好氧颗粒污泥膜生物反应器性能和膜污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验将好氧颗粒污泥技术与膜生物反应器技术相结合,形成好氧颗粒污泥膜生物反应器AGMBR(Aerobic Granule Membrane Bioreactor)。实验研究了AGMBR的处理性能,并将其与活性污泥膜生物反应器ASMBR(Aerobic Sludge Membrane Bioreactor)进行对比,考察了颗粒污泥在减缓膜污染中所起的作用。
     实验分为两部分进行。首先,为了提高好氧颗粒污泥稳定性,在SBAR(SequencingBatch Airlift Reactor)反应器内,通过逐步提高进水N/COD的方法,成功地培养出硝化菌大量富集、稳定性良好、能同时除碳脱氮的好氧硝化颗粒污泥,并考察其稳定性、物理性状、污染物去除效果等性能。然后,在SBAR内加入膜组件建立AGMBR反应器,研究AGMBR的处理性能、运行稳定性,以及好氧硝化颗粒污泥在AGMBR内的污泥培养、形态变化、稳定性等问题;同时,将其与好氧活性污泥膜生物反应器ASMBR进行对比实验,研究两种体系内的膜污染情况,分析两种污泥体系的膜污染机理,主要研究结论如下:
     (1)成功的培养出性能良好的好氧硝化颗粒污泥。试验运行至第180天时,硝化颗粒污泥仍结构致密,没有破裂现象发生,SVI值保持在30 ml/g以下,颗粒粒径在1.6mm左右。
     (2)好氧硝化颗粒污泥膜生物反应器AGMBR连续稳定运行102天,系统具有良好的去除有机物和同时硝化反硝化能力,在进水COD和NH_4~+-N浓度分别为500和200mg/L时,COD、NH_4~+-N和TN的去除率分别稳定在86%,94%和45%以上。
     (3)AGMBR中好氧颗粒污泥有效减缓了膜污染,延长了膜清洗的周期。AGMBR中膜污染以膜孔堵塞为主,占总膜污染阻力的64.81%;滤饼层的阻力为2.1×10~(12) m~(-1),远小于ASMBR中的16.07×10~(12)m~(-1);AGMBR的膜清洗周期是相同条件下ASMBR的2.43倍以上;而且AGMBR内不断有新颗粒生成,维持了AGMBR系统性能和运行的稳定。分析颗粒污泥有效减缓膜污染的原因,主要是由于颗粒的粒径较大,结构致密可压缩性低,沉降性好,不容易在膜表面沉积形成滤饼层,减小了滤饼层的膜污染阻力。因此,好氧颗粒污泥造成的膜污染主要以膜孔堵塞为主。
In this study,an aerobic granules membrane bioreactor(AGMBR) was built up,which combined aerobic granulars technology with membrane bioreactor technology.The performance of AGMBR and the impact on the membrane fouling of aerobic granules were investigated.An aerobic sludge membrane bioreactor(ASMBR) was operated under the same conditions to compare with the AGMBR.
     This study included two parts.Firstly,to improve the stability of conventional aerobic granules,aerobic nitrifying granules were successfully cultivated under stepwise increased substrate NH_4~+-N concentrations in an sequencing batch airlift reactor(SBAR).Aerobic nitrifying granules,which were dominated by both heterotrophs and nitrifying bacteria,had excellent stability and simultaneous removal of COD,N and P in wastewaters.The stability, physical characteristic and removal efficiency were all investigated.Secondly,the AGMBR was built up by setting the membrane module in the SBAR.The stability and removal efficiency of AGMBR and the cultivation,morphology,removal efficiency,stability of aerobic nitrifying granules in the AGMBR were investigated.Meanwhile,the ASMBR was operated under identical conditions with the AGMBR,to compare their fouling behaviors and membrane fouling mechanisms.The results showed that aerobic granules had an excellent membrane permeability.The main conclusions were as followed:
     (1) The aerobic nitrifying granules,which had excellent performance,were successfully cultivated.The nitrifying granules were compact on day 180.The value of sludge volume index(SVI) was below 30 ml/g and the mean granules size was about 1.6 mm.
     (2) The AGMBR showed excellent organics removal and simultaneous nitrification and denitrification(SND) performances during 102 days operation.COD,NH_4~+-N and TN average removal efficiencies of AGMBR remained at 86%,94%and 45%,when influent concentrations of COD and NH_4~+-N were 500 mg/L and 200 mg/L respectively.
