外源亚精胺提高黄瓜幼苗低氧胁迫耐性的生理调节功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无土栽培中水培营养液供氧不足或基质培根垫的形成均会造成低氧逆境,影响植株正常生长发育,成为困扰无土栽培技术大规模应用于生产的限制性因子。因此,提高植株在低氧胁迫下的耐性和抗性对农业生产具有重要的意义。多胺(Polyamines, PAs)是生物代谢过程中产生的一类具有生物活性的低分子量脂肪族含氮碱,主要包括腐胺(Put)、亚精胺(Spd)和精胺(Spm)。研究表明,多胺广泛作用于植物生长、形态建成、衰老和对环境胁迫的反应,然而,关于多胺种类和形态变化与植物低氧胁迫耐性的关系以及多胺的生理调节功能尚不清楚。本文以耐低氧能力较弱的‘中农八号’黄瓜(Cucumis sativus L.)品种为试材,采用营养液栽培的方法,通过营养液中添加外源多胺和多胺代谢抑制剂,研究了低氧胁迫下黄瓜幼苗体内多胺种类和形态的变化与碳代谢、光合作用之间的关系,探讨了多胺在黄瓜植株适应低氧胁迫中的生理调节功能。主要研究结果如下:
     低氧胁迫下,营养液中添加适宜浓度的Put、Spd和Spm均可缓解低氧胁迫对黄瓜幼苗生长的抑制作用,其中以0.05 mmol·L-1 Spd的缓解效果最佳。
     低氧胁迫下,黄瓜幼苗根系和叶片中游离态、结合态、束缚态Put、Spd和Spm含量均显著提高;营养液中添加外源Spd后进一步提高了低氧胁迫下黄瓜幼苗根系和叶片中游离态Spd、Spm含量,却显著降低了游离态Put含量;同时进一步提高了结合态、束缚态多胺含量,尤其是束缚态多胺含量,并且促进了黄瓜幼苗生长。Put合成抑制剂D-精氨酸(D-Arg),不仅显著降低了黄瓜幼苗体内游离态Put、Spd和Spm的含量,而且降低了抗氧化酶活性,导致植株体内活性氧(ROS)大量积累,加重了低氧胁迫的伤害。Put转化抑制剂甲基乙二醛双(脒基腙)(MGBG)和降解抑制剂氨基胍(AG)混合施用造成游离态Put和ROS的大量积累,并且Spd、Spm含量和抗氧化酶活性均显著降低,进一步加重了低氧胁迫对植株的伤害。低氧胁迫下,游离态多胺向束缚态多胺转化的抑制剂邻菲咯啉(o-phen)处理后,显著降低了幼苗体内束缚态多胺含量,并加重了低氧胁迫对幼苗生长的抑制作用。这些结果表明,黄瓜幼苗体内多胺的种类和形态与低氧胁迫耐性密切相关:从多胺的种类来看,根系和叶片中游离态Put迅速向游离态Spd和Spm转化,有利于提高黄瓜幼苗的低氧胁迫耐性;从多胺的形态来看,游离态Put迅速向结合态和束缚态多胺转化,尤其是向束缚态多胺的转化,有利于增强黄瓜幼苗的低氧逆境适应能力。
     低氧胁迫下,黄瓜植株的净光合速率(Pn)显著降低,并且饱和光强下的Pn、表观量子效率(AQY)和PSⅡ的最大光化学效率(Fv/Fm)均显著下降,天线耗散能量(D)的比率、非光化学猝灭系数(NPQ)和光抑制程度(1-qP/qN)显著升高,说明低氧胁迫下黄瓜植株受到了光合作用的光抑制。低氧胁迫下,NPQ与叶黄素脱环氧化状态(DEPS)变化趋势相一致,且两者均被抗坏血酸(AsA)所促进,被二硫苏糖醇(DTT)所抑制,说明黄瓜植株通过叶黄素循环耗散过量光能,以适应低氧胁迫。外源Spd降低了低氧胁迫下黄瓜植株的1-qP/qN,同时也降低了NPQ和DEPS,说明Spd并不是通过增强叶黄素循环来耗散过剩光能从而缓解光抑制。低氧胁迫下,外源Spd提高了植株的Pn、Fv/Fm和实际光化学效率(ΦPSⅡ)以及光化学反应的能量部分(P),降低了天线耗散的能量部分(D)和PSⅡ反应中心过剩的光能(Ex)。说明,低氧胁迫下,外源Spd通过增强光能利用效率来缓解黄瓜植株的光抑制,从而保持较高的PSⅡ光化学效率,防御光破坏。
     低氧胁迫下,黄瓜叶片中淀粉和葡萄糖含量显著升高,而根系中淀粉和葡萄糖含量显著降低,表明可溶性糖从叶片向根系的转运受到抑制,根系通过消耗自身储存的淀粉和葡萄糖来维持生理代谢,以增强低氧适应性。另外,黄瓜根系三羧酸循环过程中的关键酶琥珀酸脱氢酶(SDH)和异柠檬酸脱氢酶(IDH)活性显著降低,三羧酸循环(TCA)严重受阻,ATP含量显著降低;同时,黄瓜根系无氧呼吸代谢能力增强,乳酸脱氢酶(LDH)、丙酮酸脱羧酶(PDC)、乙醇脱氢酶(ADH)和丙氨酸氨基转移酶(AlaAT)活性显著升高,造成有毒产物乳酸和乙醛大量积累,因此抑制了黄瓜幼苗的生长。外源Spd通过调节低氧胁迫下黄瓜幼苗体内多胺种类与形态的变化,提高了根系中糖含量以及糖酵解代谢酶和SDH、IDH活性,有利于维持较长时间的糖酵解,促进TCA循环,刺激ATP的合成,同时抑制无氧呼吸代谢和乳酸、乙醛积累,从而提高黄瓜幼苗的低氧胁迫耐性。
     黄瓜幼苗根系细胞器上束缚态多胺含量变化与植株低氧胁迫耐性密切相关:低氧胁迫下,黄瓜根系线粒体膜上束缚态多胺含量显著增加,添加外源Spd后进一步提高了线粒体膜上束缚态多胺含量,同时提高了线粒体膜上H+-ATPase、H+-PPase、ca2+-ATPase和Mg2+-ATPase活性,降低呼吸4态无效耗氧,提高呼吸3态、呼吸控制率和氧化磷酸化效率。表明,低氧胁迫下,外源多胺通过促进黄瓜根系游离态多胺以自身的多聚阳离子特性与线粒体膜上带负电荷的磷脂、膜蛋白结合后,有助于稳定线粒体膜、调节膜蛋白的构象,提高线粒体膜上ATPase活性,增强线粒体的呼吸功能,促进线粒体的电子传递和氧化磷酸化偶联作用,从而部分恢复有氧呼吸,提高根系呼吸速率,增强黄瓜植株对低氧胁迫的耐性。
     低氧胁迫下,黄瓜根系质膜束缚态多胺含量显著增加,而液泡膜束缚态多胺含量显著降低,添加外源Spd后显著提高了质膜和液泡膜束缚态多胺含量以及质膜H+-ATPase、液泡膜H+-ATPase和H+-PPase活性。表明,低氧胁迫下,外源多胺通过促进黄瓜根系游离态多胺与根系质膜H+-ATPase、液泡膜H+-ATPase和H+-PPase蛋白结合后,可以防止膜蛋白在逆境下变性,稳定膜蛋白的天然构象以及调节膜蛋白的生物功能,从而提高黄瓜幼苗对低氧胁迫的耐性。
When grown in hydroponic and substrate cultivation, it was very often that the plant would undergo hypoxia. Now the levels of O2 has been becoming a determined factor in popularization of soilless cultivation. Therefore, improving the tolerance of crops to hypoxia is very important in agriculture. Polyamines (PAs), mainly including putrescine (Put), spermidine (Spd) and spermine (Spm), are kinds of aliphatic amine alkaloid produced by biosynthetic pathway. Many evidences have showed that polyamines were associated with plants growth, differentiation, senescence and responses to environmental stress. However, little is known about their physiological function in plants subjected to hypoxia stress. Cucumber cultivar (Cucumis sativus L.) cv. Zhongnong No.8 (sensitive to hypoxia stress) was used as a material in this study and the seedlings were grown hydroponically. They were treated with aeration and hypoxia with nutrient solutions add or not add PAs and metabolic inhibitor of PAs. The study aimed to investigate the relationship between kinds and formations of PAs and plant respiratory metabolism, photosynthesis, et al., to elucidate the physiological regulation function of polyamines played in cucumber seedlings that adapted to hypoxia stress. Main results were as follows:
     Suitable concentration of exogenous Put, Spd and Spm could alleviate the inhibition of cucumber seedlings growth caused by hypoxia stress, and the most effective application was 0.05 mmol·L-1 Spd.
     Under the hypoxia stress, the contents of free, soluble conjugated and insoluble bound Put, Spd and Spm in roots and leaves of cucumber seedlings were significantly increased. Application of exogenous Spd markedly suppressed the accumulation of free Put but promoted further the content of free Spd and Spm, soluble conjugated and insoluble bound Put in roots and leaves of cucumber seedlings, and the growth of the plant was improved. Application of D-arginine (D-Arg), an inhibitor of Put biosynthesis, not only significantly decreased accumulation of free Put, Spd and Spm, but also suppressed the activities of antioxidant enzymes, which lead to a mass accumulation of reactive oxygen species (ROS) in cucumber seedlings and aggravate the injury caused by hypoxia to seedlings. Application with mixed methylglyoxyl-bis (guanylhydrazone) (MGBG), an inhibitor of Put transform to Spd or Spm, and aminogunidine (AG), an inhibitor of Put degradation, enhanced accumulation of free-Put but suppressed accumulation of free-Spd, free-Spm. The activity of antioxidant enzymes was inhibited and resulted in ROS accumulation in roots and leaves of cucumber seedlings. All of these led to aggravate the seedlings injury caused by hypoxia. Compared to the hypoxia stress, exogenous o-phen, an inhibitor of transform of free PAs into insoluble bound PAs, decreased contents of insoluble bound PAs in seedlings and aggravated the hypoxia stress-induced plant growth inhibition. These results suggested that there were a close relationship between the kinds and formations of PAs in cucumber seedlings and the tolerance of hypoxia stress. Considered from the view of the kinds and formations of PAs, both rapid conversion of free Put into free Spd and Spm, and the conversion of free Put into soluble conjugated and insoluble bound polyamines, especially bound polyamines in roots and leaves could be beneficial to hypoxia tolerance of cucumber seedlings.
