水葫芦适应不同生长条件的生理生化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水葫芦又名凤眼莲,属雨久花科、凤眼莲属,为直立多年生草本植物,原产南美,最初作为水生饲料被引进,后逐渐脱离人为控制,广泛分布于浙江、上海、福建、云南等东南部18个省市自治区,成为十大入侵害草之一,研究水葫芦生物入侵机理对其综合治理与利用具有重要意义。本研究以采自闽江水口电站的水葫芦为材料,通过室外调查和模拟实验,研究用不同营养水平及重金属镉胁迫对水葫芦生长和分蘖动态、形态特征、生理生化特性、内源激素及根际微生物群落功能多样性的影响,主要结果如下:
     (1)在富营养化内河放养水葫芦研究表明,水葫芦具有强大的无性繁殖力。在放养的210d内,水葫芦在5~7月份鲜重和分蘖数增加明显,鲜重相对生长高达9.42倍,分蘖数相对增加最高达到3.67倍,8月份后增重明显放慢,到10月份下旬至11月份下旬无明显增重,水葫芦在富营养内河中的最大密度约为55.7kg/m~2,分蘖数量约为133个/m~2。
     (2)以0.01、0.025、0.05、0.2、1、5、10倍Hoagland营养液室内模拟培养水葫芦,结果表明:在培养120d内,水葫芦在1倍Hoagland完全培养液生长最好,相对生长率高达22倍。缺N、缺P培养水葫芦结果表明,缺素条件下水葫芦株高变矮,侧根系变长,叶片变薄、变小,以缺N培养的最为明显,对水葫芦的生长影响最大,分蘖数仅为对照和缺磷培养的47.1%和50.0%,鲜重分别是38.7%和44.3%。氮素浓度为30.0mg/L、15.0mg/L、7.5mg/L和3.75mg/L的水培模拟试验表明,培养125d后,水葫芦鲜重分别增加到开始放养时的20.5、32.1、14.9和10.2倍,最佳营养液氮素浓度为15.0mg/L。
     (3)以含有0mg/L Cd~(2+)、1mg/L Cd~(2+)、5mg/L Cd~(2+)和10mg/L Cd~(2+)的Hoagland营养液室内模拟培养水葫芦试验表明,5mg/L Cd~(2+)处理30d后,水葫芦的镉富集系数达到448,富集的镉主要分布在根系,镉富集量与处理浓度正相关;在10mg/L Cd~(2+)下处理30d,根系中镉含量为2741.3mg/kg,是茎叶的20.7倍。生理生化分析表明,镉胁迫下水葫芦叶片和根系的可溶性蛋白和保护酶系活性均显著升高,叶片中可溶性蛋白含量约为根系的1.5~1.8倍;水葫芦叶片中MDA含量无明显变化,根系中MDA含量在10mg/L Cd~(2+)条件下处理后显著的升高,镉对水葫芦根系的伤害比叶片伤害早且大。镉胁迫下,IAA、GA和ZR含量趋势均为先升高后降低,在5mg/L Cd~(2+)内, IAA、ZR、GA含量均增加,在10mg/L Cd~(2+)下,IAA、ZR、GA含量显著降低。植物内源激素ABA含量与镉浓度正相关,10mg/L Cd~(2+)下ABA含量达到135.33ng/g·FW,是0mg/L Cd~(2+)下的2倍,IAA、ZR、GA之间共同调控,提高了镉胁迫下水葫芦的抗逆性。
     (4)镉胁迫下,水葫芦根际微生物总量随镉处理浓度升高而减少,CK和1mg/L Cd~(2+)条件下,种群数量无明显差异,但在10mg/L Cd~(2+)条件下的微生物总量仅为是CK的67%。生理类群分析表明,自生固氮菌、硝化细菌和亚硝化细菌随镉浓度的增大种群密度在减小,以10mg/L Cd~(2+)下最为显著,其中亚硝化细菌减少最多,是CK组的45%;反硝化细菌在低浓度镉胁迫下种群密度增大,高浓度下受到抑制,氨化细菌和好气性纤维素分解菌呈相似的变化趋势。生物群落功能多样性的BIOLOG分析表明,水葫芦根际微生物在0mg/L Cd~(2+)和1mg/L Cd~(2+)环境中对有机物利用率较高,在5mg/L Cd~(2+)和10mg/L Cd~(2+)下,有机物的利用率显著下降。
     综上所述,水葫芦具有强大的无性繁殖力,具有高的表型可塑性,以及保护酶和激素的调节增强了水葫芦的抗逆性,根际微生物多样性的改变也对维持养分循环、修复富营养化和镉污染水域具有重要作用。在氮素浓度为3.75~30mg/L、0~5mg/L Cd~(2+)、0~10倍Hoagland营养液中均能正常生长,具有强大的生长适应性。
Eichhornia crassipes (Mart.) Solms (Pontederiaceae), also known as water hyacinth, is a perennial erect herb native to South America. It was introduced to China as aquatic feed originally and then naturalized in wild gradually. E. crassipes has become one of the top ten invasive plants widely distributing in 18 regions in southeast China (province, city and municipality) , including Zhejiang, Shanghai, Fujian, and Yunnan. Accordingly, it is very important to elucidate the mechanisms of biological invasion of E. crassipes for the integrated control and utilization of this species. In this study, we selected E. crassipes collected from Shuikou power station of Min River as experimental materials and studied the effects of nutrient level, and heavy metal stress of cadmium on growth dynamics, tillering dynamics, morphological characteristics, physiological and biochemical characteristics, endogenous hormones and rhizosphere microbial community functional diversity of the plant through field survey and indoor simulation experiments. The main results are as follows:
