甘蓝型油菜GRAS家族基因BnLAS的分离和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GRAS转录因子作为植物特有的转录因子家族,在植物的生长发育及信号传导途径具有重要作用。但目前在油菜乃至整个芸苔属中对GRAS家族基因的研究还很少。拟南芥LAS基因是GRAS基因家族的成员之一,在植物的腋生分生组织的分化中具有重要地位。为深入了解甘蓝型油菜中GRAS类基因的作用,本研究在克隆芸苔属三个种LAS同源基因的基础上,通过分析过表达甘蓝型油菜BnLAS基因的转化拟南芥,对BnLAS的功能进行了初步分析,重点研究了BnLAS基因在提高植物抗旱性的作用,主要结果如下。
     利用拟南芥LAS核苷酸序列设计引物,以甘蓝型油菜华双5号基因组DNA为模板进行PCR扩增获得BnLAS基因的DNA片段。通过TAIL-PCR技术分离到其两侧序列,最终获得全长为1326bp的BnLAS基因序列,同时分离到了BnLAS基因上游1944bp的启动子序列。生物信息学分析表明,BnLAS基因属于GRAS家族成员,Southern杂交显示BnLAS基因在甘蓝型油菜中可能存在2个拷贝。
     荧光定量PCR和GUS染色分析表明,BnLAS基因在植物的根部表达最强,其次为花蕾、花、茎顶端。而在腋芽,叶片和茎中仅仅在荧光定量PCR中可以观察到微弱的表达信号。
     将BnLAS基因在CaMV35S启动子驱动下,转化到拟南芥植株中进行过量表达分析。结果显示,与野生型拟南芥植株比较,过表达BnLAS对植株形态以及生长发育都有明显影响。过表达植物表现出生长速度延缓、叶绿素含量增加、花期延迟、育性降低等一系列变化。
     将转基因植株和野生型植株在等生物量条件下进行抗旱处理15天后,当野生型植物发生萎蔫时,转基因植株生长仍然较为正常。将三种类型植物(野生型植株,las突变体,过表达家系植株OL14和OL18)种植在同一钵环境条件下进行早胁迫处理,经过15天处理后,过量表达植株存活率分别为71.9% (OL14)和91.6% (OL18),而野生型植株和1as突变体植株的存活率分别只为21.9%和11%。离体叶片的失水速率检测结果也表明,转基因植株的叶片离体失水速率显著低于野生型植株。
     由于过表达植株的根部没有观察到显著的变异,而离体叶片的失水速率减缓,暗示过表达植株抗旱性的提高可能和叶片结构变化有着直接的关系。扫描电镜和光学显微镜观察发现,过表达植株OL18叶片表皮细胞减小,总气孔数目增加1.7-1.9倍。尽管过表达植株和野生型植株间的开放气孔数目差异不明显,但过表达植株的气孔开度只有野生型植株的18%-40%。
     在利用扫描电镜观测到转基因植株叶表面蜡质层增厚的基础上,对几个蜡质合成关键基因在转基因植物中的表达进行了荧光定量PCR分析。蜡质合成关键基因CER1、CER2、KCS1、KCS2等四个基因的表达量在转基因植株中显著上升,表明过表达BnLAS基因影响了叶片表面的蜡质合成。通过叶绿素浸出实验进一步证实了蜡质层的加厚导致了角质层渗透性改变。
     综上所述,在拟南芥中过表达BnLAS基因对其生长发育有明显影响,转化植株的抗旱性明显增加,而这种抗旱性的增加主要是叶片表面结构改变所致。
GRAS proteins as a unique transcription factor family to plants were involved in the growth and development and signal transduction pathways. So far there have been very few studies on the functions of GRAS proteins in Brassicasea. Arabidopsis LAS, a member of the GRAS family, has an important role in the initiation of axillary meristems. To study the function of GRAS family in Brassica napus, an Arabidopsis LAS homologous gene was cloned in three Brassica species. The BnLAS gene function was analyzed through overexpressing of BnLAS in Arabidopsis, focusing on the increased drought tolerance. The main results are as follows.