     When exposed to hypoxia stress, net photosynthetic rate (Pn), apparent quanta yield (AQY) and maximal photochemical efficiency (Fv/Fm) in leaves of cucumber seedlings were significantly decreased, but the allocation of dissipation energy (D) by antenna, non-fluorescence quenching coefficient (NPQ) and photo-inhibition degree (1-qP/qN) were significantly increased, which indicated that hypoxia caused photo-inhibition to cucumber seedlings. The daily movements and dynamics of NPQ in leaves of cucumber seedlings were consistent with that of xanthophyll de-epoxidation state (DEPS), and both of which were promoted by ascorbic acid (AsA) but inhibited by 1,4-dithiothreitol (DTT), showing that excess energy dissipated by xanthophyll cycle under the hypoxia stress. Exogenous Spd decreased 1-qP/qN, NPQ and DEPS in leaves of cucumber seedlings during hypoxia stress, showing that exogenous Spd did not alleviate photo-inhibition of cucumber seedlings by xanthophyll cycle through dissipation excess energy under hypoxia stress. However, exogenous Spd enhanced Fv/Fm, PSⅡphotochemisty rate (OPSⅡ) and photochemistry energy (P), but suppressed D and excessive energy in PSⅡ(Ex) in leaves of cucumber seedlings, these results suggested that exogenous Spd enhanced light transform efficiency to alleviate photo-inhibition in leaves of cucumber seedlings, and kept higher photochemical efficiency with lower photo-destroy under hypoxia stress.
     In the condition of the hypoxia stress, content of starch and glucose in leaves of cucumber seedlings was significant enhanced but that of which in roots was suppressed, indicating that transportation of soluble sugar from leaves to roots was inhibited. Therefore, starch and glucose stored in roots were consumed to maintain physiological metabolism in order to survive from the hypoxia stress. Besides, activities of succinic dehydrogenase (SDH) and isocitric dehydrogenase (IDH), some key enzymes in tricarboxylic acid cycle (TCA), were significantly decreased by hypoxia stress, which resulted in severe declination of TCA and a significant decrease in ATP content. At the same time, the fermentation metabolism in roots of seedlings was triggered due to enhancement of activities of lactate dehydrogenase (LDH), pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), alanine aminotransferase (AlaAT) and resulted in accumulation of lactate and aladehyde which is harmful to plants. As a result, the plant growth was severely inhibited by hypoxia stress. Exogenous Spd increased the concentrations of fructose, sucrose and glucose, and promoted the activities of enzymes such as SDH and IDH in roots of seedlings, which was beneficial to maintain glycolysis metabolism, promote TCA, stimulate synthesis of ATP, suppress anaerobic respiration and inhibit the accumulations of lactate and aladehyde, subsequently, hypoxia-induced inhibition of plant growth was alleviated.
     Contents of insoluble bound polyamines in organelles of cucumber seedlings roots played an important role in improving hypoxia tolerance. During exposure to hypoxia stress, contents of insoluble bound PAs in mitochondria of cucumber roots increased significantly. Comparing to treatment of hypoxia, application of exogenous Spd to hypoxic nutrient solution promoted insoluble bound polyamines contents further and increased the activity of H+-PPase, Ca2+-ATPase, Mg2+-ATPase and R3 (oxygen consumption rate with ADP and substrate present), RCR (respiratory control ratio), P/O (oxidative phosphorilation ratio) in mitochondria of cucumber roots, but suppressed activity of R4 (oxygen consumption rate with substrate). All of these would be advantage to stabilize functions of mitochondria respiratory. The results indicated that exogenous PAs promoted free PAs bound to phospholipid and proteins in mitochondria membrane, stabilized the structure of mitochondria, regulated conformation of membrane protein, promoted ATPase activity in mitochondria membrane, enhanced respiration of mitochondria and promoted the coupling of electron and oxidative-phosphorylation. Therefore, aerobic respiration in mitochondria of seedling was resumed in some degree and root respiration rate was improved which resulted in enhancement of tolerance of cucumber plants to root-zone hypoxia.
     Content of insoluble bound PAs in plasma membranes was significantly increased, while insoluble bound PAs in tonoplasts of seedling roots was remarkably decreased by hypoxia stress. Application of exogenous Spd to hypoxic nutrient solution significantly increased content of insoluble bound PAs in plasma membranes and tonoplasts, and promoted activities of plasma membrane H+-ATPase, tonoplast H+-ATPase and tonoplast H+-PPase of seedling roots compared to that of hypoxia treatment. These results suggested that exogenous PAs could enhance combination of free PAs with plasma membrane H+-ATPase, tonoplast H+-ATPase and tonoplast H+-PPase in roots, and this combination would prevent denaturalization of membrane proteins, stabilize the natural conformation of membrane proteins and regulate its biological function. Therefore, tolerance of cucumber plants to root-zone hypoxia was enhanced.
引文
1.陈坤明,张承烈.干旱期间春小麦叶片多胺含量与作物抗旱性的关系.植物生理学报,2000,5:381-386
    2.崔凤芝,张运涛.多胺与园艺植物生长发育的关系.河北农业大学学报,1996,19(3):94-98
    3.杜永臣,毛胜利,王孝宣,朱德蔚,李树德,戴善书,高振华.高温胁迫下耐热性不同番茄多胺水平变化的差异.园艺学报,2003,30(3):281-286
    4.冯志立,冯玉龙,曹坤芳.光强对砂仁叶片光合作用光抑制及热耗散的影响.植物生态学报,2002,26(1):77-82
    5.高洪波,郭世荣.外源γ-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗抗氧化酶活性和活性氧含量的影响.植物生理与分子生物学报,2004,30(6):651-659
    6.龚月桦,王俊儒,荆家海.高等植物对多胺的吸收和运转.植物生理学通讯,1998,34(1):64-68
    7.郭世荣.无土栽培学.北京:中国农业出版社,2003,125-129
    8.郭世荣.营养液溶氧浓度对黄瓜和番茄根系呼吸强度的影响.园艺学报,2000,27(2):141-142
    9.何虎翼,何龙飞,黎晓峰,顾明华.硝普钠对铝胁迫下黑麦和小麦根尖线粒体功能的影响.植物生理与分子生物学学报,2006,32(2):239-244
    10.何龙飞,刘友良,沈振国,王爱勤.铝胁迫对小麦根呼吸作用和一些线粒体结合酶活性影响.作物学报,2001,27(6):857-861
    11.何生根,黄学林,傅家瑞.植物的多胺氧化酶.植物生理通讯,1998,34(3):213-218
    12.贺岩,李志刚,陈云昭,王玉国.外源脯氨酸对盐胁迫下大豆离体胚再生植株生理特征及线粒体结构的影响.大豆科学,2000,19:314-319
    13.胡炳义,牛明功,王启明,李潮海,刘怀攀.渗透胁迫与大豆幼苗叶片多胺含量的关系.植物营养与肥料学报,2006,12(6):881-886
    14.胡晓辉.钙对低氧胁迫下黄瓜幼苗碳、氮代谢影响的研究.南京农业大学博士学位论文,2006
    15.黄英金,罗永锋,黄兴作,饶志明,刘宜柏.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系.中国水稻科学,1999,13(4):205-210
    17.贾虎森,李德全,韩亚琴.高等植物光合作用的光抑制研究进展.植物学通报,2000,17(3):218-224
    18.康云艳,郭世荣,段九菊,胡晓辉.24-表油菜素内酯对低氧胁迫下黄瓜根系抗氧化系统及无氧呼吸酶活性的影响.植物生理与分子生物学学报,2006,32(5):535-542
    19.康云艳.外源24-表油菜素内酯对低氧胁迫下黄瓜幼苗活性氧及碳代谢影响的研究.南京农业大学博士学位论文,2008
    20.李璟.外源多胺对低氧胁迫下黄瓜幼苗活性氧和呼吸代谢影响的研究.南京农业大学博士学位论文,2006
    21.李美茹,刘鸿先,王以柔.植物ATP酶及其与植物低温生理过程的关系.热带亚热带植物学报,1997,5(3):74-82
    22.李杨瑞.甘蔗叶片细胞器的Mg2+-ATP酶和ca2+-ATP酶活性.植物生理学通讯,1987,6:20-21
    23.梁峥,赵原,汤岚,骆爱玲.甜菜碱对呼吸酶的保护效应.植物学报,1994,36(12):947-951
    24.刘怀攀,胡炳义,刘天学,李潮海.渗透胁迫对玉米幼苗类囊体膜上结合态多胺含量的影响.华北农学报,2007c,22(2):86-89
    25.刘怀攀,纪秀娥,杜红阳.渗透胁迫与大豆幼苗类囊体膜上结合态亚精胺的关系.安徽农业科学,2007a,35(9):2537-2539
    26.刘怀攀,朱自学,刘友良.小麦幼苗类囊体膜上结合态多胺对渗透胁迫的响应.种子,2007b,26(3):58-60
    27.刘家尧,衣艳君,白克智,梁峥.C02/盐冲击对小麦幼苗呼吸酶活性的影响.植物学报,1996,38(8):641-646
    28.刘俊,刘友良.盐胁迫下大麦幼苗多胺的种类和状态与多胺氧化酶活性的关系.植物生理与分子生物学学报,2004,30(2):141-146
    29.刘俊,张艳艳,章文华,刘友良.大麦根中多胺含量和转化与耐盐性的关系.南京农业大学学报,2005,2:7-11
    30.刘俊,周一峰,章文华,刘友良.外源多胺对盐胁迫下玉米叶绿体结合态多胺水平和光合作用的影响.西北植物学报,2006,26(2):0254-0258
    31.陆景陵.植物营养学.北京:中国农业大学出版社,2003,268-271
    32.马月花,郭世荣.不同黄瓜品种根际低氧逆境耐性鉴定.江苏农业科学,2004,5:68-70
    33.毛胜利.多胺和ABA与番茄耐热性关系的研究.中国农业科学院硕土研究生学位论文,2002
    34.潘瑞炽.多胺是植物生长发育的调节物.植物生理学通讯,1985,6:63-68
    35.钱琼秋,朱祝军,何勇.硅对盐胁迫下黄瓜根系线粒体呼吸作用及膜质过氧化的影响.植物营养与肥料学报,2006,12(6):875-880
    36.任红旭,陈雄,王亚馥.抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化.植物生态学报,2001,25(6):709-715
    37.上海植物生理学会.植物生理学实验手册.上海:上海科学技术出版社,1985,181-182
    38.师恺,胡文海,董德坤,Ogweno Joshua Otieno,宋兴舜,夏晓剑,周艳虹,喻景权.根系限 制对番茄幼苗生长、根系呼吸、ATPase和PPase活性的影响.园艺学报,2006,33(4):853-855
    39.史庆华,朱祝军,Khalida Al-aghabary,钱琼秋.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报,2004,10(2):188-191
    40.宋士清,刘微,郭世荣,尚庆茂,张志刚.化学诱抗剂诱导黄瓜抗盐性及其机理.应用生态学报,2006,17(10):1871-1876
    41.苏国兴,刘友良.高等植物体内的多胺分解代谢及其主要产物的生理作用.植物学通报,2005,22(4):408-418
    42.孙文全.多胺代谢与园艺植物开花的关系-文献述评.园艺学报,1989,16(3):178-184
    43.孙艳,樊爱丽,徐伟君.草酸对高温胁迫下黄瓜幼苗叶片光合机构和叶黄素循环的影响.中国农业科学,2005,38(9):1774-1779
    44.汤章城.对渗透和淹水胁迫的适应机理.见:余叔文,汤章城主编.植物生理与分子生物学(第二版),北京:科学出版社,2001,739-751
    45.汪沛洪.植物多胺代谢的酶类与胁迫反应.植物生理学通讯,1990,1:1-7
    46.汪天,王素平,郭世荣,孙艳军.植物低氧胁迫伤害与适应机理的研究进展.西北植物学报,2006,26(4):847-853
    47.汪天,李娟,郭世荣,高洪波,王素平.外源多胺对低氧胁迫下黄瓜幼苗根系生长及H+-ATP酶和H+-焦磷酸酶活性的影响.植物生理与分子生物学学报,2005a,31(6):637-642
    48.汪天,王素平,郭世荣,高洪波.低氧胁迫下黄瓜幼苗根系多胺代谢的变化.园艺学报,2005b,32(3):433-437
    49.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,6:55-57
    50.王宝山,邹琦.NaCl胁迫对高梁根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响.植物生理学报,2000,26(3):181-188
    51.王可扮,许春辉,赵福洪,唐崇钦,戴云玲.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响.生物物理学报,1997,13(2):273-278
    52.王文泉,张福锁.高等植物厌氧适应的生理及分子机制.植物生理学通讯,2001,37(1):63-70
    53.王文泉,郑永战,梅鸿献,张福锁.不同耐渍基因型芝麻在厌氧胁迫下根系的生理与结构变化.植物遗传资源学报,2003,4(3):214-219
    54.王学,施国新,马广岳,徐勤松,拉非克,胡金朝.外源亚精胺对荇菜抗Hg2+胁迫能力的影响.植物生理与分子生物学学报,2004,30(1):69-74
    55.王学,施国新,徐勤松,马广岳,拉非克,张小兰,周红卫.外源亚精胺缓解荇菜(Nymphoides peltatum) Cr6+毒害的生理研究.环境科学学报,2003,23(5):689-693
    56.韦朝领,江吕俊,陶汉之,胡颖蕙.茶树鲜叶中叶黄素循环组分的高效液相色谱法测定研究及 其光保护功能鉴定.茶树科学,2004,24(1):60-64
    57.魏凤珍,李金才,尹钧,王成雨,屈会娟.孕穗期渍水逆境对冬小麦氮素营养及产量的影响.中国农学通报,2006,22(9):127-129