     (1) By cultivating E. crassipes in an eutrophic inner river for a interval of 210 days, the plant showed its strong asexual reproductive ability. The fresh weight and tiller number significantly increased from May to July, the relative growth rate of fresh weight was up to 9.42 times and the relative tiller number reached 3.67 times. The growth of the plant slowed down significantly from August and there was no significant fresh weight increase from late October to late November. The maximum density of E. crassipes in nutrient-rich river was about 55.7 kg/m~2 and the density of tiller number was about 133/m~2.
     (2) The results of indoor simulation experiments of culturing E. crassipes in the hydroponic solution, which the concentration of the nutrients was 0.01, 0.025, 0.05, 0.2, 1, 5, 10 times as higher as that of Hoagland hydroponic solution. The results showed that E. crassipes grew best in 1 time Hoagland nutrient solutions and the relative growth rate of it was up to 22 times, within 120 days. By culturing E. crassipes in nutrient solutions lack of N, P, E. crassipes performed with more shorter height, longer lateral roots, thinner and smaller leaves .There is significant impact on the growth of E. crassipes under the N deficit condition. The tiller number was only 47.1% as many as that of control and 50.0% of which lacking of P, and fresh weight is 38.7% and 44.3% respectively. In addition, when E. crassipes was cultured in the solutions containing nitrogen 30.0 mg/L, 15.0 mg/L, 7.5 mg/L and 3.75 mg/L for 125 days, respectively, the fresh weight of E. crassipes increased to 20.5, 32.1, 14.9 and 10.2 times as that of beginning. and the highest biomass was found in the 15.0 mg/L nitrogen condition
     (3) Laboratory experiments of culturing E. crassipes in Hoagland solutions containing 0 mg/L, 1 mg/L, 5 mg/L and 10 mg/L Cd2 + showed that the cadmium accumulation index of E. crassipes was up to 448 by treating the plant for 30 days in 5 mg/L Cd~(2+)solution, and Cadmium mainly accumulated in roots,the accumulation of Cd was positive related to the concentration of Cd~(2+) treated. Under 10 mg/L Cd~(2+)solution, the content of cadmium in roots was 2741.3 mg/kg, which was 20.7 times as higher of that in the stems and leaves. Furthermore, physiological and biochemical analysis indicated that the content of soluble protein and protection enzyme system activity significantly increased in leaves and roots of E. crassipes under cadmium stress, showing soluble protein content in leaves was about 1.5~1.8 times as higher as that in roots, MDA content in leaves of E. crassipes had no significant changes, MDA content in roots significantly increased after 20 days treatments by 10 mg/L Cd~(2+), so the earlier and severe damage of cadmium to roots than to leaves was recorded. Under the condition of cadmium stress, IAA, GA and ZR contents increased initially and decreased latter, all of them increased under 5 mg/L Cd~(2+) while significantly reduced under 10 mg/L Cd~(2+) conditions. Endogenous hormone ABA content was positive correlated with cadmium concentration, it was 135.33 ng/g·FW under 10 mg/L Cd~(2+), which was 2 times as higher as that of control. The co-regulation among IAA, ZR and GA respond for the higher resistance of E. crassipes to cadmium stress.