     Based on the sequence information of Arabidopsis LAS, BnLAS was amplified from the genomic DNA of Brassica napus cv. Huashuang.5. The full ORF sequence with 1326bp of BnLAS was finally cloned by TAIL-PCR. The upstream region of 1944bp from the start codon of BnLAS was also isolated using TAIL-PCR. Bioinformatic analyses showed that BnLAS gene was one of the members of GRAS family. Southern blotting indicated that there are likely two copies of the gene in Brassica napus genome.
     The expression pattern of BnLAS was showed highest levels in roots, and lower in bud, flower organs and shoot tips based on qRT-PCR analysis and GUS staining. Lateral meristems, stems and leaves were observed lowest levels in qRT-PCR analysis, but not detectable with GUS staining.
     In order to research the function of BnLAS, the vector of overexpression BnLAS was constructed under the CaMV 35S promoter and transformed in Arabidopsis. Compared with wild type Arabidopsis plants,35S::BnLAS transgenic plants exhibited various morphological alterations as well as growth and developmental modifications, such as growth retarded, chlorophyll content increased, flower time delayed, fertility reduced.
     Dehydration treatment was conducted with controlled amount of biomass for wild type and transgenic plants. After 15 days, wild type plants were more severe withering than transgenic plants. In a different experiment, three types of plants (wild type, las mutant, transgenic plants from OL14 and OL18 lines) were grown in the same pot and subject to dehydration treatment. After re-watering,71.9%(OL14) and 91.6%(OL18) of transgenic plants recovered, whereas only 21.9% wild type and 11% las mutant plants did. Then water loss rate of leaves was slower in transgenic lines OL14 and OL18, compared to wild type.
     The root development in transgenic plants was not significantly different from the wild type. However, the water loss rate in leaves of plants was reduced, indicating that drought resistance of transgenic plants may have a direct relationship to the leaves structural changed. The results of scanning electron microscope (SEM) and light microscopy showed that the leaf stomatal density in line OL18 increased by 1.7-1.9 times compared with the wild type plants. But the number of open stomata was no significant difference between wild type and transgenic plants. However, the stomatal apertures on the leaves of line OL18 reduced to about 18%-40% of wild type plants.
     The SEM observations showed a thicker wax in leaf surface, of transgenic plants. Several key wax biosynthetic genes were analyzed by quantitative PCR. The transcription levels of four genes(CER1, CER2, KCS1, KCS2) showed a dramatic increase in transgenic plants, indicating that ovexexpressing BnLAS in Arabidopsis has an important impact on wax biosynthesis. By chlorophyll leaching experiments, the results of thicker wax led to altered cuticular permeability were further confirmed.
     In summary, BnLAS play an important role on plant growth and development. The overexpression of the gene resulted in an increased drought tolerance by ovexpressed in Arabidopsis. The increased drought tolerance is mainly caused by the changed leaves structures.
