Schapendonk, A.H.C.M., Brouwer, P. Fruit growth of cucumber in relation to assimilate supply and sink activity. Scientia Horticulaturae,1984,23:21-33.
    [77]温有学.温室黄瓜化瓜严重的原因及其防治措施[J].吉林农业,2004,4(170):20-21.
    [78]Marcelis, L.F.M. Fruit growth and biomass allocation to the fruits in cucumber 2. Effect of fruit load and temperature. Scientia Horticulturae,1993b,54:107-121.
    [79]Heuvelink, E., Buiskool R.P.M. Influence of sink-source interaction on dry matter production in tomato [J]. Annals of Botany,1995,75:381-389.
    [80]De Pinheiro Henriques, A.R., Marcelis, L.F.M.. Regulation of growth at steady-state nitrogen nutrition in Lettuce (Lactuca sativa L.):Interactive effects of nitrogen and irradiance. Annals of Botany,2000,86:1073-1080.
    [81]Park, M.K., Km, J.G., Song, Y.H., Lee, J.H., Shin, K.I., Cho, K. Effect of nitrogen levels of two cherry tomato cultivars on development, preference and honeydew production of Trialeurodes vaporariorum (Hemiptera:Aleyrodidae). Journal of Asia-Pacific Entomology,2009,12:227-232.
    [82]Hansen, Poul. Source-sink relations in fruits Ⅳ. Fruit number and fruit growth in strawberries [J]. Acta Horticulturae,1989,265:377-381.
    [83]Bertin, N., Gary, C. Tomato fruit-set:a case study for validation of the model TOMGRO. Acta Horticulturae,1993,328:185-193.
    [84]Goldschmidt, E.E., Harpaz, A., Gal, S., Rabber, D., Gelb, E. Simulation of fruitlet thinning effects in Citrus by a dynamic growth model. Proceeding of International Citriculture,1992,1:515-519.
    [85]Marcelis, L.F.M. Effect of assimilate supply on the growth of individual cucumber fruit. Physiologia Plantarum,1993d,87:313-320.
    [86]Marcelis, L.F.M. A simulation model for dry matter partitioning in cucumber. Annals of Botany, 1994,74:43-52.
    [87]Marcelis, L.F.M. The dynamic of growth and dry matter distribution in cucumber [J]. Annal of Botany,1992,69:487-492.
    [88]Ruiz, J.M; Romero, L. Cucumber yield and nitrogen metabolism in response to nitrogen supply. Scientia Horticulturae,1999,82,309-316.
    [89]姜东,于振文,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响[J].中国农业科学,2002(2).
    [90]张艳玲,宋述尧.氮素水平对温窒番茄果实生长及产量的影响[J].北方园艺,2008,2:25-26.
    [1]Marcelis, L.F.M. Effect of fruit growth, temperature and irradiance on biomass allocation to the vegetative parts of cucumber [J]. Netherlands Journal of Agricultural Science,1994,42:1387-1392.
    [2]徐国彬,罗卫红,陈发棣,等.温度和辐射对一品红发育及主要品质指标的影响[J].园艺学报,2006,33(1):168-171.
    [3]李娟,郭士荣,罗卫红.温室黄瓜光合生产与干物质积累模拟模型[J].农业工程学报,2003,19(4):241-244.
    [4]Gonzalez-Real, M. M., Baille, A., Liu, H. Q. Influence of fruit load o dry matter and N-distribution in sweet pepper plants. Scientia Horticulturae,2008,117,307-315.
    [1]高丽红,关秋竹,陈青云.不同水果型黄瓜品种日光温室春节栽培的适应性研究[J].农村实用工程技术,2004,1:39-41.
    [2]Heuvelink. E, Buiskool, R.P.M. Influence of sink-source interaction on dry matter production in tomato [J]. Annals of Botany,1995,75:381-389.
    [3]Marcelis, L.F.M. Effect of assimilate supply on the growth of individual cucumber fruit [J]. Physiologia Plantarum,1993,87:313-320.
    [4]Vos J, van der Putten P.E.L., Bireh C.J. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.) [J]. Field Crops research, 2005,93:64-73.
    [5]Lizaso, J.L., Batchelor. W.D., Westgate, M.E. Leaf area model to simulate cultivar-specific expansion and seneseenee of maize leaves [J]. Field Crops Research,2003,80:1-17.