     (4) Under the condition of cadmium stress, the population density of microorganisms in the rhizosphere of E. crassipes reduced with the increasing of cadmium concentration. but no significant difference was found between CK and 1mg/L Cd~(2+) treatment. But the population density of microbet was only 67%of CK under 10 mg/L Cd2 +treatment. The analysis of components of the microbe in the rhizospheric soils showed that population density of Azotobacteria, Nitrobacteria and Ntrosobacteri reduced with the increasing of cadmium concentration. There was significantly change found under 10 mg/L Cd~(2+) , nitrification bacteria population density reduced to 45% of that in CK. The population density of denitrifying bacteria increased under low cadmium stress, while decreased under high cadmium concentration. Similar trend was found in ammonification and aerobic cellulose decomposing bacteria. Biological community functional diversity of rhizospheric microbe, which was analysed by BIOLOG method, showed higher utilization ability of organic compounds under 0 mg/L and 1mg/L Cd~(2+) environments than under 5 mg/L or 10 mg/L Cd~(2+) conditions, by rhizospheric microorganisms of E. crassipes
     In summary, E. crassipes has stronger asexual reproductive ability, higher plasticity, together with the changing of protection enzymes system and hormones, which resulting in higher resistance to stressful environment. The changing diversity of rhizospheric microbe also played an important role in maintaining the cycling of nutrient, restoring eutrophication and cadmium-containing water area, indicating a strong growth adaptability of E. crassipes as well.
引文
[1]陈元胜.外来物种入侵对生物多样性的影响及对策[J].安徽农业科学,2007,35(5):1445-1446.
    [2]万方浩.“973”项目“农林危险生物入侵机理与控制基础研究”简介[J].昆虫知识,2007,44(6):790-797.
    [3] Richard N Mack. Phylogenetic constraint, absent life forms, and preadapted alien plants: A prescription for biological invasions. International Journal of Plant Sciences.Chicago: May, 2003,164(3): 185.
    [4] Johannes M H Knops,Clarence L Lehman. Theory and practice Ecology.Brooklyn[J].Biological invasions,Oct,1998, 79(7):2578.
    [5] Wi11iams Adrian E,Duthie Hamish C.Hecky Robert E.Water hyacinth in Lake Victoria: Why did it vanish so quickly and wil1 it return ?Aquatic Botany,2005,81(4):300-314.
    [6]丁建清,解焱.中国外来种入侵机制及对策.保护中国的生物多样性[M].北京:中国环境科学出版社,1996,107-128.
    [7] Born W, Rauschmayer F.Ingo Brauer.Economic evaluation of biological invasions:a survey [J].Ecological Economics,2005,55(3): 321-336.
    [8]李明阳,徐海根.生物入侵对物种及遗传资源影响的经济评估[J].南京林业大学学报(自然科学版),2005,29(2):98-102.
    [9]王丰年.外来物种入侵的历史、影响及对策研究[J].自然辨证法研究,2005,21(1):77-81.
    [10]陈毅峰,严云志.生物入侵的进化生物学[J].水生生物学报,2005,29(2):220-224.
    [11]李振宇,解焱.中国外来入侵种[M].北京:中国林业出版社,2002:162.
    [12]刘婷婷,张红军,马忠玉.生物入侵造成经济损失评估的研究进展[J].生态济,2010,221(2):173-175.
    [13]张博.美国外来物种入侵的相关法律对我国的启示[J].黑龙江省政法管理干部学院学报, 2005(2):118-120.
    [14]李明阳,徐海根.入侵物种对湿地生态系统影响的经济损失评估[J].中南林学院学报,2004,24(5):53-56.
    [15]李明阳,徐海根.入侵物种对森林生态系统影响间接经济损失评估[J].西北林学院学报,2005,20(2):156-159.
    [16]曹建华,蒋菊生,安峰.生物入侵机理研究进展[J].华南热带农业大学学报,2006,12(3):52-58.
    [17]刘苏,王祥荣.生态入侵及其对植被生态系统服务功能的影响研究[J].复旦学报(自然科学版), 2002,41(4):459-465.
    [18] Gollasch S, Rosenthal H,Botnen H,et al.Species richness and invasion vectors: sampling techniques and biases.Biological Invasions5.Kluwer Academic Publishers.Printed in the Netherlands,2003.365-377.