     (3) The AGMBR had an excellent membrane permeability and the period of cleaning membrane was extended.In the AGMBR,pore blocking resistance is the predominant factor of the membrane fouling,which is 64.81%of the membrane total resistance.And the cake resistance of the AGMBR is 2.1×10~(12) m~(-1),which is much smaller than 16.07×10~(12) m~(-1) in the ASMBR.The period of cleaning membrane was at least 2.43 times longer as that in the ASMBR.New aerobic granule was produced and grown gradually during experiment operation,which ensure the stabilization of performance and operation in the AGMBR.The excellent membrane permeability of aerobic granules was due to the larger granule size,the compact structure and low compressibility,and better settling ability.So it was hard to form fouling cake layer on the membrane module surface in AGMBR and the cake resistance was reduced.Therefore,the pore blocking resistance is the predominant factor of the membrane fouling in the AGMBR.
引文
[1] Lettinga G, Van Velson AFM, Hobma SW, et al. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng, 1980,22:699-734.
    
    [2] Alves M, Cavaleiro A J, Ferreira E C, Amaral A L, Mota M, Damotta M, Vivier H, Pons M N Characterization by image analysis of anaerobic sludge under shock conditions. Water Sci. Technol., 2000 (41) :207-214
    [3] Schmidt J E, Ahring B K. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng., 1996 (49):229-246
    [4] Schwarzenbeck N, Borges JM, Wilderer PA. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl Microbiol Biot, 2005,66(6): 711-718.
    [5] Schwarzenbeck N,Erley R,Wilderer PA. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter. Water Sci Technol,2004,49(11-12): 41-46.
    [6] Su KZ, Yu HQ. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environ Sci Technol, 2005, 39(8): 2818-2827.
    [7] Inizan M, Freval A, Cigana J, et al. Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment. Water Sci Technol, 2005, 52(10-11): 335-343.
    [8] Wang SG, Liu XW, Gong WX, et al. Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresource Technol, 2006,98(11): 2142-2147.
    [9] Wang HL, Yu GL, Liu GS, et al. A new way to cultivate aerobic granules in the process of papermaking wastewater treatment. Biochem Eng J, 2006,28(1): 99-103.
    
    [10] De Kreuk MK, van Loosdrecht MCM. Formation of aerobic granules with domestic sewage. J Environ Eng, 2006,132(6): 694-697.
    
    [11] Liu Y. Estimating minimum fixed biomass concentration and active thickness of nitrifying biofilm. J. Environ. Eng., 1997 (123) : 198-202
    [12] Liu Y, Yang S F, Tay J H, Improved stability of aerobic granules through selecting slow-growing nitrifying bacteria. J. Biotechnol., 2004 (108) :161-169
    [13] Tsuneda S, Nagano T, Hoshino T, Ejiri Y, Noda N, Hirata A. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Research., 2003 (37) :4965-4973
    [14] Tay J H, Yang S F, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Appl. Microbiol. Biotechnol., 2002 (59) :332-337
    [15] Liu Y, Yang S F, Liu Q S, Tay J H. The role of cell hydrophobicity in the formation of aerobic granules. Current Microbiology., 2003 (46) :270-274
    [16] Liu Y, Yang S F, Tay J H. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Appl Microbiol Biotechnol, 2003 (61) :556-561
    [17] Yang S F, Tay J H, Liu Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wasterwater. Biotechnol., 2003 (106) :77-86
    [18]Yang S F,Tay J H,Liu Y.Respirometric activities of heterotrophic and nitrifying populations in aerobic granules developed at different substrate N/COD ratios.Current Microbiology.,2004(49):42-46
    [19]Yang S F,Tay J H and Liu Y.Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules.Environmental Engineering,2005,131(1):86-92
    [20]Liu Y,Tay J H.State of art of biogranulation technology for wastewater treatment.Biotechnol Adv.,2004,22(7):533-563
    [21]郭养浩,孟春,石贤爱等.UASB反应器中影响污泥颗粒化的工程因素.生物工程学报,1997,13(1):76-81
    [22]李宗义,王海磊,程彦伟等.成熟厌氧颗粒污泥的结构及其特征.微生物学通报,2003,42(3):172-176
    [23]Tay J H,Pan S,Tay S T L.The effect of organic loading rate on the aerobic glanulation-the develoPment of shear force theory.Wat.Sci.tech.,2003 47(11):235-240
    [24]Tay JH,Liu QS,Liu Y.The effects of shear force on the formation,structure and metabolism of aerobic granules.Appl Microbiol Biot,2001,57(1-2):227-233.