引文
1.郭岩,张莉,肖岗,等(1997)甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.中国农业科学(c辑)27(2):151-155
    2.肖本泽抗旱候选基因和启动子的水稻遗传转化分析和田间抗旱性鉴定.[博士学位论文]武汉:华中农业大学,2007
    3. Aarts M G M, Keijzer C J, Stiekema W J, and Pereira A (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115-2127
    4. Aharoni A, Dixit S, Jetter R, Thoenes E, Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463-2480
    5. Alia, Hayashi H, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16:155-161
    6. Allison SD, Chang B, Randolph TW, Carpenter JF (1999) Hydrogen bonding between sugar and protection is responsible for inhibition of dehydration-induced protein unfolding. Arch Biochem Biophys 365:289-298
    7. Ansari A, Jones CM, Henry ER, Hofrichter J, Eaton WA (1992) The role of solvent viscosity in the dynamics of protein conformational changes. Science 256:1796-1798
    8. Ball L, Accotto GP, Bechtold U Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, and Mullineaux PM (2004) Evidence for a Direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448-2462
    9. Beaudoin F, Gable K, Sayanova O, Dunn Tm Napier JA (2002) A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal beta-keto-reductase. J Biol Chem 277:11481-11488
    10. Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683-692
    11. Bolle C, Koncz C, Chua NH (2000) PAT1,a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev 14:1269-1278
    12. Brennan EB, Weinbaum SA (2001) Effect of epicuticular wax on adhesion of psyllids to glaucous juvenile and glossy adult leaves of Eucalyptus labillardiere. Aust J Entomo 40:270-277
    13. Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN], a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706-4711
    14. Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7:202-209
    15. Brown AP, Dunn MA, Goddard NJ, Hughes MA (2001) Identification of a novel low-temperature-response element in the promoter of the barley (Hordeum vulgare L.) gene blt101.1. Planta 213:770-780
    16. Chai G, Bai Z, Wei F, King G, Wang C, Shi L, Dong C, Chen H, Liu S (2010) Brassica GLABRA2 genes:analysis of function related to seed oil content and development of functional markers. Theor Appl Genet 8:1597-1610
    17. Chatterjee M, Sharma P, and Khurana J P (2006) Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation. Plant Physiol 141:61-74
    18. Chen AH, Chai YR, Li JN, Chen L (2007) Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus). J Biochem Mol Biol 40:247-260
    19. Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170-1185
    20. Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, and Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196-1200
    21. Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C (2007) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53-64
    22. Costaglioli P, Joubes J, Garcia C, Stef M, Arveiler B, Lessire R, and Garbay B (2005) Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis. Biochim Biophys Acta 1734:247-258
    23. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 6:73-103
    24. Czarnecka E, Key JL, Gurley WB (1989) Regulatory domains of the Gmhsp17.5-E heat shock promoter of soybean. Mol Cell Biol 9:3457-3463
    25. Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldman KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsisroot. Cell 86:423-433
    26. Dill A and Sun T (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777-785
    27. Fode B, Siemsen T, Thurow C, Weigel R, and Gatz C (2008) The Arabidopsis GRAS protein SCL14 interacts with class Ⅱ TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell 20:3122-3135
    28. Gao M J, Parkin I A P, Lydiate D J and Hannoufa A (2004) An auxin-responsive SCARECROW-like transcriptional activator interacts with histone deacetylase. Plant Mol Biol 55:417-431
    29. Hagen SJ, Hofrichter J, Eaton WA (1995) Protein reaction-kinetics in a room-temperature glass. Science 269:959-962
    30. Hannoufa A, McNevin J, Lemieux B (1993) Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana. Phytochemistry 33:851-855
    31. Hansen JD, Pyee J, Xia Y, Wen TJ, Robertson DS, Kolattukudy PE, Nikolau BJ, Schnable PS (1997) The glossy 1 locus of maize and an epidermis-specific cDNA from Kleinia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol 113:1091-1100
    32. Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733-736
    33. Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901-908
    34. Hibara K, Karim MR, Takada S, Taoka K, Furutani M, Aida M, Tasaka M (2006) Arabidopsis CUP_SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 18:2946-1957
    35. Holmstrom K, Mantyla E, Welin B, Mandal A, Palva E (1996) Drought tolerance in tobacco. Nature 379:683-684.
    36. Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568-80.