    [6]Yin, X., Lantinga, E.A., Schapendonk, A.H.C.M., Zhong, X. Some quantitative relationships between leaf area index and canopy nitrogen content and distribution. Ann. Bot,2003,91,893-903.
    [7]Vos J., van der Putten P.E.L. Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in Potato [J]. Field Crops Research,1998,59:63-72.
    [8]Vos J., van der Putten, P.E.L. Effects of partial shading of the potato plant on photosynthesis of theated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plant parts [J]. Euro Pean Journal of Agronomy,2001,14:209-220.
    [9]De Pinheiro Henriques, A.R., Marcelis, L.F.M. Regulation of growth at steady-state nitrogen nutrition in Lettuce (Lactuca sativa L.):Interactive effects of nitrogen and irradiance [J]. Annals of Botany,2000,86:1073-1080.
    [10]Marcelis, LFM. Fruit growth and dry matter partitioning in cucumber [D]. The Netherlands: Wageningen University,1994.
    [11]Challa H., Van de Vooren. A strategy for climate control in greenhouse in early winter production [J]. Acta Horticulturea,1980,106:159-164.
    [12]Schapendonk, A H C M., Brouwer, P. Fruit growth of cucumber in relation to assimilate supply and sink activity. Scientia Horticulaturae,1984,23:21-33.
    [13]Cechin, I., Fumis, T.d.F. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Science,2004,166,1379-1385.
    [14]刘秀春,胡著春,宋士清.保护地黄瓜化瓜原因及防治措施[J].温室园艺,42.
    [15]Marcelis, L.F.M. Effect of fruit growth, temperature and irradiance on biomass allocation to the vegetative parts of cucumber [J]. Netherlands Journal of Agricultural Science,1994,42:1387-1392.
    [16]徐国彬,罗卫红,陈发棣,等.温度和辐射对一品红发育及主要品质指标的影响[J].园艺学报,2006,33(1):168-171.
    [17]李娟,郭士荣,罗卫红.温室黄瓜光合生产与干物质积累模拟模型[J].农业工程学报,2003,19(4):241-244.
    [18]Gonzalez-Real, M. M., Baille, A., Liu, H. Q. Influence of fruit load o dry matter and N-distribution in sweet pepper plants. Scientia Horticulturae,2008,117,307-315.
    [19]陈春宏,向邦银.大型温室黄瓜生长发育特性研究[J].农业工程学报,2005,21(增刊):189-193.
    [20]Marcelis, L.F.M. The dynamic of growth and dry matter distribution in cucumber [J]. Annals of Botany,1992,69:487-492.
    [21]Sinclair, T.R., Muchow, R.C. Effect of nitrogen supply on maize yield. I. Modeling physiological responses. Agron. J,1995a,87,632-641.
    [22]Park, M.K., Km, J.G., Song, Y.H., Lee, J.H., Shin, K.I., Cho, K. Effect of nitrogen levels pf two cherry tomato cultivars on development, preference and honeydew production of Trialeurodes vaporariorum (Hemiptera:Aleyrodidae). Journal of Asia-Pacific Entomology,2009,12,227-232.
    [23]修翠虹.黄瓜化瓜的主要原因及防治对策[J].北方园艺,2004,6:38.
    [24]Marcelis, L.F.M., Baan H.E. Effects of seed number on competition and dominance among fruits in Capsicum annuum L. Annals of Botany,1997,79:687-693.
    [25]Korner, O., Challa, H. Process-based humidity control regime for greenhouse crops. Computers and Electronics in Agriculture,2003,39:173-192.
    [26]Aloni, B., Karni, L., Zaidman, Z., Schaffer, A.A. Changes of carbohydrates in pepper (Capsicum annuum L.) flowers in relation to their abscission under difference shading regimes. Annals of Botany,1996,78,163-168.
    [27]Groeneveld, J.H., Tscharntke, T., Moser, G, Clough, Y. Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. Perspectives in Plant Ecology, Evolution and Systematics,2010.
    [28]Aggarwal, P.K., Kalra, N., Chander, S., Pathak, H. InfoCrop:Adynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments I. Model description. Agriculture Systems,2006,89:1-25.