    [19]倪丽萍,郭水良.论DNA C-值与植物入侵性的关系[J].生态学报,2005,25(9):2372-2381.
    [20] Tina Heger, Ludwig Trepl.Predicting biological invasions.Biological Invasions 5.Kluwer Academic Publishers.Printed in the Netherlands, 2003:313-321
    [21] L.iB.Plant competition.Beijing:China Higher Education Press and Berlin Heidelberg: Springer-Verlag,2001.3-4.
    [22] Mack R N. Predicting the identity and fate of plant invaders:emergent and emerging approaches.Biol Conserv,1996,78: 107-121.
    [23] Williamson M.weeds and the risk from genetically modified organisms.Experientia,Invaders,1993,49:219-224.
    [24]郑培忠,沈健英.外来生物入侵及其机制[J].杂草科学,2009,4:1-6.
    [25] Center T D, Spencer N R.The phenology and growth of water hyacinth (Eichhornia crassipes(Mart.)Solms)in a eutrophic north-central Florida lake [J].Aquatic Botany,1981,10:1-32.
    [26] Howard G.W. Harley K L S. How do floating aquatic weeds affect wetland conservation and development? How can these effects be minimised?[J].Wetlands Ecology and Management,1998,5,215-225.
    [27] Abbasi S A, Ramasamy E V. Utilization of biowaste solids by extracting volatile fatty acids with subsequent conversion to methane and manure[C].// Proceedings of the twelfth international conference on solid waste technology and management[C]. Philadelphia: Publishers Association USA,1996, Chapter4,1-8.
    [28] Haymer D. Resolution of populations of the Mediterranean fruit fly at the DNA level using random primers for the polymerase chain reaction [J]. Genome,1994,37(2):244-248.
    [29] Kantetky R V, Zhang X,Bennetzen J L, et al .Assessment of genetic diversity in dent and popcom (Zea mays L.)inbred lines using inter- simple sequence repeat (ISSR) amplification[J].Mol.Breed,1995,1:365-372.
    [30] Prevost A,Wilknson M J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars[J]. Theor Appl Genet,1999,98:107-112.
    [31]张杰,吴迪,汪春蕾,等.应用ISSR-PCR分析蒙古栎种群的遗传多样性[J].生物多样性.2007,15 (3):292–299.
    [32]林瑞余,林文雄,孙红艳等,福建不同水域水葫芦遗传多态性的ISSR分析[J].福建农林大学学报(自然科学版),2008,37(2): 175-179
    [33]童风,李翠兰,李国栋.水葫芦快速杀灭技术及其资源化利用[J].资源开发与市场,2009,25(11):971-985.
    [34]陈翠兰,凌勇坚.综合治理水葫芦的实践与思考[J].农业环境与发展,2004, 21(2):42-43.
    [35]吴文庆,洪渊扬,秦双亭.水葫芦治理技术的初步研究[J].上海环境科学,2003(增刊): 146-150.
    [36]陈若霞,王扬军,古斌权等.水葫芦生物防治和综合治理技术研究[J].宁波农业科技, 2005(4): 17-8.
    [37]吴丹,望志方,冯利.水葫芦繁殖过度的危害及其防治措施[J].环境科学与技术, 2001,24(增刊):35-37.
    [38]谢桂英,郭金春.水葫芦的发生特点、防治及其利用[J].农药, 2005,44(10): 445-448.
    [39] Gunnarsson Carina C, Petersen Cecilia Mattsson. Water hyacinths as a resource in agriculture andenergy production:A literature review[J]. Waste Management,2006,(In Press).
    [40]谭承建,董强,王银朝等.水葫芦的危害、利用与防除[J].动物医学进展,2005,26(3):55-58.
    [41]丁建清,王韧,陈志群等.农达对水葫芦象甲的影响[J].中国生物防治,1998,14(4):152-155.
    [42]黄惠珠,叶夏,黄秀声等.水葫芦净化猪粪便效果的研究[J].可再生能源,2008,26(4):105-108.
    [43]张志勇,刘海琴,严少华等.葫芦去除不同富营养化水体中氮、磷能力的比较[J].江苏农业学报,2009,25(5):1039-1046.
    [44]许航,陈焕壮,熊启权,王宝贞等.水生植物塘脱氮除磷的效能及机理研究[J].哈尔滨建筑大学学报,1999,32(4):69-73.