    58.吴林,李亚东,刘洪章,郝瑞.水分逆境对沙棘生长和叶片光合作用的影响.吉林农业大学学报,1996,18(4):45-49
    59.武维华.植物生理学.北京:科学出版社,2003,313
    60.谢寅峰,沈惠娟,李梅枝.酸胁迫对植物体内多胺和活性氧代谢的影响.林业科学,1999,35:117-121
    61.邢更生,周功克,李志孝,崔凯荣.水分胁迫下山黧豆多胺代谢与b-N-草酰-L-a,b-二氨基丙酸积累相关性的研究.植物学报,2000,42(10):1039-1044
    62.徐仰仓,王静,刘华,王根轩.外源精胺对小麦幼苗抗氧化酶话性的促进作用.植物生理学报,2001,27(4):349-352
    63.许大全.光合作用效率.上海:上海科学技术出版社,2002
    64.许振柱.土壤干旱对冬小麦旗叶乙烯释放多胺积累和细胞质膜的影响.植物生理学报,1995,21(3):95-301
    65.杨跃生,简玉瑜.植物的乙醇代谢及其在农业生产上的意义.华南理工大学学报,1996,24:98-101
    66.余叔文,汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社,1998
    67.於丙军,吉晓佳,刘俊,刘友良.氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化.应用生态学报,2004,15(7):1223-1226
    68.於丙军,龚红梅,李名旺.葡聚糖与蔗糖密度梯度离心制备膜微囊方法的比较.南京农业大学学报,1997,20(4):14-18
    69.岳艳玲,李广敏.多胺延缓水分胁迫下小麦幼苗衰老机制的探讨.华北农学报,1997,12(2):71-75
    70.张福锁.小麦锌营养状况对锌吸收的影响.植物生理与分子生物学学报,1993,19(2):143-148
    71.张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448
    72.赵福庚,束怀瑞.NaCl处理下大麦根系质膜微囊结合多胺与Na+/H+逆向运输的关系.植物生理与分子生物学学报,2002,28(5):333-338
    73.赵世杰,孟庆伟,许长成,韩红岩,邹琦.植物组织中叶黄素循环组分的高效液相色谱分析法.植物生理学通讯,1995,31(6):438-442
    74.周苏玫,王晨阳,张重义.土壤渍水对冬小麦根系生长及营养代谢的影响.作物学报,2001,27(5):673-679
    75.周艳红,黄黎锋,喻景权.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分 配的影响.植物生理与分子生物学学报,2004,30(2):153-160
    76.周玉萍,王证询,田长恩.多胺与香蕉抗寒性的关系的研究.广西植物,2003,23(4):352-356
    77. Aebi H. Catalase in vitro. Methods of enzymology,1984,105:121-126
    78. Ahmed S, Nawata E, Hosokawa M, Domae Y, Sakuratani T. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science,2002,163: 117-123
    79. Ahsan N, Lee DG, Lee SH, Kang KY, Bahk JD, Choi MS, Lee IJ, Renaut J, Lee BH. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiologia Plantarum, 2007,131:555-570
    80. Ahsan N, Lee DG, Lee SH, Lee KW, Bahk J, Lee BH. A proteomic screen and identification of waterlogging-regulated proteins in tomato roots. Plant and Soil,2004,295:37-51
    81. Albrecht G, Biemelt S. A comparative study on carbohydrate reserves and ethanolic fermentation in the roots of two wetland and non-wetland species after commencement of hypoxia. Physiologia Plantarum,1998,104:81-86
    82. Albrecht G, Mustroph A, Fox TC. Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat roots. Physiologia Plantarum,2004,120:93-105
    83. Altman A. Retardation of radish leaf senescence by polyamine. Physiologia Plantarum,1982,54: 189-193
    84. Alvarez I, Tomaro ML, Benavides MP. Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tissue Organ Culture,2003,74:51-59
    85. Anderson JM, Park YI, Chow WS. Photo-inactivation and photo protection of photo system Ⅱ in nature. Plant Physiology,1997,100:213-223
    86. Angelika M, Albrecht G. Tolerance of crop plants to oxygen deficiency stress:fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiologia Plantarum, 2003,117:508-520
    87. Antony T, Thomas T, Shirahata A. Selectivity of polyamines on the stability of RNA-DNA hybrids containing phosphodiestor and phosphorothioate oligodeoxyribonucleotides. Biochemistry,1999, 28:10775-10784
    88. Applewhite PB, Kaur-Sawhney R, Galston AW. A role for spermidine in the bolting and flowering of Arabidopsis. Physiologia Plantarum,2000,108:314-320
    89. Armmstrong W. Aeration in higher plants. In:Woolhouse HW (eds). Advances in botanical research. Academic Press, London.1979,7:225-232
    90. Asada K. The water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639
    91. Athwal GS, Huber SC. Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. The Plant Journal,2002,29: 119-130
    92. Avijie D, Uchimiya H, Das A. Oxygen stress and adaptation of semi-aquatic plant:Rice (Oryza sativa). Journal of Plant Research,2002,115:315-320
    93. Aziz A. Spermidine and related-metabolic inhibitors modulate sugar and amino acid levels in Vitis vinifera L.:possible relationships with initial fruitlet abscission. Journal of Experimental Botany, 2003,54(381):355-363
    94. Bagni N, Tassoni A. Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids,2001,20:301-317
    95. Bailey-Serres J, Chang R. Sensing and signaling in response to oxygen deprivation in plants and other organisms. Annals of Botany,2005,96:507-518
    96. Ballesteros E, Donaire JP, Belver A. Effect of salt stress on H+-ATPase and H+-PPase activities of tonoplast-enriched vesicels isolated from sunflower roots. Physiologia Plantarum,1996,97: 259-268
    97. Bannister JV, Bannister WH, Rotilio G. Aspects of the structure, function and applications of superoxide dismutase. Critical Reviews in Biochemistry,1987,22:111-180
    98. Barber J, Andersson B. Too much of a good thing:light can be bad for photosynthesis. Trends Biochemistry Science,1992,17:61-66
    99. Barta AL. Supply and partitioning of assimilates to roots of Medicago sativa L. and Lotus corniculatus L. under anoxia. Plant Cell and Environment,1987,10:151-156
    100. Bennicelli RP, Stepniewski W, Zakrzhevsky DA, Balakhnina TI, Stepniewska Z, Lipiec J. The effect of soil aeration on superoxide dismutase activity, malondialdehyde level, pigment content and stomatal diffusive resistance in maize seedlings. Environment Experimental Botany,1998, 39(3):203-211
    101. Bertrand A, Castonguay Y, Nadeau P. Oxygen deficiency affects carbohydrate reserves in overwingteing forage crops. Journal of Experimental Botany,2003,54:1721-1730
    102. Beutler HO. Ethanol and acetaldehyde. In:Bergmeyer HU (eds). Methods of enzymatic analysis. Weinheim:Verlag Chemie Press,1983,598-613
    103. Biemelt S, Hajirezaei MR, Melzer M, Albrecht G, Sonnewald U. Sucrose synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions. Planta,1999,210: 41-49
    104. Biemelt S, Keetman U, Albrecht G. Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system I roots of wheat seedlings. Plant Physiology,1998,116:651-658
    105. Biemelt S, Keetman U, Mock HP, Grimn B. Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell and Environment,2000,23: 135-144
    106. Blokhina OB, Chirkova TV, Fagerstedt KV. Anoxic stress leads to hydrogen peroxide formation in plant cells. Journal of Experiment Botany,2001,52:1179-1190
    107. Blokhina OB, Virolainen E, Fagerstedt KV, Hoikkala A, Wahala K, Chirkova TV. Antioxidant status of anoxia-tolerant and -intolerant plant species under anoxia and reaeration. Physiologia Plantarum,2000,109:396-403
    108. Blokhina OB, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress:a review. Annals of Botany,2003,91:179-194
    109. Blumwald E, Poole RJ. Salt tolerance in suspension cultures of sugar beet. Plant Physiology,1987, 83:884-887
    110. Bologa KL, Fernie AR, Leisse A, Loureiro ME, Geigenberger P. A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiology,2003,132:2058-2072
    111.Borrell A, Carboneel K, Farras R, Puig-Parellad P, Tiburcio AF. Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiologia Plantarum,1997,99:385-390
    112. Bortolotti C, Cordeiro A, Alcazar R, Borrell A, Culiaiiez-Macia FA, Tiburcio AF, Altabella T. Localization of arginine decarboxylase in tobacco plants. Physiologia Plantarum,2004,120:84-82
    113. Bouchereau A, Aziz A, Larher F, Martin-Tanguy J. Polyamines and environmental challenges: recent development. Plant Science,1999,140:103-125
    114. Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116
    115. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-254
    116. Bragina TV, Drozdova IS, Ponomareva Y, Alekhin VI, Grineva GM. Photosynthesis, respiration, and transpiration in maize seedlings under hypoxia induced by complete flooding. Doklady Bbiological Sciences,2002,384:274-277
    117. Braidot E, Petrussa E, Vianello A, Macri F. Hydrogen peroxide generation by higher plant mitochondria oxidizing complex Ⅰ of complex Ⅱ substrates. FEBS Letters,1999,451:347-350
    118. Braun KP, Cody RB, Jones JDR, Peterson CM. A structural assignment for a stable acetaldehyde-lysine adducts. The Journal of Biological Chemistry,1995,270:11263-11266
    119. Burrows WJ, Carr DJ. The effect of flooding the root system of sunflower plant on the cytokinin contents in the xylem sap. Physiologia Plantarum,1969,2:1105-1112
    120. Casero RA, Pegg AE. Spermine/spermidine N'-acetyltransferase-the turning point in polyamine metabolism. FASEB Journal,1993,7:653-66
    121. Castiglione S, Todeschini V, Franchin C, Torrigiani P, Gastaldi D, Cicatelli A, Rinaudo C, Berta G, Biondi S, Lingua G. Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar:A large-scale field trial on heavily polluted soil. Environmental Pollution,2009,157:2108-2117
    122. Chakraborti T, Das S, Mondal M, Roychoudhury S, Chakraborti S. Oxidant, mitochondria and calcium:an overview. Cellular Signalling,1999,11:77-85
    123. Chang WWP, Huang L, Shen M, Webster C, Burlingame AL, Roberts JKM. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiology,2000,122: 295-317
    124. Chattopadhyay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiologia Plantarum, 2002,116:192-199
    125. Chen HJ, Qualls RG, Blank RR. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquatic Botany,2005,82:250-268
    126. Chen HJ, Qualls RG. Anaerobic metabolism in the roots of seedlings of the invasive exotic Lepidium latifolium. Environmental and Experimental Botany,2003,50:29-40