    37. Islam MA, Du H, Ning J, Ye H, Xiong L (2009) Characterization of Glossy 1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70:443-456
    38. Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57-70
    39. Jenks MA and Ashworth EN (1999) Plant epicuticular waxes:function, production, and genetics. In Horticultural Reviews (Janick, J., ed.). New York, USA:John Wiley & Sons Inc. pp.1-68
    40. Johes DH and Winistorfer SC (1992) Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA. Nucleic Acids Res 20:595-600
    41. Johnstone GB, Bailey B (1985) Resistance to fungal penetration in Gram ineae. Phytopathology 70:273-279
    42. Kamiya N, Itoh J, Morikami A, Nagato Y, and Matsuoka M (2003) The SCARECROW gene's role in asymmetric cell divisions in rice plants. Plant J 36:45-54
    43. Kenonowicza A K (1994) Biochemical and cellular mechanisms of stress tolerance in plant. Berlin:Spring Verlag:381-414.
    44. Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of Δ-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387-1394
    45. Kolattukudy PE (1971) Enzymatic synthesis of fatty alcohols in Brassica oleracea. Arch Biochem Biophys 142:701-709.
    46. Kolattukudy PE. In:Kerstiens G, editor (1996) Plant cuticles:An Integrated Functional Approach. Oxford:BIOS Scientific Publishers; p.83-108
    47. Kumar S, Tamura K and Nei M (2004) MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150-163
    48. Kunst L and Samuels L (2009) Plant cuticles shine:advances in wax biosynthesis and export.Curr Opin Plant Biol 12:721-727
    49. Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development,131:4311-4322
    50. Lee M, Kim B, Song S, Heo J, Yu N, Lee S A, Kim M, Kim D G, Sohn S O, Lim C E, Chang D G, Lee M M, Lim J (2008) Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol Biol 67:659-670
    51. Lee S, Cheng H, King K E, Wang W, He Y, Hussain A, Lo J, Harberd N P, and Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Gev 16:646-658
    52. Lee S, Jung S, Go Y, Kim H, Kim J, Cho H, Park O, and Suh M (2009) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60:462-475
    53. Lee SW, Hahn TR (2002) Two light-responsive elements of pea chloroplastic fructose-1,6-bisphosphatase gene involved in the red-light-specific gene expression in transgenic tobaccos. Biochim Biophys Acta 1579:8-17
    54. Lenhard M, Jurgens G, Laux T (2002) The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129:3195-3206
    55. Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol.61:3592-3597
    56. Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XC, Liu XF, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li JY (2003) Control of tillering in rice. Nature 422:618-621
    57. Liang Y, Dubos C, Dodd IC, Holroyed GH, Hetherington AM, Campbell MM (2005) AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol 15:1201-1206
    58. Lilius G, Holmberg N, Bulow L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Bio technology 14:177-180
    59. Lim L, Helariutta Y, Specht C D, Jung J, Sims L, Bruce W B, Diehn S, and Benfey P N (2000) Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial patterning in diverse meristems. Plant Cell 12:1307-1318
    60. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457-463
    61. Lolle SJ, Berlyn GP, Engstrom EM, Krolikowski KA, Reiter W, Pruitt RE (1997) Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant:a role for the epidermal cell wall and cuticle. Dev Biol 189:311-321
    62. Long J and Barton M K (2000) Initiation of axillary and floral meristems in Arabidopsis. Dev Biol 218:341-353
    63. Long LM, Patel HP, Cory WC (2003) The maize epicuticular wax layer provides CV protection. Funct Plant Biol 30:75-81
    64. Marraccini P, Courjault C, Caillet V, Lausanne F, Lepage B, Rogers WJ, Tessereau S, Deshayes A (2003) Rubisco small subunit of Coffea arabica:cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants. Plant Physiol Biochem 41:17-25
    65. Mayrose M, Ekengren S K, Melech-Bonfil S, Martin G B, and Sessa G (2006) A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. Molecular Plant Pathology 7:593-604
    66. McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119:839-848
    67. McNevin JP, Woodward W, Hannoufa A, Feldmann KA, Lemieux B (1993) Isolation and characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana. Genome,36:610-618
    68. Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC,and Kunst L (1999) CUT], an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:835-838
    69. Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121-131
    70. Muller D, Schmitz G, Theres K (2006) Blind homologous R2R3 MYB genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell 18:586-597
    71. Nakajima K, Benfey PN (2002) Signaling in and out:control of cell division and differentiation in the shoot and root. Plant Cell 14:265-276