    [45]郎咏梅,刘勃,季华东等.水葫芦在污水处理中的应用[J].节能环保技术,2006,12:33-35.
    [46]江曙光,中国水污染现状及防治对策[J].水产科技情报,2010,37(4):177-181.
    [47]王旭琴,李立军.湖泊污染特征及其生物修复[J].内蒙古科技与经济,2010,18:39-41
    [48] Mehra A, Farago M E, Banerjee D K.A Study of Eichhornia crassipes Growing in the Overbank and Floodplain Soils of the River Yamuna in Delhi,India[J].Environmental Monitoring and Assessment,2000,60(1):25-45.
    [49]李卫平,王军,李文等.应用水葫芦去除电镀废水中重金属的研究[J].生态学杂志,1995,14(4):30-35.
    [50] Klumpp A, Bauer K, Franz- Gerstein C, et al. Variation of nutrient and metal concentrations in aquatic macrophytes along the Rio Cachoeira in Bahia (Brazil)[J]. Environment International,2002(28):165-171.
    [51] Bhainsa K C, Souza S F D. Uranium (VI) biosorption by dried roots of Eichhornia Crassipes (water hyacinth) [J].J ENVIRON SCI HEALTH,2001, A36(9):1621-1631.
    [52]刘建武,林逢凯,王郁等.水生植物净化萘污水能力研究[J].上海环境科学,2002, 31(7):412-415.
    [53]孙文浩,俞子文,邵根福等.凤眼莲无菌苗培养及其克藻效应[J].植物生理学报,1990,10:301.
    [54]孙文浩,余叔文,杨善元等.凤眼莲根系分泌物中的克藻化合物[J].植物生理学报,1993,19(1):92-98.
    [55]刘德启,由文辉,李敏等.利用水网藻对微藻的抑制作用净化源水[J].中国给水排水,2004 ,20(10) :14-17.
    [56]俞子文,孙文浩,郭克勤,等.几种高等水生植物的克藻效应[J].水生植物学报,1992,16(1) :1-7.
    [57]朱磊,胡国梁,卢剑波等.水葫芦的资源化利用[J].浙江农业科学,2006,4:460-462.
    [58]刘立岩,吕兴娜.用水葫芦净化水质中氮、磷污染物的研究分析[J].丹东纺专学报,2005,12(2):40-41.
    [59] Sharma,B.M, Oshode,D.D.Effect of nutrients on the biomass of water hyacinth (Eichhornia crassipes(Mart.) Solms)[J]. Hydrobiologia, 1991, 38:401-408.
    [60] Pinto-Coelho,R.M,Greco, M.K.B.The contribution of water hyacinth (Eichhornia crassipes) and zooplankton to the internal cycling of Phosphorus in the eutrophic Pampulha Reservoir, Brazil[J]. Hydrobiologia,1999,411:115-127.
    [61] Van de Vijver, C.A.D.M.,Boot R.G.A..Phenotypic plasticity in response to nitrate supply of an inherently fastgrowing species from a fertile habitat and an inherently slow-growing spcies from an infertile habitat[J]. Oecologia,1993,96:548-554.
    [62]谢永宏,于丹.凤眼莲繁殖对策、资源竞争、生态影响及防治对策[J].海洋与淡水生物学,2003,75: 311–321.
    [63]丁建清.生物和非生物因子对外来入侵植物水葫芦的影响、互作机制及其综合治理[D].北京,中国农业大学,2002.
    [64]任明迅,张全国,张大勇.入侵植物凤眼蓝繁育系统在中国境内的地理变异[J].植物生态学报,2004,28(6):753-760.
    [65]纪苗苗,林波,吴跃明等.不同水域中水葫芦对铅、镉、铬、汞的富集规律研究[J].草叶科学,2010,27(07):1-4.
    [66]盛婧,郑建初,陈留根等.水葫芦富集水体养分及其农田施用研究[J].农业环境科学学报,2009,28(10):2119-2123.
    [67]许吉荣和张季惠.凤眼莲去除校园污水中氮的效应研究[J].西北民族大学学报(自然科学版),2008,29(72):32-34.
    [68]周上博,韦正钻,陈柏言.关于水葫芦生态系统处理农村污水的研究[J].中国环境管理,2010,2:42-43.