    127. Choudhary A, Singh I, Singh RP. A thermostable diamine oxidase from Vigna radiates seedlings. Phytochemistry,1999,52:1-5
    128. Cohen SS. A Guide to the polyamines. Oxford:Oxford University Press,1998
    129. Cona A, Cenci F, Cervelli M, Federico R, Mariottini P, Moreno S, Angelini R. Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Physiology,2003,131(2):803-813
    130. Crawford RMM, Braendle R. Oxygen deprivation stress in a changing environment. Journal of Experimental Botany,1996,47:145-149
    131. Crawford RMM. Oxygen availabilitty as an ecological limit to plant distribution. Advance Ecology Research,1992,23:93-185
    132. Cristina B, Alexandra C, Alcazar R, Borrell A, Culianez-Macia FA, Tiburcio AF, Altabella T. Localization of arginine decarboxylase in tobacco plants. Physiologia Plantarum,2004,120:84-92
    133.Cvikrova M, Mala J, Hrubcova M, Eder J, Zon J, Machackova I. Effect of inhibition of biosynthesis of phenylprooanoids on sessile oak somatic embryogenesis. Plant Physiology and Biochemistry,2003,41:251-259
    134. Danielle W, Bodo F, Wolfgang J. Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia:Symmeria paniculata. Environmental and Experimental Botany,2002,48:225-235
    135. Daugherty CJ, Mathews SW, Musgrave ME. Structural changes in rapid-cycling Brassica rapa selected for different waterlogging tolerance. Canadian Journal of Botany,1994,72(9):1322-1328
    136. de Mejia EG, Martinez RV, Castano TE, Loarca PG. Effect of drought on polyamine metabolism, yield, protein content and in vitro protein digestibility in teoary (Phaseolus acutifolius) and common (Phaseolus vulgaris) bean seeds. Journal of the Science of Food and Agriculture,2003,83: 1022-1030
    137. de Sousa CAF, Sodek L. Alanine metabolism and alanine aminotransferase activity in soybean (Glycine max) during hypoxia of the root system and subsequent return to normoxia. Environmental and Experimental Botany,2003,50:1-8
    138. de Sousa CAF, Sodek L. The metabolic response of plants to oxygen deficiency. Brazilian Journal of Plant Physiology,2002,14:83-94
    139. Del-Duca S, Beninati S, Serafini-Fracassini D. Polyamines in chloroplasts:identification of their glutamyl and acetyl derivatives. Biochemistry Journal,1995,305:233-237
    140. Demmig-Adams B. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum,1996,98:253-264
    141. Demming-Adams B. Carotenoids and photoprotection in plants:a role for the xanthophll zeaxsnthin. Biochem Biophys Acta,1990,1020:1-24
    142. Dennis ES, Dolferus R, Ellls M, Rahma M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ. Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany,2000,51:89-97
    143. DiTomaso JM, Shaff JE, Kochian LV. Putrescine-induced wounding and its effects on membrane integrity and ion transport processes in roots of intact corn seedlings. Plant Physiology,1989,90: 988-995
    144. Dondini L, Bonazzi S, Del-Duca S, Bregoli AM, Serafini-Fracassini D. Acclimation of chloroplast transglutaminase to high NaCl concentration in a polyamine-deficient variant strain of Dunaliella salina and in its wild type. Journal of Plant Physiology,2001,158:185-97
    145. Dondini L, Duca SD, Dall AL, Bassi R, Gastaldelli M, Della-Mea M, Sandro AD, Claparols Ⅰ, Serafini-Fracassini M, Del-Duca S, Di-Sandro A. Suborganellar localisation and effect of light on Helianthus tuberosus chloroplast transglutaminases and their substrates. Planta,2003,217:84-96
    146. Dongen JT, Schurr U, Pfister M, Geigenberger P. Phloem metabolism and function have to cope with low internal oxygen. Plant Physiology,2003,131:1529-1543
    147. Drolet G, Dumbroff EB, Legge RL, Thompson JE. Radical scarvenging properties of polyamines. Phytochemistry,1986,25:367-371
    148. Duan JJ, Li J, Guo SR, Kang YY. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Journal of Plant Physiology,2008,165:1620-1635
    149. Durmus N, Kadioglu A. Spermine and putrescine enhance oxidative stress tolerance in maize leaves. Acta Physiologiae Plantarum,2005,27:515-522
    150. Elisabeth T, Martin-Tanguy J. Floral induction and floral development of strawberry. Plant Growth Regulate,1995,17:157-165
    151. Ellis MH, Millar A A, Llewellyn DJ, Peacockw J, Dennis ES. Transgenic cotton (Gossypium hirsutum) overexpressing alcohol dehydrogenase shows increased ethanol fermentation but no increase in tolerance to oxygen deficiency. Australian Journal of Plant Physiology,2000,27: 1041-1050
    152. Ellis MH, Setter TL. Hypoxia induces anoxia tolerance in completely submerged rice seedlings. Journal of Plant Physiology,1999,154:219-230
    153. Else MA, Hall KC, Arnold GM, Davies WJ, Jackson MB. Export of abscisic acid 1-aminocyclopropane-1-carboxylic acid phosphate and nitrate from roots to shoots of flooded tomato plants. Plant Physiology,1995,107:377-384
    154. Elstner EF. Metabolism of activated oxygen species. In:Davies DD (eds). Biochemistry of plants. London:Academic Press,1987,253-315
    155. Eskling M, Arvidsson PO, Akerlund HE. The xanthophylls cycle, its regulation and components. Physiologia Plantarum,1997,100 (4):806-816
    156. Evans DE. Aerenchyma formation. New Phytologist,2003,161:35-49
    157. Evans PT, Malmberg RL. Do polyamines have roles in plant development? Annual Review of Plant Physiology and Plant Molecular Biology,1989,40:235-269
    158. Everard JD, Drew MC. Mechanmisms in anaerobically treated roots of Zea mays L. Journal of Experimental Botany,1987,38:1154-1165
    159. Facchini PJ, Hagel J, Zulak KG. Hydroxycinnamic acid amide metabolism:physiology and biochemistry. Canadian Journal of Botany,2002,80:577-589
    160. Fan TWM, Lane AN, Higashi RM. In vivo and in vitro metabolomic analysis of anaerobic rice coleoptiles revealed unexpected pathways. Russian Journal of Plant Physiology,2003,50:787-793
    161. Felle H. pH regulation in anoxic plants. Annals of Botany,2005,96:519-532
    162. Fennoy SL, Nong T, Bailey-Serres J. Transcriptional and post-transcriptional processes regulate gene expression in oxygen-deprived roots of maize. Plant Journal,1998,15:727-735
    163.Flores HE, Galston AW. Osmotic stress-induced polyamine accumulated in cereal leaves. Plant Physiology,1984,75(1):102-109
    164. Frank HA, Bautista JA, Josue JS, Young AJ. Mechanism of nonphotochemical quenching in green plants:energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry, 2000,39(11):2831-2837
    165. Fukao T, Bailey-Serres J. Plant responses to hypoxia-is survival a balancing act? Trends in Plant Science,2004,9:449-456
    166. Gao HJ, Yang HQ, Wang JX. Arginine metabolism in roots and leaves of apple (Malus domestica Borkh.):The tissue-specific formation of both nitric oxide and polyamines. Scientia Horticulturae, 2009,119:147-152
    167. Garcia-Contreras R, Celis H, Romero I. Importance of Rhodospirillum rubrum H+-pyrophosphatase under low-energy conditions. Journal of Bacteriology,2004,186(19):6651-6655
    168. Geigenberger P. Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology,2003,6:247-256
    169. Gemperlova L, Cvikrova M, Fischerova L, Binarova P, Fischer L, Eder J. Polyamine metabolism during the cell cycle of synchronized tobacco BY-2 cell line. Plant Physiology and Biochemistry, 2009,47:584-591
    170. Genty BE, Briantais MJ, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemistry Biophysics Acta,1989, 990:87-92
    171. Germain V, Raymond P, Ricard B. Different expression of two tomato lactate dehydogenase genes in response to oxygen deficit. Plant Molecular Biology,1997,35:711-721
    172. Giannopolitis CN, Ries SK. Superoxide dismutase. Ⅰ. Occurrence in higher plants. Plant Physiology, 1977,59:309-314
    173. Gibbs J, Greenway H. Mechanisms of anoxia tolerance in plants. Ⅰ. Growth, survival and anaerobic catabolism. Functional Plant Biology,2003,30:1-47
    174. Gibbs J, Turner DW, Armstrong W, Darwent MJ, Greenway H. Response to oxygen deficiency in primary maize roots. I. Development of oxygen deficiency in the stele reduces radial solute transport to the xylem. Australian Journal of Plant Physiology,1998,25(6):745-758
    175. Gille L, Nohl H. The ubiquinol/bcl redox couple regulates mitochondrial oxygen radical formation. Archives of Biochemistry and Biophysics,2001,388:34-38
    176. Gilmore AM. Mechanistic asepects of xanthophyll cycle dependent photo-protection in higher plant chloroplasts and leaves. Plant Physiology,1997,99(1):197-209
    177. Gilmore AM. Xanthophyll cycle-dependent no photochemical quenching in photo system Ⅱ: Mechanistic in sights gained from Arabidopsis thaliana L. mutants that lack violaxanthin de-epoxidase activity and/or lutein. Photosynthesis Research,2001,67:89-101
    178. Goicoechea N, Szalai G, Antolin MC, Sanchez-Diaz M, Paldi E. Influence of arbuscular mycorrhizae and rehizobium on free polyamines and proline levels in water-stress alfalfa. Journal of Plant Physiology,1998,153:706-711
    179. Gong M, Li YJ, Chen SZ. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant system. Journal of Plant Physiology,1998,153 (4): 488-496
    180. Good AG, Muench DG. Long-term anaerobic metabolism in root tissue (metabolic products of pyruvate metabolism). Plant Physiology,1993,101:1163-1168