    72. Naomi SS, Ichiro M (2002) Constitutive promoters available for transgene expression instead of CaMV35S RNA promoter:Arabidopsis promoters of tryptophan synthase protein subunit and phytochrome B. Plant Biotech 19:19-26
    73. Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shi-nozaki K (2003) Interction between two cis-acting elements ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137-148
    74. Negruk V, Yang P, Subramanian M, McNevin JP, and Lemieux B (1996) Molecular cloning and characterization of the CER2 gene of Arabidopsis thaliana. Plant J 9:137-145
    75. Nitz I, Berkefeld H, Puzio PS, Grundler FM (2001) pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci 161:337-346
    76. Noh YS and Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181-194
    77. Paquette AJ, Benfey PN (2005) Maturation of the ground tissue of the:root is regulated by gibberellin and SCARECROW and requires SHORT-ROOT. Plant Physiol 138:636-640
    78. Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier JA, Dunn TM (2004) Members of the Arabidopsis FAE1-like 3-ketoacyl-coA synthase gene family substitute for the elop proteins of Saccharomyces cerevisiae. J Biol Chem 281: 9018-9029.
    79. Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194-3205
    80. Pilon-Smits E, Ebskamp M, Paul MJ, Jeuken M, Weisbeek PJ, Smeekens S (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125-130
    81. Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, Van dun K, Voogd E, Verwoerd TC, Krutwagen RW, Goddijn OJM (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152:525-532
    82. Premchandra GS, Saneoka H, Fujita K, Ogata S (1992) Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficit in sorghum. J Exp Bot 43:1569-1576
    83. Pruitt RE, Vielle-Calzada JP, Ploense SE, Grossniklaus U, Lolle SJ (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Nat] Acad Sci USA 97:1311-1316
    84. Pysh LD, Wysocka-Diller J, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis:sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111-119
    85. Rana D, van den Boogaart T, O'Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft Ⅰ (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725-733
    86. Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription fators. Curr Opin Plant Biol 3:423-434
    87. Roser B (1991) Trehalose, a new approach to premium dried foods. Trends Food Sci Technol 2:66-69
    88. Rossak M, Smith M, Kunst L (2001) Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Mol Biol 6:717-725
    89. Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354-358
    90. Sainz MB, Goff SA, Chandler VL (1997) Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo. Mol Cell Biol 17:115-122
    91. Sakamoto A, Alia, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011-1019
    92. Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine synthesizing enzyme to create stress-resistant transgenic plants. Plant Physiol 125:180-188
    93. Sampedro JG, Cortes P, Munoz-Clares RA, Fernandez A, Uribe S (2001) Thermal inactivation of the plasm membrane H+-ATPase from Kluvveromvces lactis. Protection by trehalose. Biochemi Biophys Acta 1544:64-73
    94. Sander L, Child R, Ulvskov P, Albrechtsen and Borkhardt (2001) Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape (Brassica napus) and Arabidopsis thaliana: evidence for role in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth. Plant Mol Biol 46:469-479
    95. Sangdu JS, Krasnyanski SF, Domier LL, Korban SS, Osadjan MD, Buetow DE (2003) Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res 9:127-135
    96. Scheres B, Di Laurenzio L, Willemsen V, Hauser M T, Janmaat K, Weisbeek P, Benfey P N (1995) Mutations affecting the radial organization of the Arabidopsis toot display specific defects throughout the embryonic axis. Development 121:53-62
    97. Schmidt R, Acarkan A, Boivin K (2001) Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochen 39:253-262
    98. Schroeder JI, Kwark JM, Allen GJ (2001) Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature 410:327-333
    99. Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA 96:290-295
    100.Schnurr J, Shockey J, Browse J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16: 629-642
    101.Shen B, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:117-1183
    102.Shen Q, Chen CN, Brands A, Pan SM, Ho Th (2001) The stress and abscisic acid-induced barley gene HVA22:developmental regulation and homologues in diverse organisms. Plant Mol Biol 45:327-340
    103.Silverstone AL, Ciampaglio CN, Sun TP (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155-169
    104.Singh M, Bhalla PL, Xu H, Singh MB (2003) Isolation and characterization of a flowering plant male gametic cell-specific promoter. FEBS Lett 542:47-52
    105.Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Nat Acad Sci USA 95:14570-14575.