    [69]黄本胜,徐红辉.水葫芦灾害及其水生态修复功能[J].广东水利水电,2008,3:1-3.
    [70]黄娟,刘友勋.水葫芦作为能源植物的应用探讨[J].安徽农学通报,2009,15(24):15-16.
    [71]陈鑫珠,庄益芬.水葫芦饲料资源开发利用的研究进展[J].福建畜牧兽医,2009,31(4):29-31.
    [72]查国君,刘波,张无敌.水葫芦固液分离后汁液连续发酵的研究[J].可再生能源,2009,27(6):54-56.
    [73]张瑞福,曹慧,崔中利等.土壤微生物总DNA的提取和纯化[J].微生物学报,2003,43(2):276-282.
    [74]余翠平,苗期不同化感潜力小麦根际土壤微生态特性研究[D].福州,福建农林大学,2009.
    [75]邹琦.植物生理学实验指导/农学园艺植保土壤等专业用[M].中国农业出版社,2003.
    [76]赵本厚.脱落酸在森林演替过程中的化学驱动作用[D].广州,中国科学院,2009.
    [77] Choi K, Dobbs F C. Comparison of two kinds of Biolog micro-plates (GN and ECO) in their ability to distinguish among aquatic microbial communities.Journal of Microbiology Methods,1999,36(3):203- 213.
    [78] Zheng H, Ouyang Z Y, Fang Z G, Zhao T Q. Application of BIOLOG to study on soil microbial community functional diversity. Acta Pedologica Sinica,2004,41(3):456-461.
    [79] Barbaresi S, Gherard i F. The invasion of the ali en crayfish Procambarus clarkii in Europe , with particular reference to Italy. Biological Invasion , 2000,2:259-264.
    [80] Smith CM, Walters LJ.Fragmentation as a strategy for caulerpa species:Fates of fragments and implications for rmanagement of an invasive weed. Marine Ecology,1999,20:307-319.
    [81] Scheiner S M. Genetics and evolution of phenotypic plasticity[J]. Annual Review of Ecology Evolution and Systematics,1993, 24:35-68.
    [82] Pigliucci M. Evolution of phenotypic plasticity, where are we going now?[J]. Trends in Ecology Evolution, 2005,20(9):480-486.
    [83] Gabi J, Ewald W, Peter J E. Introduced plants of the invasive Solidago gigantean(Asteraceae)are larger and grow denser than conspecifics in the native range[J].Diversity and Distributions,2004,10:11-19.
    [84] Feng Y L, Auge H, Ebeling S K. Invasive Buddleja davidii allocates more nitrogen to its photosynthetic machinery than five native woody species[J]. Oecologia,2007,153:501-510.
    [85] Leishman M R, Thomson V P. Experimental evidence for the effects of additional water, nutrients and physical disturbance on invasive plants in low fertility Hawkesbury San dstone soils, Sydney[J].Australia Journal of Ecology,2005,93: 38-49.
    [86]何维明,董鸣.分蘖型克隆植物黍分株和基株对异质养分环境的等级关系[J].生态学报,2002,22(2):169-175.
    [87]徐承远,张文驹,陈家宽等.生物入侵机制研究进展[J].生物多样性,2001,9(4):430-438.
    [88] Soltan M E and Ra shed MN.Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations[J]. Adv Environ Res,2003,7:321-334.
    [89] Rosa porcel, Juan Manuel Ruiz-Lozano. Arbuscular mycorrhizal influence on leaf water potential,solute accumulartion,andoxidative stress in soybean plants subjected to drought stress[J].J Exp Bot,2004,55(403): 1743-1750.
    [90] Sonja Veljovic-Jovanovic, Biljana Kukavica,Branka Ste-vanovic, et al. Senescence and drought related changes in peroxidase and superoxide dismutase isoforms in leaves of Ramonda serbica[J].J Exp Bot,2006,57:1759-1768.
    [91] John R, Ahmad P, Gadgil1 K, Sharma S.Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L.Plant Soil and Environment,2008,54(6):262-270.
    [92] Dinakar N, Nagajyothi P C, Suresh S, Udaykiran Y, Damodharam T. Phytotoxicity of cadmium on protein,proline and antioxidant enzyme activities in growing Arachis hypogaea L.seedlings.Journal of Environmental Sciences,2008,20:199-206.
    [93] Long Y, Deng M L , Tan F . Study on adapt ability to water stress in Gynostemm a pentaphyllum.Journal of Southwest China Normal University (Natural Science),1999,24 (1):81-86.