    181. Govindje. Sixty-three years since Kautsky:chlorophyll a fluorescence. Australian Journal of Plant Physiology,1995,22:131-160.
    182. Gravatt DA, Kirby CJ. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiology,1998,18:411-417
    183.Graβ1 M, Supp M. Determination with alanine aminotransferase and lactate dehydrogenase. In: Bergmeyer HU (eds). Methods of enzymatic analysis. Weinheim:Verlag Chemie Press,1983, 118-126
    184. Greenway H, Gibbs J. Mechanisms of anoxia tolerance in plants. Ⅱ. Energy requirements for maintenance and energy distribution to essential processes. Functional Plant Biology,2003,30: 999-1036
    185. Groppa MD, Benavides MP. Polyamines and abiotic stress:recent advances. Amino Acids,2008, 34(1):35-45
    186. Groppa MD, Tomaro ML, Benavides MP. Polyamines as protectors against cadmium or copper-induced oxidative damagein sunflower leaf discs. Plant Science,2001,161:481-488
    187. Guglielminetti L, Perata P, Alpi A. Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiology,1995,18:735-774
    188. Guo SR, Nada K, Tachibanns S. Differences between tomato (Lycopersicon esculentum Mill.) and cucumber (Cucumis sativus L.) in ethanol, lactate and malate metabolisms and cell sap pH of roots under hypoxia. Journal of the Japanese society for horticultural Science,1999,68:152-159
    189. Guo SR, Tachibana SJ. Effect of dissolved O2 levels in a nutrient of tomato and minel nutrition of tomato and cucumber seedlings. Journal of Japan Society Horticulture Science,1997,66(2): 331-337.
    190. Hager A, Holocher K. Localization of the xanthophylls-cycle enzyme violaxanthin deepoxidase within the thylakoid lumen and abolition of its mobility by a light-dependent pH decrease. Planta, 1994,192:581-589.
    191.Hamana K, Niitsu M, Samejima K. Unusual polyamines in aquatic plants:The occurrence of homospermidine, norspermidine, thermospermine, norspermine, aminopropylhomospermidine, bis(aminopropyl)ethanediamine, and methylspermidine. Canadian Journal of Botany,1998,76: 130-133
    192. Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO Journal,2000,19:4248-4256
    193. Hartel H, Lokstein H. Relationship between quenching of maximum and dark level chlorophyll fluorescence in vivo:dependence on photo-system Ⅱ antenna size. Biochemical & Biophysical Acta,1995,1228:91-95.
    194. Havelange A, Lejeune P, Bernier G, Kaur-Sawhney R, Galston AW. Putrescine export from leaves in relation to floral transition in Sinapis alba. Physiologia Plantarum,1996,96:59-65
    195. He CJ, Drew MC, Morgan PW. Induction of enzymes associated with lysigenous aerenchyma formation in roots of zea mays during hypoxia or nitrogen starvation. Plant Physiology,1994,105: 861-865
    196. He L, Nada K, Kasukabe Y, Tachibana S. Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant and Cell Physiology,2002b,43:196-206
    197. He L, Nada K, Tachibana S. Effects of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumis sativus L.). Journal of the Japanese Society for Horticultural Science,2002a,71(4):490-498
    198. Hiatt AC, Malmberg RL. Utilization of putrescine in tobacco cell lines resistant to inhibitors of polyamine systhesis. Plant Physiology,1988,86:441-446
    199. Hillary RA, Pegg AE. Decarboxylases involved in polyamine biosynthesis and their inactivation by nitric oxide. Biochimicaet Biophysica Acta,2003,1647:161-166
    200. Hodges DM, Delong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compound. Planta,1999,207:604-611
    201. Hoffman TL, LaManna JC, Pundik S, Selman WR, Whittingham TS, Ratcheson RA, Lust WD. Early reversal of acidosis and metabolic recovery following ischernia. Journal of Neurosurgery, 1994,81:567-573
    202. Huang B, Johnson JW. Root respiration and carbohydrate status of two wheat genotypes in response to hypoxia. Annals of Botany,1995,75:427-432
    203. Huang B. Waterlogging responses and interaction with temperature, salinity and nutrients. In: Wilkinson RE (eds). Plant environment interactions. New York:Academic Press,2002,263-282
    204. Huang SB, Greenway H, Colmer TD, Millar HV. Protein synthesis by rice coleoptiles during prolonged anoxia:implications for glycolysis, growth and energy utilization. Annals of Botany, 2005,96:703-715
    205. Hummel I, Couee I, El-Amrania A, Martin-Tanguy J, Hennion F. Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica. Journal of Experimental Botany,2002,53:1463-1473
    206. Hummel I, El-Amrani A, Gouesbet G, Hennion F, Couee I. Involvement of polyamines in the interacting effects of low temperature and mineral supply on Pringlea antiscorbutica (Kerguelen cabbage) seedlings. Journal of Experimental Botany,2004,55:1125-1134
    207. Hum WP, Lur HS, Liao KC, Kao CH. Role of abscisic acid, ethylene and polyaminjes in flooding promoted senescence of tobacco leaves. Journal of Plant Physiology,1994,143:102-105
    208. Huynh LN, VanToai T, Streeter J, Banowetz G. Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin. Jounal of Experimental Botany,2005,56:1397-1407
    209. Icekson I, Apelbaum A. Evidence for transglutaminase activity in plant tissue. Plant Physiology, 1987,84:972-974
    210. Igarashi K, Kashiwagi K. Polyamine transport in bacteria and yeast. Biochemical Journal,1999, 344:633-642
    211. Ioannidis NE, Kotzabasis K. Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochimica et Biophysica Acta,2007,1767:1372-1382
    212. Ismond KP, Dolferus R, Pauw MD, Dennis ES, Good AG. Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiology,2003, 132:1292-1302
    213. Jackson MB, Ricard B. Physiology, biochemistry and molecular biology of plant root systems subjected to flooding of the soil. Ecological Studies 168, Springer. de Kroon H, Visser EJW (eds). 2003,193-213
    214. Jacroson MB, Hall KC. Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits. Plant Cell Environment,1987,10:101-130
    215. Jan K, Kazywanski Z. Changes in polyamine concentration and proteases activity in spring barley during increasing water stress. Acta Physiologica Plantarum,1991,13:13-20
    216. Jouve L, Hoffmann L, hausman JF. Polyamine, carbohydrate, and proline content changes during salt stress exposure of aspen (Populus tremula L.):involvement of oxidation and osmoregulation metabolism. Plant Biology,2004,6(1):74-80
    217. Kakkar PK, Bhaduri S, Rai VK, Kumar S. Amelioration of NaCl stress by arginine in rice seedlings: changes in endogenous polyamines. Biologia Plantarum,2000,43:419-422
    218. Kakkar RK, Sawhney VK. Polyamine research in plants-a changing perspective. Physiologia Plantarum,2002,116:281-292
    219. Kasukabe Y, He LX, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiology,2004,45: 712-722
    220. Kasukabe Y, He LX, Watakabe Y, Otani M, Shimada T, Tachibana S. Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnology,2006,23:75-83
    221.Keech O, Dizengremel P, Gardestrom P. Preparation of leaf mitochondria from Arabidopsis thaliana. Physiologia Plantarum,2005,124:403-409
    222. Kennedy RA, Fox TC, Siedow JN. Activities of isolated mitochondria and mitochondrial enzymes from aerobically and anaerobically germinated barnyard grass (Echinochloa) seedlings. Plant Physiology,1987,85:474-480
    223. Kennedy RA, Rumpho ME, Fox TC. Anaerobic metabolism in plants. Plant Physiology,1992,100: 1-6
    224. Khan NA, Quemener V, Moulinoux JP. Polyamine membrane transport regulation. Cell Biology International Reports,1991,15:9-24
    225. Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES. Expression profile analysis of the low-oxygen response in Arabidopsis root culture. Plant Cell,2002,14:2481-2494
    226. Koch KE, Ying Z, Wu Y, Avigne WT. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. Journal of Experimental Botany,2000,51:417-427
    227. Kochba J, Lavee S, Spiegel-Roy P. Differences in peroxidase activity and isoenzymes in embryogenic and nonembryogenic'Shamouti'orange ovular callus lines. Plant Cell Physiology, 1977,18:463-467
    228. Koening H, Goldston A, Chuang YL. Polyamines regulate calcium fluxes in rapid plasma membrane response. Nature,1983,305:530-534
    229. Kramer GF, Norman HA, Krizek DT, Mirecki RM. Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipid in cucumber. Phytochemistry,1991,30:2101-2108
    230. Krause GH, Comic G. CO2 and O2 interactions in photoinhibition. In:Kyle DJ, Osmond CB, Amtzen CJ (eds). Photoinhibition. Elsevier, Amsterdam,1987,169-196
    231. Krishnamurthy R, Bhagwat KA. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiology,1989,91:500-504
    232. Kumar A, Altaella T, Taylor MA, Tiburcio AF. Recent advances in polyamine research. Trends in Plant Science,1997,2:124-130
    233. Kumutha D, Sairam RK, Ezhilmathi K, Chinnusamy V, Meena RC. Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.):Upregulation of sucrose synthase and alcohol dehydrogenase. Plant Science,2008,175:706-711
    234. Kurepa J, Smalle J, van Montagu M, Inze D. Polyamines and paraquat toxicity in Arabidopsis thaliana. Plant & Cell Physiology,1998,39:987-992
    235. Kiirsteiner O, Dupuis I, Kuhlemeier C. The pyruvate decarboxylasel gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiology,2003,132:968-978