    [25]Chudoba J.Control of activated sludge filamentous bulking formulation of basic Principles.Wat.Res.,1985,19:1017-1022
    [26]Liu Q S,Tay J H,Liu Y.Substrate concentration independent aerobic granulation in sequential aerobic sludge blanket reactor.Environ.Technol.,2003a,24:1235-1243
    [27]Grotenhuis J T C,van Lier J B,Plugge C M,Stams A J M,Zehnder A J B.Effect of ethylene glycol-bis(h-aminoethylether)-N,N-tetraacetic acid(EGTA) on stability and activity of methanogenic granular sludge.APPI Microbiol Biotechnol.,1991,36:109-114
    [28]Moy B Y P,Tay J H,Toh S K,et al.High organic loading influences the physical characteristics of aerobic sludge granules.Lett.Appl.Microbiol.,2002,34:407-412
    [29]Tay J H,Liu Q S,Liu Y.The role of cellular polysaccharides in the formation and stability of aerobic granules.Lett.Appl.Microbiol.,2001c,33:222-226
    [30]Tay J H,Liu Q S,Liu Y.Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor.Appl.Microbiol.,2001 a,91:168-175
    [31]Beun J J,Hendriks A,van Loosdrecht MCM,et al.Aerobic granulation in a sequencing batch reactor.Water Res,1999,33:2283-2290.
    [32]Qin L,Tay J H,Liu Y.Selection pressure 15 a driving force of aerobic granulation in sequencing batch reactor.Process Biochem,2004,39:579-584
    [33]Qin L,Liu Y,Tay J H.Effect of settling time on aerobic granulation in sequencing batch reactor,Biochemical Engineering,2004,21:47-52
    [34]Tobal,Hayasakai,Taguchi S,et al.A new method for manufacture of lactose-hydrolysed fermented milk.Sci.Food Agric.,1990,52:403-407
    [35]Wirtz R,Dague R.Enhancement of granulation and start-up in the anaerobic sequencing batch reactor.Wat.Env Res.,1996,68:883-892
    [36]Liu Y,Tay J H.The essential role of the hydrodynamic shear force in the formation of biofilm and granular sludge.Water Res.,2002,36(4):1653-1665
    [37]Schwarzenbeck N,Erley R,Wilderer P A.Growth of aerobic granular sludge in a SBR-system treating wastewater rich in Particulate matter.sth International conference on biofilm systems,14-19September,Cape Town,South Africa
    [38]王强,陈坚,褚国成.选择压法培育好氧颗粒污泥的试验.环境科学,2003,24(4):99-104
    [39]Sanin S L,Sanin F D,Bryers J D.Effects of starvation on the adhesive properties of xenobiotic degrading bacteria.Process Biochem.,2003,38(6):909-914
    [40]Jiang H L,Tay J H,LiuY et al.Ca2+augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactor.Biotechnol.Lett.,2003,25:95-103
    [41]Peng Dang Cong,Nicolas Bemet,Jean Philippe Delgenes,et al.Rapid conununication:Aerobic granular sludge-a case report.Res.,1999,33(3):890-893
    [42]Mosquera-Corral A,Kreukde M K,Heijnen J J,Vanloosdrech M C M.Effect of oxygenconcentration on N-removal in an aerobic granular sludge reactor.Water Reserch,2005,39:2676-2686
    [43]卢然超,张晓健,张悦,竺建荣.SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响.环境科学,2001,22(2):87-90
    [44]Vandevivere P,Kirchaan D L.Attachment stimulates exopolysaccharide synthesis by bacteria.Appl.Environ.Microbiol.,1993,59:3280-3285
    [45]蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的作用机理.中国环境科学,2004,24(5):623-626
    [46]王暄,季民,王景峰等.好氧颗粒污泥胞外聚合物提取方法研究.中国给水排水,2005,21(8):91-93
    [47]Tay J H,Liu Q S,Liu Y.Characteristics of aerobic granules grown on glu-cose an acetate in sequential aerobic sludge blanket reactors.Environ.Tech.,2002,23:931-936
    [48]Liu Y,Woon K H,Yang S F.Influence of phenol on cultures of acetate-fed aerobic granular sludge.Letters in Applied Microbiology,2002,35(2):162-165
    [49]Liu Y,Yang S F,Xu H.Biosorption kinetics of cadmium(Ⅱ) on aerobic granular sludge.Process Biochemistry,2003,38(7):997-1001
    [50]Beun J J,Van Loosdrecht M C M,Heijnen J J.Aerobic granulation.Wat.Sci.Tech.,2000,41(4,5):41-48
    [51]阮文权,陈坚.同步脱氮好氧颗粒污泥的特性及其反应过程.中国环境科学,2003,23(4):380-384
    [52]Lin Y M,Liu Y,Tay J H.Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors.Appl.Microbiol.Biotechnol.,2003,62(4):430-435