    [1]李元新,乔小军.设施黄瓜专家系统经济效应分析模拟研究[J].蔬菜,2003,(6):34.
    [2]高丽红,关秋竹,陈青云.不同水果型黄瓜品种日光温室春季栽培的适应性研究[J].农村实用工程技术,2004,1:39-41.
    [3]Marcelis, L.F.M., Gijzen, H. Evaluation under commercial conditions of a model of prediction of the yield and quality of cucumber fruits [J]. Scientia Horticulturae,1998,76.171-181.
    [4]秦巧燕,贾陈忠,曲东,等.我国设施农业发展现状及施肥特点[J].湖北农学院学报,2002,22(4):373-376.
    [5]吴正景,刘保国,魏秉培.温室施肥存在问题及解决途径[J].陕西农业科学,2004,3:35-37.
    [6]Ruiz, J.M., Romero, L. Cucumber yield and nitrogen metabolism in response to nitrogen supply. Scientia Horticulturae,1999,82,309-316.
    [7]De Groot, C.C., Marcelis, L.F.M., van den Boogaard, R., Kaiser, W.M., Lamber, H. Interaction of nitrogen and phosphorus nutrition in determining growth [J]. Plant and soil, 2003,248:257-268.
    [8]Seginer, I. A dynamic model for nitrogen-stressed Lettuce [J]. Annals of Botany,2003,91: 623-635.
    [9]Verkroost, A.W.M., Wassen. M.J. Asimple model for nitrogen-limited plant growth and nitrogen allocation [J]. Annals of Botany,2005,96:871-876.
    [10]Marcelis, L.F.M. Effect of assimilate supply on the growth of cucumber individual fruits [J]. Physiologia Plantarum,1993,87:313-320.
    [11]彭福田,姜远茂,顾曼如,等.不同负荷水平下氮素对苹果果实生长发育的影响[J].中国农业科学,2002,35(6):690-694.
    [12]Genard M., Lescourret F., Ben Mimoun M., et al. A simulation model of growth at the shoot-bearing fruit level. II.Test and effect of source and sink factors in the case of peach [J]. European Journal of Agronomy,1998,9:189-202.
    [13]Hansen Poul. Source-sink relation in fruits Ⅳ. Fruit number and fruit growth in strawberries [J]. Acta Horticulturae,1989,265:377-381.
    [14]Marcelis, L.F.M. Fruit growth and biomass allocation to fruits in cucumber I. Effect of fruit load and temperature [J]. Scientia Horticulturae,1993,54:107-121.
    [15]Famiani F., Proietti P., Palliotti A., et al. Effect of leaf to fruit ratios on fruit growth in chestnut [J]. Scientia Horticulturae,2000,85:145-152.
    [16]Marcelis, L.F.M. A simulation model for dry matter partitioning in cucumber [J]. Annals of botany,1994,74:43-52.
    [17]Marcelis, L.F.M. Non-destructive measurements and growth analysis of the cucumber fruit. Journal of Horticultural Science,1992,67:457-464.
    [18]LiPaty, A., Nieholls, S. Nitrogen supply during greenhouse transplant production affects Subseguent tomato root growth in the field. J-Am-Soc-Hortic-Sei,1993,20,3:207-220.
    [19]Upendra, M., Sainju, B.P et al. Tomato yield and soil quatity as influenced by tillage, cover cropping, and nitrogen fertilization. Hook (Ed) Proceedings of the 22nd Annual Southern Conservation Tillage Conference for Sustainable Agriculture. Tifton, GA. Gerogia Agriculture Experiment Station Special Publication 95, Athens, GA. P:104-113.
    [20]Garton, R.W., Widders, I.E. Nitrogen and phosphorus preconditioning of small-plug seedlings influence processing tomato productivity. Hort Science,1990,25:655-657.
    [21]张庆江,张文英.小麦夏玉米两熟制粮田氮的平衡运转动态及氮肥利用率.土壤通报1997,28(4):164-166.
    [22]江文,刘金标,武鹏,等.水果型黄瓜温室基质高产栽培技术[J].广西农业科学,2006,37(2):186-188.
    [23]Ben, M.M. Effect of sink-source distance on peach fruit growth [J]. Acta Horticulturae,2000, 516:83-87.
