微压流化式复合生物反应器(MP-FHBR)的启动及处理含苯酚废水效能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为降低污水处理的投资和运行成本,提高运行稳定性,并推广应用与工业污水处理,张文华等设计了以微压流化式复合生物反应器(MP-FHBR)为核心的新型高效污水处理成套技术和设备。
     本文在实验室中,用苯酚配制模拟工业污水对此项技术的核心处理单元微压流化式复合生物反应器(MP-FHBR)进行试验和研究。试验包括反映器的调试和启动运行﹑反应器处理含苯酚污水效能的研究、MP-FHBR去除苯酚过程及降解苯酚高效性的研究三部分,其中效能的研究是本次研究的重点。通过6个多月的试验运行,本文研究了反应器容积负荷对出水水质及污泥沉降性能的影响,进水量对反应器沉淀池泥水分离效果的影响,水力停留时间与苯酚去除率的关系。并且通过研究不同苯酚浓度对微生物降解苯酚的影响,以及微压流化式复合生物反应器去除苯酚的过程,解释了反应器能够高效去除废水中苯酚的原因。
In order to reduce investment and operating costs and increase running stability of sewage treatment, then extendly used in the industrial wastewater treatment, Wenhua Zhang design of a micro-pressurized fluidized hybrid biological reactor (MP-FHBR) as the core of the new type of highly efficient complete water treatment technology and equipment.
     In this paper, using artificial phenolic wastwater to test and study on the micro-pressurized fluidized hybrid biological reactor (MP-FHBR) in the laboratory. Experiments include: debugging and start up MP-FHBR, study on the efficiency of MP-FHBR for treating phenolic wastwater, the process of removing of phenol and study on the reason for efficient degradation of phenol in the MP-FHBR. Efficiency of MP-FHBR for treating phenolic wastwater is the key of this study. Through more than 8 month of dynanmic experiment, this article has studied the effect of volumetric load to the quality of the effluent and settling velocity of sludge, the influence of inflow rate on the sedimentation effect, the relations between HRT and the phenol removal rate. And through research the influence of different phenol concentrations to the microbial degradation phenol, as well as the elimination process of phenol in MP-FHBR, the partly reason that phenol can be highly effective removed in the MP-FHBR has be explained.
     MP-FHBR as a new type of bioreactor, the technology have not yet reported at home and abroad to date. The experiment was carried out the first small-scale testing and research, experimental data will serve as the basic date to improve and optimize the design and operation parameters in the pilot and the subsequent practical application.
     The results of debugging and start up the MP-FHBR showed that:⑴continuous sludge return can guarantee the stability of sludge concentration, on the other hand, will return to a mixture of sludge and water to the mixture of mud and water form through the inlet into the reaction pool, which is equivalent to increasing the intake of water and reduce the concentration of water, which is conducive to the spread of pollutants in water and the reaction mixture of activated sludge tank, thereby speeding up the process that pollutants be adsorbed and degradated by the sludge.⑵by controlling the three perforated aeration tube gas flow rate can be achieved on the reaction pool solid - liquid - gas phase flow system in the control of the pool in response to the formation of a gradient of dissolved oxygen.⑶Under the conditions of 20℃-30℃temperature range, temperature is no significant impact on the removal rate of phenol in the MP-FHBR.⑷MP-FHBR sedimentation tank sludge bed is an important factor for reactor stable operation. Height of Sedimentation tank sludge bed of the reactor mainly determined by inflow rate, sludge concentrations and settling velocity of sludge.⑸Micro-organisms which domesticates can quickly adapt to the environment in the MP-FHBR and can be highly efficient removal of phenol in waste water.⑹After a period of time to run, sludge can form a static sludge layer in the MP-FHBR sedimentation tank. Due to its strong filtering effect, it can significantly improve the water separation efficiency of MP-FHBR sedimentation tank, thus can reduce suspended solids of the effluent.
     The results of studying the efficiency of MP-FHBR for treating phenolic wastwater showed that the organic volumetric loading and phenolic volumetric loading of MP-FHBR could reach to 4.86kgCOD/m3·d and 1.96kg phenol/m3·d, respectively, COD of effluent were less than 200mg/L, phenol concentrations of effluent were less than 1mg/L, the COD removal efficiencies were above 90%, and the phenol removal efficiencies were above 99%. When the phenolic volumetric loading reach 2.04kg/m3·d, in the reactor, phenol cumlated gradually and the specific TTC-dehydrogenase activity decreased. When the organic volumetric loading were 3.14~4.86kgCOD/m3·d, settling velocity of sludge is better. When phenol concentration of influent was 800mg/L, the optimun HRT was 9~10h. Because the influence of inflow rate on the sedimentation effect of sedimentation tank constraint on the inflow rate of the reactor, MP-FHBR was superior to treating high-concentration phenolic wastwater.