    [53]Adham,S.,Gagliardo,P.,Boulos,L.,et al.Feasibility of the membrane bioreactor process for water reclamation.Water Science and Technology,2001,43(10):203-209
    [54]Gander,M.,Jefferson,B.,and Judd,S.Aerobic MBRs for domestic wastewater treatment:a review with cost considerations.Separation and Purification Technology,2000,18(2):119-130
    [55]Qin,J.J.,Kekre,K.A.,Tao,G.New option of MBR-RO process for production of NEWater from domestic sewage.Journal of Membrane Science,2006,272(1-2):70-77
    [56]Defrance,L.,Jaffrin,M.Y.,Gupta,B.,et al.Contribution of various constituents of activated sludge to membrane bioreactor fouling.Bioresource Technology,2000,73(2):105-112
    [57]Bouhabila,E.H.,Ben Aim,R.,and Buisson,H.Fouling characterisation in membrane bioreactors.Separation and Purification Technology,2001,22-23:123-132
    [58] Harada, H., Momonoi, K., Yamazaki, S., et al. Application of anaerobic-UF membrane reactor for treatment of a wastewater containing high strength particulate organics. Water Science and Technology, 1994, 30(12): 307-319
    [59] Choo, K.H. and Lee, C.H. Effect of anaerobic digestion broth composition on membrane permeability. Water Science and Technology, 1996,34(9): 173-179
    [60] Huang, X., Liu, R., and Qian, Y. Behaviour of soluble microbial products in a membrane bioreactor. Process Biochemistry, 2000, 36(5): 401-406
    [61] Salanitro, J.P., Johnson, P.C., Spinnler, G.E., et al. Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environmental Science and Technology, 2000, 34(19): 4152-4162
    [62] Sato, T. and Ishii, Y. Effects of activated sludge properties on water flux of ultrafiltration membrane used for human excrement treatment. Water Science and Technology, 1991,23(7-9): 1601
    [63] Nagaoka, H., Ueda, S., and Miya, A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Science and Technology, 1996, 34(9 pt 5): 165-172
    [64] Yamamoto, K., Hiasa, M., Mahmood, T., et al. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Science and Technology, 1989, 21(4-5): 43-54
    [65] Defrance, L. and Jaffrin, M.Y. Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment. Journal of Membrane Science, 1999, 152(2): 203-210
    [66] Churchouse, S. Membrane bioreactors for wastewater treatment -- operating experiences with the Kubota submerged membrane activated sludge process. Membrane Technology, 1997, 1997(83): 5-9
    [67] Liu, R., Huang, X., Sun, Y.F., et al. Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor. Process Biochemistry, 2003, 39(2): 157-163
    [68] Lee, J., Ahn, W.-Y., and Lee, C.-H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Research, 2001, 35(10): 2435-2445
    [69] Lim, A.L. and Bai, R. Membrane fouling and cleaning in microfiltration of activated sludge wastewater. Journal of Membrane Science, 2003, 216(1-2): 279-290
    [70] Chang, I.-S. and Lee, C.-H. Membrane filtration characteristics in membrane-coupled activated sludge system -- the effect of physiological states of activated sludge on membrane fouling. Desalination, 1998, 120(3): 221-233
    [71] Nagaoka, H., Yamanishi, S., and Miya, A. Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system. Water Science and Technology, 1998, 38(4-5 -5 pt 4): 497-504
    [72] Lee, Y., Cho, J., Seo, Y. Modeling of submerged membrane bioreactor process for wastewater treatment. Desalination, 2002, 146(1-3): 451-457
    [73] Lee, W., Kang, S., and Shin, H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. Journal of Membrane Science, 2003, 216(1-2): 217-227
    [74] J.H.Tay,et al.,Reactor performance and membrane filtration in aerobic granular sludge membrane bioreactor, J.Membr.Sci.(2007),doi:10.1016/j.memsci.2007.05.028
    [75]王景峰,王暄,季民等.好氧颗粒污泥膜生物反应器污泥性状研究.环境科学.2007,28(5):1033-1038
    [76]陈蕊,王晓丽,傅学起等.好氧颗粒污泥膜生物反应器与普通活性污泥膜生物反应器处理模拟畜禽废水的比较.农业环境科学学报,2007,26(2):759-763
    [77]朱振中,周艳,李秀芬等.好氧颗粒污泥膜生物反应器的运行特性.环境科学.2006,27(1)57-62
    [78]张忠波,陈吕军,胡纪萃.IC反应器技术的发展.环境污染与防治,2000,22(3):39-41
    [79]国家环境保护总局.水和废水监测分析方法.北京:中国环境科学出版社,2002.