    106.Storey R, Wyn Jones RG (1975) Betaines and choline levels in plants and their relationship to NaCl stress. Plant Science Letters 4:161-165
    107.St-Pierre B, Laflamme P, Alarco AM, De Luca V (1998) The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. Plant J 14:703-713
    108.Su J and Wu R (2004) Stress-inducible synthesis of praline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941-948
    109.Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUPSHAPED COTYLEDON1 gene of Arabidopsis thaliana regulates shoot apical meristem formation. Development 128:1127-1135
    110.Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508-510
    111.Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Envir 18:801-806
    112.Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119-130
    113.TownCD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast T, Tallon LJ, Vigouroux M, Triek M Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:348-359
    114.Trenkamp S, Martin W, Tietjen K (2004) Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. Proc Natl Acad Sci USA 101:11903-11908
    115.Triglia T. Peterson MG, Kemp DJ (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16:81-86
    116.Trindade LM, Horvath B, Bachem C, Jacobsen E, Visser RG (2003) Isolation and functional characterization of a stolon specific promoter from potato(Solanum tuberosum L.). Gene 303:77-87
    117.Nagaharu U (1935) Genome-analysis on Brassica with special reference to the experimental formation and peculiar mode of fertilization. Jpn J Bot 7:389-452
    118.Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z (2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65:799-815
    119.Wen C, and Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:87-100
    120.Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochem 60: 437-440
    121.Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595-603
    122.Xia Y, Nikolau BJ, Schnable PS (1996) Cloning and Characterization of CER2, an Arabidopsis Gene That Affects Cuticular Wax Accumulation. Plant Cell 8:1291-304
    123.Xu D, Duan B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene HVA1 from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249-257
    124.Xu X, Dietrich CR, Delledonne M, Xia Y,Wen TJ, Robertson DS, Nikolau BJ, Schnable PS (1997) Sequence analysis of the cloned glossy8 gene of maize suggests that it may code for a beta-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115:501-510
    125.Yamauchi D, Zentella R, Ho TH (2002) Molecular analysis of the barley (Hordeum Vulgare L.) gene encoding the protein kinase PKABA1 capable of suppressing gibberellin action in aleurone layers. Planta 215:319-326
    126.Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339-1347
    127.Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H (1999) Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11:2187-2201
    128.Yu D, Ranathunge K, Huang H, Pei Z, Franke R, Schreiber L, He C (2008) Wax Crystal-sparse Leafl encodes a beta-ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta 228:675-685
    129.Zhang J, Li L, Song YR (2002) Identification of seed-specific promoter nap300 and its comparison with 7S promoter. Progress in Natural Science 12:737-741
    130.Zhang J, Broeckling C D, Sumner L W, Wang Z (2007) Herterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265-278
    131.Zhang JY, Broeckling CD, Blancaflor EB, Sledge M, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689-707
    132.Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis Enoyl-CoA Reductase Gene Reveal an Essential Role for Very-Long-Chain Fatty Acid Synthesis in Cell Expansion during Plant Morphogenesis. Plant Cell 17:1467-1481
    133.Zhu B, Su J, Chang M, Verma D P S, Fan Y L, Wu R (1998) Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci 139:41-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700