    [24]Theodure M., De Jong., Yaffa, L.G. Quantifying sink and source limitations on dry matter partitioning to fruit growth in peach trees [J]. Physiologia Plantarum,1995,95:437-443.
    [25]Marcelis, L.F.M. Effect of fruit growth, temperature and irradiance on biomass allocation to the vegetative parts of cucumber [J]. Netherlands Journal of Agricultural Science,1994,42: 1387-1392.
    [26]Marcelis, L.F.M. Fruit growth and dry matter partitioning in cucumber [D]. The Netherlands: Wageningen University,1994.
    [27]Heuvelink, E. Evaluation of a dynamic simulation model for tomato crop growth and development. Annals of Botany,1999,83:413-422.
    [28]Marcelis, L.F.M. A simulation model for dry matter partitioning in cucumber. Annals of Botany,1994,74,43-52.
    [29]Marcelis, L.F.M. The dynamic of growth and dry matter distribution in cucumber [J]. Annals of Botany,1992,69:487-492.
    [1]吴正景,刘保国,魏秉培.温室施肥存在问题及解决途径[J].陕西农业科学,2004,3:35-37.
    [2]Hansen, P. Source-sink relation in fruits Ⅳ. Fruit number and fruit growth in strawberries [J]. Acta Horticulturae,1989,265:377-381.
    [3]Ben, M. M. Effect of sink-source distance on peach fruit growth [J]. Acta Horticulturae,2000,516: 83-87.
    [4]Theodure, M., De, Jong., Yaffa, L. Grossman. Quantifying sink and source limitations on dry matter partitioning to fruit growth in peach trees [J]. Physiologia Plantarum,1995,95:437-443.
    [5]Marcelis, L.F.M. Effect of assimilate supply on the growth of individual cucumber fruit [J]. Physiologia Plantarum,1993,87:313-320.
    [6]VOs, J., van der Putten, P.E.L., Bireh, C.J. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.) [J]. Field Crops research. 2005,93:64-73.
    [7]Lizaso, J.L., Batchelor, W.D., Westgate, M.E. Leaf area model to simulate cultivar-specific expansion and senescence of maize leaves [J]. Field Crops Research 2003,80:1-17.
    [8]Schapendonk, A.H.C.A., Brouwer, P. Fruit growth of cucumber in relation to assimilate supply and sink activity. Scientia Horticulturae,1984,23:21-33.
    [9]Marcelis, L.F.M. A simulation model for dry matter partitioning in cucumber [J]. Annals of botany, 1994,74:43-52.
    [10]Henton, S.M., Piler, G.J., Gebdar, P.W. A fruit growth model dependent on both carbon supply and inherent fruit characteristics [J]. Annals of botany,1999,83:509-514.
    [11]Genard, M., Lescourret, F., Mimoun, M.B., Besset, J., Bussi, C. A simulation model of growth at the shoot-bearing fruit level. Ⅱ. Test and effect of source and sink factors in the case of peach. European Journal of Agronomy,1998,9,189-202.
    [12]Hansen, P. Source-sink relations in fruits. Ⅳ. Fruit number and fruit growth in strawberries [J]. Acta Horticulturae,1989,265:377-381.
    [13]Famiani, F., Proietti, P., Palliotti, A., et al. Effect of leaf to fruit ratios on fruit growth in chestnut [J]. Acta Horticulturae,2000,85:145-152.
    [14]Marcelis, L.F.M., Gijzen, H. Evaluation under commercial conditions of a model of prediction of the yield and quality of cucumber fruits. Scientia Horticulturae,1998,76.171-181.
    [15]Marcelis, L.F.M. Non-destructive measurements and growth analysis of the cucumber fruit. Journal of Horticultural Science,1992,67:457-464.
    [16]Ruiz, J.M., Romero, L. Cucumber yield and nitrogen metabolism in response to nitrogen supply. Scientia Horticulturae,1999,82,309-316.
    [17]韩丽等.氮素对温室开花后含物质分配和产浪影响的模拟研究[J].农业工程学报,2008,24.
    [18]Marcelis, L.F.M. Fruit growth and dry mater partitioning in cucumber [D]. The Netherlands: Wageningen University,1994.
    [19]裴孝伯,张福墁,王柳.不同光温条件对日光温室患寡氮磷钾吸收分配的影响[J].中国农业科学,2003,35(12):1510-1513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700