    [80]Frolund B,Palmgren R,Keiding K,et al.Extraction of extracellular polymers from activated sludge using a cation exchange resin.Water Res,1996,30(8):1749-1758.
    [81]Dubois M,Gilles K,Hamilton JK,et al.Colorimetric method for determination of sugars and related substances.Anal Chem,1956,28:350-356.
    [82]Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem,1976,72(1-2):248-254.
    [83]Ghangrekar M M,Asolekar S R,Ranganathan K R,Joshi S G.Experience with UASB reactor start up under different operating condition.Wat.Sci.Teeh.,1996,34(5-6):421-428
    [84]Wang Q,Du G,Chen J.Aerobic granular sludge cultivated under the selective pressure as a driving force.Process Biochem,2004,39(5):557-563.
    [85]Tay JH,Tay STL,Ivanov V,et al.Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment.Lett Appl Microbiol,2003,36(5):297-301.
    [86]Li Y,Liu Y.Diffusion of substrate and oxygen in aerobic granule.Biochem Eng J,2005,27(1):45-52.
    [87]Li Y,Liu Y,Shen L,et al.DO diffusion profile in aerobic granule and its microbiological implications.Enzyme Microb Technol,2007:doi:10.1016/j.enzmictec.2008.1004.1005.
    [88]Takeda M,Nakano F,Nagase T,et al.Isolation and chemical composition of the sheath of Sphaerotilus natans.Biosci Biotechnol Biochem,1998,62:1138-1143.
    [89]Hwang KJ,You SF,Don TM.Disruption kinetics of bacteria cells during purification of poly-beta-hydroxyalkanoate using ultrasonication.J Chin Inst Chem Eng,2006,37:209-216.
    [90]Wang ZP,Liu LL,Yao J,et al.Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors.Chemosphere,2006,63(10):1728-1735.
    [91]Jiang HL,Tay JH,Tay STL.Changes in structure,activity and metabolism of aerobic granules as a microbial response to high phenol loading.Appl Microbiol Biot,2004,63(5):602-608.
    [92]Sponza D T.Extracellular polymer substances and physicochemical properties of flocs in steady- and unsteady-state activated sludge systems.Process Biochemistry,2002,37:983-998
    [93]Azeredo J,Oliveira R.The role of exopolymer in the attachment of Sphingomonas paucimobilis.Biofouling,2000,16:59-67
    [94]Laguna A,Ouattara A,Gonzalez R O et al.A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge.Wat.Sci.Technol.,1999,40(8):1-8
    [95]Wilen B M,Bo J,Lant P.The influence of key chemical constituents in activated sludge on surface and flocculating properties.War.Res.,2003,37(9):2127-2139
    [96]Chiemchaisri C.,Wong Y.K.,Urase T.,et al.Organic stabilization and nitrogen removal in membrane separation bioreactor for domestic wastewater treatment.Wat.Sci.Tech.,1992,25(10):231-240
    [97] Jang A., Yoon Y.H., Kim I.S., et al. Characterization and evaluation of aerobic granules in sequencing batch reactor. Journal of Biotechnology, 2003, 105: 71-82.
    [98] Kwok W K, Picioreanu C, Ong S L, Van Loosdrecht M C M, Ng W J, Heijnen J J. Influence of biomass production and detachment forces on biofilm structures in a biofilm airlift suspension reactor. Biotechnol. Bioeng., 1998 (58) :400-407
    [99] Wingender J,Neu TR,Flemming H-C.Microbial Extracellular Polymeric Substances, 1-53, Berlin.: Springer Verlag, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700