    236. Ladygin VG. Functional activity and chloroplast structure in leaves of Pisum sativum and Glycine max under conditions of root hypoxia and anoxia. Russian Journal of Plant Physiology,1999,46: 207-218
    237. Larher F, Aziz A, Deleu C, Lemesle P, Ghaffar A, Bouchard PM. Suppression of the osmo-induced proline response of rapeseed leaf discs by polysmines. Physiologia Plantarum,1998,102:139-147
    238. Laureazi M, Rea G, Federico R, Tavladoraki P, Angelini R. De-etiolation causes a phytochrome-mediated increase of polyamine oxidase expression in outer tissues of the maize mesocotyl:a role in the photomodulation of growth and cell wall differentiation. Planta,1999,208: 146-154
    239. Lee TM, Lur HS, Chu C. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings:Ⅱ. Modulation of free polyamine levels. Plant Science,1997,126:1-10
    240. Lee TM, Shieh YJ, Chou CH. Role of putrescine in enhancing shoot elongation in Scirpus mucronatus under submergence. Physiologia Plantarum,1996,96:419-424
    241. Lee TM. Polyamine regulation of growth and chilling tolerance of rice (Oryza sativa L.) roots cultured in vitro. Plant Science,1997,122:111-117
    242. Lefevre I, Gratia E, Lutts S. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa L.). Plant Science,2001,161: 943-952.
    243. Legocka J, Zajchert I. Role of spermidine in the stabilization of the apoprotein of the light-harvesting chlorophyll a/b-protein complex of photosystem II during leaf senescence process. Acta Physiologiae Plantarum,1999,21 (2):127-132
    244. Li CZ, Wang GX. Interactions between reactive oxygen species, ethylene and polyamines in leaves of glycyrrhiza inflata seedlings under root osmotic stress. Plant Growth Regulation,2004,42(1): 55-60
    245. Lin KHR, Weng CC, Lo HF, Chen JT. Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Science,2004,167:355-365
    246. Liu HP, Dong BH, Zhang YY, Liu ZP, Liu YL. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Science,2004c,166: 1261-1267
    247. Liu HP, Ji XE, Liu TX, Shi LG, Li CH. Effect of osmotic stress on the contents of different form polyamines in leaves of maize seedlings. Acta Agronomica Sinica,2006a,32(10):1430-1436
    248. Liu HP, Ji XE, Yu BJ, Liu YL. Relationship between osmotic stress and polyamines conjugated to the deoxyribonucleic acid-protein in wheat seedling roots. Science in China:Series C Life Sciences, 2006b,49(1):12-17
    249. Liu HP, Liu J, Zhang YY, Liu YL. Relationship between ATPase activity and conjugated polyamines in mitochondrial membrane from wheat seedling roots under osmotic stress. Journal of Environmental Science,2004a,16(5):712-716
    250. Liu HP, Liu YL, Yu BJ. Increased polyamines conjugated to tonoplast vesicles correlate with maintenance of the H+-ATPase and H+-PPase activities and enhanced osmotic stress tolerance in wheat. Journal of Plant Growth Regulation,2004b,23(2):156-165
    251. Liu HP, Yu BJ, Zhang WH, Liu YL. Effect of osmotic stress on the activity of H+-ATPase and the levels of covalently and noncovalently conjugated polyamines in plasma membrane preparation from wheat seedling roots. Plant Science,2005,168(6):1599-1607
    252. Liu Y, Zhang S. Phosphorylation of 1-aminocyclopropane-l-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. The Plant Cell,2004,16:3386-3399
    253. Long SP, Humphries S. Photoinhibition of photosynthesis in nature. Annul Review Physiology and Plant Molecular Biology,1994,45:633-662
    254. Longu S, Anna M, Alessandra P, Rosaria M, Giovanni F. Mechanism-based inactivators of plant copper/quinine containing amine oxidases. Phytochemistry,2005,66:1751-1758
    255. Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A. Stress induces peroxisome biogenesis genes. EMBO Journal,2000,19:6770-6777
    256. Loreti E, Yamaguchi J, Alpi A, Perata P. Sugar modulation of a-amylase genes under anoxia. Annals of Botany,2003,91:143-148
    257. Lundin M, Baltscheffsky H, Ronne H. Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. Journal of Biological Chemistry,1991, 266:12168-12172
    258. Malik AI, Colmer TD, Lambers H, Schortemeyer M. Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant Cell Environmental,2003,26:1713-1722
    259. Marco F, Calvo E, Carrasco P, Sanz MJ. Physiological and molecular responses of pea plants to ozone stress. Recent research developments in plant molecula biology,2003,1:67-77
    260. Martin-Tanguy J. Conjugated polyamines and reproductive development:biochemical, molecular and physiological approaches. Physiologia Plantarum,1997,100:675-688
    261. Martin-Tanguy J. The occurrence and possible functions of hydroxycinnamoyl acid amides in plant. Plant Growth Regulation,1985,3:381-399
    262. Masgrau C, Altablella T, Farras R, Flores D, Thompson AJ, Besford RT, Tiburcio AF. Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant Journal,1997,11: 465-473
    263. Mauricio HM, Jesus NR, Catalina R. Changes in polyamine content are related to low temperature resistance in potato plants. Acta Biologica Colombiana,1999,4:27-47
    264. Maxwell K, Johnston GN. Chlorophyll fluorescence- a practical guide. Journal of Experimental Botany,2000,51:659-668
    265. Mergemann H, Sauter M. Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiology,2000,124:609-614
    266. Messiaen J, Van CP. Polyamines and pectins. Ⅱ. Modulation of pectic-signal transduction. Planta, 1999,208:247-256
    267. Mielke MS, Almeida AAF, de Gomes FP, Aguilar MAG, Mangabeira PAO. Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environmental and Experimental Botany,2003,50:221-231
    268. Millenaar FF, Gonzalez-Meler MA, Siedow JN, Wanger AM, Lambers H. Role of sugars and organic acids in regulating the concentration and activity of the alternative oxidase in Poa annua roots. Journal of Experiment Botany,2002,53:1081-1088
    269. Mitsuya Y, Takahashi Y, Berberich T, Miyazaki A, Matsumura H, Takahashi H, Terauchi R, Kusano T. Spermine signaling plays a significant role in the defense response of Arabidopsis thaliana to cucumber mosaic virus. Jounal of Plant Physiology, Dio:10.1016/j.jplph.2008.08.006
    270. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,7: 405-410
    271. Mittova V, Volokita M, Guy M, Tal M. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantatum,2000,110:42-51
    272. Moller IM. Plant mitochondria and oxidative stress:electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:561-91
    273. Morard P, Lacoste L, Silvestre J. Effect of oxygen deficiency on uptake of water and mineral nutrients by tomato plants in soilless culture. Journal of Plant Nutrition,2000,23:1063-1078
    274. Muller-Moule P, Conklin PL, Niyogi KK. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiology,2002,128:970-977
    275. Mustroph A, Albrecht G. Tolerance of crop plants to oxygen deficiency stress:fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiologia Plantarum, 2003,117:508-520
    276. Mustroph A, Boamfa EI, Laarhoven LJJ, Harren FJM, Albrecht G, Grimm B. Organ-specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I:Dark ethanol production is dominated by the shoots. Planta,2006,225:103-114
    277. Nada K, Iwatani E, Doi T, Tachibana S. Effect of putrescine pretreatment to roots on growth and lactate metabolism in the root of tomato (Lycopersicon esculentum Mill.) under root-zone hypoxia. Journal of the Japanese Society for Horticultural Science,2004,73:337-339
    278. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell and Physiology,1981,22:867-880
    279. Navakoudis E, Lutz C, Langebartels C, Lutz-Meindl U, Kotzabasis K. Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Biochimicaet Biophysica Acta-Bioenergetics,2003,1621(2):156-165
    280. Nayyar H, Kaur S, Singh S, Kamar S, Singh KJ, Dhir KK. Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Botanical Bulletin ofAcademia Sinica,2005,46:333-338
    281. Ndayiragije A, Lutts S. Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl? Journal of Plant Physiology,2006,163(5):506-516
    282. Niyoji KK. Photo protection revisited:Genetic and molecular approaches. Annul Review Plant Molecular Biology,1999,50:333-359
    283.Noguch HK. Sugar utilization and anoxia tolerance in rice roots acclimated by hypoxic pretreatment. Journal of Plant Physiology,2004,161:803-808
    284. Noll F. L-(+)-Lactate. In:Bergmeyer HU (eds). Methods of enzymatic analysis. Weinheim:Verlag Chemie Press,1983,582-588
    285. Panicot M, Masgrau C, Borrell A, Cordeiro A, Tiburcio AF, Altabella T. Effects of putrescine accumulation in tobacco transgenic plants with different expression levels of oat arginine decarboxylase. Physiologia Plantarum,2002,114:281-287
    286. Peeters AJM, Cox MCH, Benschop JJ, Vreeburg RAM, Bou J, Voesenek LACJ. Submergence research using Rumex palustris as a model; looking back and going forward. Journal of Experimental Botany,2002,53:391-398
    287. Pegg AE. Pharmacologie interference with enzymes of polyamine biosynthesis and of 5%-methylthioadenosine metabolism. In:McCann PP, Pegg A, Sjoerdsma A (eds). Inhibition of polysmine metabolism:Biological Significance and Basis for New Therapies. San Diego, CA: Academic Press,1987,79-106
    288. Perata P, Loreti E, Guglielminetti L, Alpi A. Carbohydrate metabolism and anoxia tolerance in cereal grains. Acta Botanica Neerlandica,1998,47:269-283