     The results of studying the process of removing of phenol and the reason for efficient degradation of phenol in the MP-FHBR showed that:⑴With the increase in phenol concentration of phenol used in this experiment the activated sludge to enhance the inhibitory effect of phenol degradation, and when the phenol concentration at 350mg/L, the inhibitory effect of phenol significantly enhanced.⑵MP-FHBR can efficiently remove the phenol in waste water, partly because of continuous water flow. when the phenol volume load in less than 1.96kg phenol/m3?d, the concentration of phenol of the system has always been at a low level. This will avoid the phenol concentration being at a higher level in the system, and thus avoid reducing capacity of the microbial for degradation of phenol.⑶When the MP-FHBR overload , the system has a certain impact on the capacity of the load resistance. When phenol cycle and accumulated to a certain concentration in the system, due to the high concentration of phenol on microbial inhibition, the ability of reactor for removing of phenol will significantly reduced, resulting in the phenol concentration in effluent became significantly higher.
引文
[1]雷川华,吴运卿.我国水资源现状、问题与对策研究[J].节水灌溉,2001(1):13-15.
    [2]张忠祥,钱易.废水生物处理新技术[M].北京:清华大学出版社,2004.
    [3] Robertson.L.A ,Kuenen. J.G.Combined heterotrophic nitrifieat ion and aero-bie denitrifieation in thiosphaera pantotripha and other baeteria[J].Antonie van Leeuwenhoek,1990,57(3):139一152.
    [4] Stouthamer.A.H.Emerging prineiples of inorganic nitrogen metabolism in paracocces denitrificans and related baeteria[J].Antonie van Leeuwenhoek,1997,71(l):33一41.
    [5]陶庆生.污水净化的电化学方法[M].武汉:武汉大学出版社,1988,78-96.
    [6] L.Z.S hirgaonkar, A.B.pandit.sonophoto chemical destruction of aqueous solution of 2,4,6一trichlorophenol, Ultrason[J].Sonochem, 1998, 5(16):53一57 .
    [7] Steve .K, et al.Electrochemical Inciceration of 4 - Chocrophenol and the Identification of Products and Intermedoates Mass Spectrometry [J].Environ. Sci.Tech. ,1999,33(15) :2 638~2 644
    [8]段柏华.内电解法处理含酚废水[J].环境与开发,1999,14(4):19-20.
    [9]熊英健.三维电极电化学水处理技术研究现状及方向[J].工业水处理,1998,18(1):58.
    [10]杨润昌.含酚废水湿式电化学氧化处理研究[J].湘潭大学自然科学学报,2001,23(3):55-58.
    [11]张伟.生物法处理含酚废水的研究[J].油气田环境保护,1999,9(2):23-25.
    [12]劳善根.活性炭厌氧滤池处理含酚废水小型试验[J].水处理技术,1994,20(4):241-244.
    [13]肖庚富,王家玲.曝气浸没固定生物膜法及其在污水处理中的应用[J].环境科学与技术,1993,63(4):1-5.
    [14] Gornoszy.M.C.Intemittent operatio of the extended aeration process for small systems[J].Water Pollut Controlfed,1979,51(2):274 -87.
    [15] Gornoszy.M.C等.循环式活性污泥法(CAST)的应用及发展[J].中国给水排水,1996 ,12(5) :4 -10.
    [16] Goronszy.M.C . Aerated denitrification in full-scale activated sludg facilities[J].Wat Sci Tech,1997,35(10) :103 -110.
    [17] Goronszy.M.C.The cyclic activated sludg system for resort area wastewater treatment[J].Wat Sci Tech,1995,32(9-10) :105 -114.
    [18] Novak.L.Dynamic mathematical modeling Sequencing Batch Reactor with aerated and mixed filling period[J].Wat Sci Tech,1997,35(1) :105 -112.
    [19] Gornoszy.M.C等.循环式活性污泥法(CAST)在工业废水处理中的应用[J].中国给水排水,1997,12(3):7 -12.
    [20]边德军,张文华,孙大群等.CAS-BT复合反应器处理有机废水的试验研究[J].中国给水排水,2008,34(7):73-77.
    [21]边德军,张文华,范建华等.CAS-BT复合反应器同步脱氮除磷试验研究[J].环境工程学报,2008,2(5):604-607.
    [22]边德军,张文华,邵丕红等.CAS-BT复合反应器除磷处理的试验研究[J].环境科学与技术,2008,31(8):103-105.
    [23]边德军,张文华,龙北生.微压内循环活性污泥废水处理装置:中国专利,CN2603079.[P].2004-02-11.
    [24] Morper.M.R, Wildmoser.A.Improvement of existing wastewater treatment plant’efficiencues without enargement of tankage by application of the LINPOR process-case studue[J].Wat. Sci. Technol,1990,22(7-8):207—215.