    [94] Mansfield T A. Hormones as regulators of water balance [C]//Davies P T. Plant Hormones and Their Role in Plant Growth and Development . Martinus Nijhoff Publishers, 1987: 411-430.
    [95]黄运湘,廖柏寒,王志坤等.镉处理对大豆幼苗生长及激素含量的影响[J].环境科学,2006,27(7):1398-1401.
    [96]陈郎,宋玉芳,杨晓霞等.土壤镉污染毒性效应的多指标综合评价[J].环境科学,2008,29(9):2606-2611.
    [97]袁祖丽,吴中红.镉胁迫对烟草根抗氧化能力和激素含量的影响[J].生态学报,2010,30(15):4109-4118.
    [98]赵黎明.植物激素及其对水稻植株发育调控的研究进展[J].北方水稻,2009,39(6):63-69.
    [99] Aitic O, Agar G, Battal P.Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biologia Plantarum,2005,49 (2):215-222.
    [100] Munzurolu O, Zengin F K, Yahyagi Z. The abscisic acid levels of wheat (Triticum aestivum L.cv.Cakmak 79) seeds that were germinated under heavy metal(Hg++,Cd++,Cu++) stress.Journal of Science,2008,21(1):1-7.
    [101] Fusco N, Micheletto L, Corso G D,Borgato L, Furini A. Identification of cadmium-regulated genes by cDNA- AFLP in the heavy metal accumulator Brassica juncea L. Journal of Experimental Botany, 2005,56:3017-3027.
    [102] Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S.Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell, 2003,15:1591-1604.
    [103] Eriksson S, Bohlenius H,Moritz T, Nilsson O. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation.Plant Cell,2006,18:2172-2181.
    [104] Ubeda-Toma’s S, Federici F, Casimiro I, et al. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size.Curr Biol,2009,19:1194-1199.
    [105] Woodward A W, Bartel B. Auxin regulation, action and interaction[J]. Ann Bot, 2005,95:707-735.
    [106] De Smet j, Jurgens G.Patteming the axis in plants auxin in control[J]. Curr.Opin.Genet.Dev,2007,17:337-343.
    [107] Silverman F P, Assiamah A A,Douglas S B. Membrane transport and cytokine action in root hairs of Medicagosativa[J].Plants,2008, 205:23-31.
    [108] Werner T, Motyka V, Laucou V, et al.Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity.Plant Cell,2003,15:2532-2550.
    [109] Werner T, Kollmer I, Bartrina I,et al.New insights into the biology of cytokinin degradation.Plant Biol,2006, (Stuttg)8:371-381.
    [110] Tanaka Y, Sano T, Tamaoki M,et al.Cytokinin and auxin inhibit abscisic acid induced stomatal closure by enhancing ethylene production in Arabidopsis. J Exp Bot, 2006,57:2259-2266.
    [111] Brugiere N, Jiao S, Hantke S, et al. Cytokinin oxidase gene expression in maize is localized to the vasculature and is induced by cytokinins abscisic acid and abiotic stress.Plant Physio1,2003,132:1228-1240.
    [112]达良俊,陈鸣.凤眼莲不同不为对重金属的吸收、吸附作用研究[J].上海环境科学,2003,22(11):765-767.
    [113]史增奎,赵润潮.凤眼莲对Cd~(2+)、Zn~(2+)富集能力的研究[J].水利渔业,2007,152:66-68.
    [114] Marilley L, Vogt G, Blang M, et al. Baterial diversity in the bulk soil and rhizosphere fractions of Lolium perence and trifolium repens as revealed by PCR restriction analysis of 16s Rdna[J]. Plant and Soil, 1998, 198:219-224
    [115]施晓东,常学秀.重金属污染土壤的微生物响应[J].生态环境,2003,12 (4):498-499.
    [116]褚海燕,李振高.稀土元素镧对红壤微生物区系的影响[J].环境科学,2000,6:28- 31.
    [117]陈文清,侯伶龙,张爽等.根际微生物促进下鱼腥草对镉的富集作用[J].四川大学学报(工程科学版),2009,41(2):120-124.
    [118]王国祥,濮培民,张圣照.太湖反硝化、消化、亚硝化及氨化细菌分布及其作用[J].应用与环境生物学报,1998,5(2):190-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700