    289. Perata P, Vernieri P, Armellini D, Massimo B, Toqnoni F, Alpi A. Immunological determination of acetaldehyde-protein adducts in ethanol-treated carrot cell. Plant Physiology,1992,98:913-918
    290. Pignocchi C, Fletcher JM, Wilkinson JE. The function of ascorbate oxidase in tabacco. Plant Physiology,2003,132:1631-1641
    291. Piqueras A, Cortina M, Serna MD, Casas JL. Polyamines and hyperhydricity in micropropagated carnation plants. Plant Science,2002,162:671-678
    292. Rabiti AL, Pistocchi R, Bagni N. Putrescine uptake and translocation in high plants. Plant Physiology,1989,77:225-230
    293. Rahman M, Grover A, Peacock WJ, Dennis ES, Ellis MH. Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Australian Journal of Plant Physiology,2001,28:1231-1241
    294. Ratcliffe RG. In vivo NMR studies of the metabolic response of plant tissues to anoxia. Annals of Botany,1997,79(supplA):39-48
    295. Reggiani R, Bertani A. Effect of decreasing oxygen concentration on polyamine metabolism in rice and wheat shoots. Journal of Plant Physiology,1989,135:375-377
    296. Reggiani R, Bozo S, Bertani A. Changes in polyamine metabolism in seedlings of three wheat (Triticum aestivum L.) cultivars differing in salt sensitivity. Plant Science,1994,102:121-126
    297. Reggiani R, Giussani P, Bertani A. Relationship between the accumulation of putrescine and the tolerance to oxygen-deficient stress in gramineae seedlings. Plant Cell Physiology,1990,31: 489-494
    298. Reggiani R, Hochkoeppler A, Bertani A. Polyamines and anaerobic elongation of rice coleoptile. Plant Cell Physiology,1989,30:893-898
    299. Reid DM, Crozier A, Harvey MR. The effects of flooding on the export of gibberellin from the root to the shoot. Planta,1969,89:376-349
    300. Reid DM, Crozier A. Effect of waterlogging on gibberellin content and growth of tomato plants. Journal of Experimental Botany,1971,22:39-48
    301. Ricard B, Couee I, Raymond P, Saglio PH, Saint-Ges V, Pradet A. Plant metabolism under hypoxia and anoxia. Plant Physiology and Biochemistry,1994,32:1-10
    302. Ricoult C, Cliquet JB, Limami AM. Stimulation of alanine amino transferase (AlaAT) gene expression and alanine accumulation in embryo axis of the model legume Medicago truncatula contribute to anoxia stress tolerance. Physiologia Plantarum,2005,123:30-39
    303. Ricoult C, Echeverria LO, Cliquet JB, Limami AM. Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula. Journal of Experimental Botany,2006,57:3079-3089
    304. Roberts JKM, Andrade FH, Anderson IC. Further evidence that cytoplasmic acidosis is a determinant of flooding in tolerance in plants. Plant Physiology,1985,77:492-494
    305. Roberts JKM, Callis J, Jardetzky D, Walbot V, Freeling M. Cytoplasmic acidosis as a determinant of flooding in tolerance in plants. Proceedings of the National Academy of Sciences of USA,1984, 81:6029-6033
    306. Roberts JKM, Hooks MA, Miallis AP, Edwards S, Webster C. Contribution of malate and amino acid metabolism to cytoplasmic pH regulation in hypoxic root tips studied using nuclear magnetic resonance spectroscopy. Plant Physiology,1992,98:480-487
    307. Roussos PA, Pontikis CA. Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro. Journal of Plant Physiology,2007,164: 895-903
    308. Roy M, Wu R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Science,2002,163:987-992
    309. Roy P, Niyogi K, SenGupta DN, Ghosh B. Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Science,2005,168:583-591
    310. Sachs MM, Subbaiah CC, Saab IN. Anaerobic gene expression and flooding tolerance in maize. Jounral of Experiment Botany,1996,47:1-15
    311.Saglio P, Germain V, Ricard B. The response of plants to oxygen deprivation. Role of enzyme incuction in the improvement of tolerance to anoxia. In:Lerner HR, editor. Plant responses to environmental stresses, from phytohormones to genome reorganization. New York, NY:Marcel Dekker; 1999,373-393
    312. Sanchez DH, Cuevas JC, Chiesa MA, Ruiz OA. Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Science,2005,168:541-546
    313. Santa-Cruz A, Acosta M, Peres-Alfocea F, Bolarin MC. Changes in free polyamine levels induced by salt stress leaves of cultivated and wild tomato species. Physiologia Plantarum,1997,101: 341-346
    314. Santa-Cruz A, Estan MT, Rus A, Bolarin MC, Acosta M. Effect of NaCl and mannitol iso-osmotic stresses on the free polyamine levels in leaf discs of tomato species differing in salt tolerance. Journal of Plant Physiology,1997,151:754-758
    315. Saowarath J, Pirkko M, Paula M, Aran I. Content and biosynthesis of polyamines in salt and osmotically stressed cells of Synechocystis sp. PCC 6803. FEMS Microbiology Letters,2003, 228(1):129-135
    316. Sauter M. Rice in deep water:'how to take heed against a sea of troubles'. Naturwissenschaften, 2000,87:289-303
    317. Scaramagli S, Biondi S, Leone A, Grillo S, Torrigiani P. Acclimation to low water potential in potato cell suspension cultures leads to changes in putrescine metabolism. Plant Physiology Biochemistry,2000,38:345-351
    318. Scaramagli S, Biondi S, Torrigiani P. Methylelyoxal (bis-guanylhydrazone) inhibition of organogenesis is not due to S-adenosylmethionine decarboxylase inhibition/polyamine depletion in tobacco thin layers. Plant Physiology,1999,107:353-360
    319. Schreiber U, Bilger W, Hormann H, Neubauer C. Chlorophyll fluorescence as a diagnostic tool: basis and some aspects of practical relevance. In:Raghavendra AS (eds). Photosynthesis:A comprehensive treatise. Cambridge:Cambridge University Press,1998,320-336
    320. Schreiber U, Bilger W. Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In:Tenhunen J D, Catarino F M, Lange O L, Oechel WC (eds). Plant response to stress. Berlin:Springer-Verlag,1987,27-53
    321. Scott EA, Dhundy RB. Metabolism of polyamines in transgenic cells of carrot expressingf a mouse ornithine decarboxylase cDNA. Plant Physiology,1998,116:299-307
    322. Seiler N, Delcros JG, Moulinoux JP. Polyamine transport in mammalian cells. An update. The International Journal of Biochemistry & Cell Biology,1996,28:843-861
    323. Seiler N, Dezeure F. Polyamine transport in mammalian cell. The International Journal of Biochemistry & Cell Biology,1999,22:211-218
    324. Serafini-Fracssini D, Del-Duca S. Plant transglutaminase. Phytochemistry,1995,40:355-365
    325. Shen HJ, Xie YF, Li RT. Effect of acid stress on polyamine levels, ion efflux, protective enzymes and macromolecular sysnthesis in cereal leaves. Plant Growth Regulation,1994,14(1):1-5
    326. Shen WY, Nada K, Tachibana S. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiology,2000,124:431-439
    327. Shi K, Ding XT, Dong DK, Zhou YH, Yu JQ. Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus:a role for increased nitrate reduction. Functional Plant Biology,2008, 35:337-345
    328. Shih CY, Kao CH. Growth inhibition in suspension-cultured rice cells under phosphate deprivation is mediated through putrescine accumulatio. Plant Physiology,1996,111 (3):721-724
    329. Singh HP, Singh BB, Ram PC. Submergence tolerance of rainfed lowlandrice:search for physiological marker traits. Journal of Plant Physiology,2001,158:883-889
    330. Singla NK, Jain V, Jain S, Sawhney SK. Activities of glycolytic enzymes in leaves and roots of contrasting cultivars of sorghum during flooding. Biologia Plantarum,2003,47:555-560
    331. Skulachev VP. Membrane-linked systems preventing superoxide formation. Bioscience Reports, 1997,17:347-366
    332. Slocum RD, Fureey MJ. Electromicroscopic cytochemical localization of diamine and polyamine oxidase in pea and maize tissue. Planta,1991,183:443-450
    333. Slocum RD, Kaur-Sawhney R, Galston AW. The physiology and biochemistry of polyamines in plants. Archives of Biochemistry and Biophysics,1984,235(2):283-303
    334. Slocum RD. Polyamine biosynthesis in plants. In:Slocum RD, Flores HE (eds). The biochemistry and physiology of polyamines in plants. CRC Press,1991,23-40
    335. Slocum RD. Tissue and subcellular localization of polyamines and enzymes of polyamine metabolism. In:Slocum RD, Flores HE (eds). Biochemistry and physiology of polyamines in plants. Boca Raton, Florida, USA:CRC Press,1991,94-101
    336. Smit B, Stachowiak M. Effects of hypoxia and elevated carbon dioxide concentration on water flax through populus roots. Tree Physiology,1988,4:153-156
    337. Smith A. Polyamines. Annual Review of Plant Physiology,1985,36:117-143
    338. Smith TA, Meeuse BJD. Production of volatile amines and skatole at anthesis in some Arum lily species. Plant Physiology,1976,41343-347
    339. Smith TA. Recent advances in the biochemistry of plant amines. Phytochemistry,1975,14: 865-890
    340. Smith TA. The di- and polyamine oxidases of higher plants. Biochemical Society Transactions, 1985,13:319-322
    341. Song J, Nada K, Tachibana S. Ameliorative effect of polyamines on the high temperature inhibition of in vitro pollen germination in tomato (Lycopersicon esculentum Mill.). Scientia Horticulturae, 1999,80:203-212