    [25] Morper.M.R.Upgrading of activated sludge systemfor nitrogen removal by application of the LINPOR–CN process[J].Wat.Sci.Technol, 1994,29(12):167—176.
    [26]吴晓磊.投加介质提高活性污泥法处理效能的研究[D].北京:清华大学环境科学与工程系,1995.
    [27] Golla.P.S,Reddy M. P,Simms M. K,Laken T. J.Three years of full-scaleCAPTOR process operation at Moundsville WWSP[J].Wat.Sci.Technol, 1994,29 (10-11):175-181.
    [28] Reddy M. P,Pagilla K. R,Senthilnathan P. R,Johnson H W,Golla. P. S. Estimation of biomass concentration and popilatin dynamics in a CAOTOR activatedsludge process[J].Wat.Sci. Technol,1994, 29(7):149-152.
    [29] Kondo M,Hozo S,Inamori Y.Simultaneous remove of BOD and Nitrogenwith anaoxic/oxic porous support systems[J].Wat. Sci. Technol,1992,26(9-11): 2004-2006.
    [30] Park T.J,Lee K. H.Dyeing wastewater treament by activated sludge process with a polyurethane fluidised bed biofilm[J]. Wat.Sci. Technol,1996,34(5-6):193 -200.
    [31] Su J.L,Ouyang C.F.Nutrient removal using acombined process with activated sludge and biofilm[J].Wat. Sci. Technol,1996,34(1-2):477-486.
    [32] Su J.L,Ouyang C. F.Advanced biological enhanced nutrient removal process by the addition of rotating biological contactors [J].Wat. Sci. Technol,1997,35 (8): 153-160.
    [33]张文华,边德军,蒋维卿.微压内循环复合生物废水处理装置:中国专利,CN2635663.[P].2004-08-25.
    [34]高延耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999.
    [35]张望军.OCO工艺对城市污水的处理[J].给水排水,2000,26 (3):1-2.
    [36]姬跃园.OCO工艺的处理特定[J].工业用水与废水,2001,32 (3):48-49.
    [37]陈克玲,罗继武.百乐克(BIOLAK)工艺优化设计探讨[J].中国给水排水, 2006,(22):55-57.
    [38]杨红红等.百乐克(BIOLAK)工艺设计中应注意的问题[J].中国环境管理干部学院学报, 2007,17(2):84-86.
    [39]钱奕忠等.假单胞菌降解含苯酚废水试验[J].过程工程学报, 2001,1(4):439-441.
    [40]康春莉,徐自立,马小凡.环境化学实验[M].长春:吉林大学出版社,2000.
    [41]国家环保局.水和废水监测分析方法[M].北京:中国环境科学出版社,1989.
    [42]尹军,周春生.TTC-脱氢酶活性常温萃取测定法及应用[J].中国给水排水, 1995, 11(4):16 - 19.
    [43]陈文波.苯酚降解菌的分离、鉴定及其固定化研究[D].贵州:贵州大学,2007.
    [44] V’azquez,J Rodriguez.Simultaneous removal of phenol, ammonium and thioeyanate from eoke wastewater by aerobic biodegradatiom[J].Journal of Hazardous Materials,2006,B137:1773一1780.
    [45]丁峰.pH值及营养物质对活性污泥膨胀的影响[D].哈尔滨:哈尔滨建筑大学,1999.
    [46]陈翔.脱氢酶在环境监测中的应用概况[J].解放军预防医学杂志, 1997, 15(6): 459 - 462.
    [47]马海娟,李光明,张亚雷等.产碱菌株F-3-4对苯酚降解特性的的研究[J].环境科学与技术, 2008,31(8):4-7.
    [48]王建龙,王淑莹,彭永臻等.复合生物反应器低溶解氧同步脱氮除磷[J].环境科学,2008,29(3):655-659.
    [49] Feng.W., Wen.J, Yuan.Q, et al. Modeling for local dynamic Behavior of Phenol degradation in bubble column bioreactor by yeast Candida tropicalis [J].AIChE Journal, 2006,52(8):2864-2875.
    [50]王荣昌,文湘华,钱易.悬浮载体生物膜内硝化菌群空间分布规律[J].环境科学, 2006,27(11):2358-2362.
    [51]郑娜,董德明,花修艺等.自然水体生物膜对苯酚及对硝基苯酚的热力学吸附[J].吉林大学学报(理学版), 2007,45(2):315-319.
    [52]陈立波,李风亭.压力曝气生物反应器处理废水的研究[J].同济大学学报(自然科学版), 2007,35(9):1219-1224.
    [53]马海娟等.产碱菌株F-3-4对苯酚降解特性的的研究[J].环境科学与技术, 2008,31(8):4-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700