    342. Song J, Nada K, Tachibana S. Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant and Cell Physiology,2002,43(6):619-627
    343. Springer B, Werr W, Starlinger P, Bennet DC. The shrunken gene on chromosome 9 of Zea mays L. is expressed in various plant tissues and encodes an anaerobic protein. Molecular General Genetics, 1986,205:461-468
    344. Stanley BA, Shantz LM, Pegg AE. Expression of mammalian S-adenosylmethionine decarboxylase in Escherichia Coil. Determination of sites for putrescine activation of activity and processing. Journal of Biological Chemistry,1994,269:7901-7907
    345. Su G, An Z, Zhang W, Liu Y. Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls. Journal of Plant Physiology,2005,162: 1297-1303
    346. Subbaish C, Sachs MM. Molecular and cellular adaptations maize to flooding stress. Annals of Botany,2003,91:119-127
    347. Sulpice R, Gibon Y, Bouchereau A, Larher F. Exogenously supplied glycine betaine in spinach and rapeseed leaf discs:Compatibility or non-compatibility? Plant, Cell & Environment,1998,21: 1285-1292
    348. Szalai G, Janda T, Bartok T, Paldi E. Role of light in changes in free amino acid and polyamine contents at chilling temperature in maize (Zea mays). Physiologia Plantarum,1997,101(2): 434-438
    349. Tadege M, Brandle R, Kuhlemeier C. Anoxia tolerance in tobacco roots:effect of overexpression of pyruvate decarboxylase. Plant Journal,2002,14:327-335
    350. Tadolini B. Polyamine inhibition of lipoperoxidation:the influence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads. Biochemical Journal,1988, 249:33-36
    351. Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T. Spermine signaling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. Plant Journal,2003,36:820-830
    352. Tang W, Newton RJ. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation, 2005,46:31-43
    353. Tassoni A, Van Buren M, Franceschetti M, Fornale S, Bagni N. Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiology and Biochemistry,2000,38:383-393
    354. Thomas W, Rufty J, Steven C, Huber D. Changes in starch formation and activities of sucrose phosphate synthase and cytoplasmic fructose-1,6-bisphosphatase in response to source-sink alterations. Plant Physiology,1983,72:474-480
    355. Tiburcio AF, Campos JL, Figueras X, Besford RT. Recent advances in the understanding of polymine functions during plant development. Plant Growth Regulation,1993,12:330-340
    356. Tiburcio AF, Dumorotier FM. Galston AW. Polyamine metabolism and osmotic stress. Plant Physiology,1986,82:369
    357. Tiburcio AF, Kaur-Sawhney R, Galston AW. Polyamine metabolism. In:Miflin BJ, Lea PJ (eds). The biochemistry of plants, intermediary nitrogen metabolism. New York:Academic Press,1990, 16:283-325
    358. Todorova D, Sergiev I, Alexieva V, Karanov E, Smith A, Hall M. Polyamine content in Arabidopsis thaliana (L.) Heynh during recovery after low and high temperature treatments. Plant Growth Regulation,2007,51:185-191
    359. Tonon G, Kevers C, Faivre-Rampant O, Graziani M, Gaspar T. Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. Journal of Plant Physiology,2004,161:701-708
    360. Tonon G, Kevers C, Gasper I. Changes in polyamines, auxin and peroxidase activity during in vitro rooting of Fraxinus angustifolia shoots:an auxin independent rooting model. Tree Physiology, 2001,21:655-663
    361.Topa MA, Cheeseman JM. Carbon and phosphorus partitioning in Pinus serotina seedlings growingunder hypoxic and low-phosphorus conditions. Tree Physiology,1992,10:195-207
    362. Uchida A, Andre TI, Takashi H. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science,2002,163:515-523
    363. Umeda M, Uchimiya H. Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress. Plant Physiology, 1994,106:1015-1022
    364. Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemical and Biophysical Research Communications,2004,313: 369-375
    365. Urte S, Robert MM. Crawford RMM. Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L. Plants and the Environment,2001,52(364):2213-2225
    366. Ushimaru T, Kanematsu S, Katayama M. Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water. Physiologia Plantarum,2001,112:39-46
    367. Vartapetian BB, Andreeva IN, Generozova IP, Polyakova LI, Maslova IP, Dolgikh YI, Stepanova AY. Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Annals of Botany,2003,91:155-172
    368. Vartapetian BB, Jackson MB. Plant adaptations to anaerobic stress. Annals of Botany,1997,79: 3-20
    369. Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH. Low ascorbic acid in the vtc-1 mutant of arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiology,2001,127:426-435
    370. Verma S, Mishra SN. Putrescine alleviation of growth in salt stressed brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology,2005,162:669-677
    371. Villalobos E, Torne JM, Rigau J, Olles I, Claparols I, Santos M. Immunogold localization of a transglutaminase related to grana development in different maize cell types. Protopasma,2001,216: 155-163
    372. Waie B, Rajam MV. Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Science,2003,164:727-734
    373. Wang X, Shi GX, Xu QS, Hu JZ. Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. Journal of Plant Physiology,2007,164:1062-1070
    374. Wang YZ, Sze H. Similarities and differences between the tonoplast-type and the mitochondrial H+-ATPase of oat roots. Journal of Biological Chemistry,1985,260:10434-10443
    375. Watson MB, Malmberg RL. Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylaes by potassium deficiency stress. Plant Physiology,1996,111:1077-1083
    376. Wei J. Post-harvest changes of EFE activity, ACC and polyamine contents cortex and pith of pear fruits and its relation to ethylene production. Acta Phytophysiololgica Sinica,1995,21(2):136-142
    377. Willekens H, chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzal D, Van Camp W. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal,1997,16:4806-4816
    378. Wollenweber-Ratzer B, Crawford RMM. Enzymatic defence against post-anoxic injury in higher plants. Proceedings of the Royal Society of Edinburgh,1994,102:381-390
    379. Wolukau JN, Zhang SL, Xu GH, Chen DX. The effects of temperature, polyamies and polyamine synthesis inhibitor on in vitro pollen tube growth of Prunus mume. Scientia Horticulturae,2004,99: 289-299
    380. Xu K, Xu X, Fukao T, Canlas P, Marghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature,2006,442:705-708
    381. Xu K, Xu X, Ronald PC, Mackill DJ. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Molecular and General Genetics MGG,2000,263:681-689
    382. Yamoto HY. Biochemistry of the violaxanthin cycle in higher plants. Pure Apply Chemistry,1979, 51:639-648
    383. Yan CS, Li DQ, Zhang JH. Oxidative damage and antioxidant responses during drought-induced winter wheat flag leaf senescence. Acta Botanica Boreali-Occidentalia Sinica,2000,20:568-576
    384. Yoda H, Yamaguchi Y, Sano H. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiology,2003,132(4): 1973-1979
    385. Yoichi N, Masayoshi M. Molecular cloning of vacuolar H+-pyrophosphatase and its developmental expression in growing hypocotyls of mung bean. Plant Physiology,1998,116:189-197
    386. Young ND, Galston AW. Putrescine and acid stress. Plant Physiology,1983,71:767-771
    387. Zancani M, Casolo V, Vianello A, Macri F. H+/PP stoichiometry of a membrane-bound pyrophosphatase of plant mitochondria. Physiologia Plantarum,1998,103(3): 304-311
    388. Zeng Y, Wu Y, Avigne WT, Koch KE. Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival. Plant Physiology,1999,121:599-608
    389. Zhang WH, Chen Q, Liu YL. Relationship between H+-ATPase activity and fluidity of tonoplast in barley roots under NaCl stress. Acta Botanica Sinica,2002,44:292-296
    390. Zhang WH, Liu YL. Relationship between tonoplast H+-ATPase activity, ion uptake and calcium in barley roots under NaCl stress. Acta Botanica Sinica,2002,44(6):667-672
    391. Zhang WH, Yu BJ, Chen Q, Liu YL. Tonoplast H+-ATPase activity in barley roots is regulated by ATP and pyrophosphate contents under NaCl stress. Journal of Plant Physiology and Molecular Biology,2004,30:45-52
    392. Zhang WP, Jiang B, Li WG, Song H, Yu YS, Chen JF. Polyamines enhanced chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae, (2009), doi:10.1016/j.scienta.2009.05.013
    393. Zhao FG, Qin P. Protective effect of exogenous polyamines on root tonoplast function against salt stress in barley seedlings. Plant Growth Regulaiton,2004,42(2):97-103
    394. Zhao FG, Sun C, Liu YL, Liu ZP. Effects of salinity stress on the levels of convalently and nonconvalently conjugated polyamines in plasma membrane and tonoplast isolated from barely seedlings. Acta Botanica Sinica,2000,42(9):920-926
    395. Zhao FG, Sun C, Liu YL, Zhang WH. Relationship between polyamines metabolism in roots and salt tolerance of barley seedlings. Acta Botanica Sinica,2003,45(3):295-300
    396. Ziosi V, Bregoli AM, Fregola F, Costa G, Torrigiani P. Jasmonate-induced ripening delay is associated with up-regulation of polyamine levels in peach fruit. Journal of Plant Physiology,2009, 166:938-946

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700