淀山湖浮游植物群落结构及其生长动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀山湖素以“鱼米之乡”闻名,并集水源地、渔业养殖、娱乐功能于一体。近几十年来,淀山湖水质不断下降,富营养化现象越来越严重,已引起了广泛关注。2009年6月至2010年6月期间,对淀山湖12个监测点共进行了16次浮游植物监测,并对浮游植物生长动力学进行了研究。了解了淀山湖在监测期间浮游植物数量及种类的变化、淀山湖水质状况、浮游植物群落结构以及叶绿素a含量与水体各环境因子之间的相关性、浮游植物的生长特征。得到研究结果如下:
     1.调查期间共鉴定淀山湖浮游植物8门89属285种(含变种)。其中绿藻门43属135种,硅藻18属58种,裸藻5属34种,蓝藻9属32种,隐藻4属8种,金藻4属8种,甲藻3属7种,黄藻3属3种。尖尾蓝隐藻、小球藻、链丝藻、尖针杆藻、模糊直链藻、微囊藻属、颤藻属为淀山湖常见优势种。说明淀山湖水体目前处于富营养化状态,并有向重富营养化发展的趋势。
     2.淀山湖浮游植物种类数与样点的空间分布有关。上游来水入水口及其附近监测点浮游植物种类数较多,季节变化特征为春季>夏季>冬季>秋季。不同月份中淀山湖浮游植物种类数及构成比例存在差异。除夏季浮游植物以蓝藻为主要组成,其他季节浮游植物均以绿藻门为主要组成。
     3.淀山湖浮游植物全年平均密度为2.19×107cells·L-1,各月变化范围为9.14×105~2.12×108cells.L-1,最高值出现在2009年9月中旬。各季节浮游植物密度存在差异,夏季>春季>冬季>秋季。全年各监测点浮游植物密度大小为:元荡湖<湖中部<湖东部<湖西部、湖北部<湖南部。最低值出现在元荡湖,位于湖南部的湖1浮游植物密度最高。蓝藻暴发期与非暴发期各监测点浮游植物密度大小排列有差异,水华暴发时浮游植物密度对各监测点全年浮游植物密度变化起到决定性作用。淀山湖具有-定净化功能,出水口浮游植物密度较进水口处低。
     4.2009年5月到2010年6月,淀山湖叶绿素a全年平均含量为13.47 mg/m3,各月平均值变化范围为0.59-38.64mg/m3。春季>夏季>冬季>秋季。全年各监测点叶绿素a含量的变化为:元荡湖<湖中部<湖东部<湖西部<湖南部<湖北部,其中最小值出现在元荡湖,最大值出现在湖7。水华大规模暴发期叶绿素a含量的平均值为23.64mg/m3,最小值出现在拦路港,最大值出现在湖1。非大规模暴发期各监测点叶绿素a含量的平均值11.85 mg/m3,最小值出现在急水港,最大值出现在湖7。
     5.环境因子与全年、水华期间浮游植物群落结构的相关性存在差异。PH、DO值、温度、透明度、溶解态磷、氨氮、总氮对淀山湖全年浮游植物群落结构变化的影响较大。水华期间,DO值、透明度、总磷、氨氮、总氮对浮游植物群落结构的影响较大。除DO值、透明度、总磷、总氮外,水华期间其他的环境因子对浮游植物群落结构的影响都较全年有所下降。
     6.以单一元素为限制底物时,满足铜绿微囊藻正常生长的氮浓度大于4.0 mg·L-1,磷浓度大于0.50mg·L-1。铜绿微囊藻最适生长的氮浓度范围为32.0~64.0 mg·L-1,磷浓度范围为1.0~1.50 mg·L-1。以磷为限制底物时的半饱和常数Ksp远远小于以氮为限制底物时的半饱和常数KsN (KsN>Ksp),说明铜绿微囊藻对磷的亲和性高于氮。
     7.以单一元素为限制底物时,当氮浓度大于4.0 mg·L-1,磷浓度大于0.20mg·L-1时能满足四尾栅藻的正常生长。四尾栅藻最适生长的氮浓度范围为16.0~32.0 mg·L-1,磷浓度范围为2.0-5.40 mg·L-1。以磷为限制底物时的半饱和常数Ksp远远小于以氮为限制底物时的半饱和常数KsN (KsN>Ksp),说明四尾栅藻对磷的亲和性高于氮。
Lake Dianshan is famous for flowing with milk and honey, and has the water sources, fish farming, and recreation function. In recent decade, the water quality of Lake Dianshan is declining and eutrophication is more serious. That attracted wide attention. From June 2009 to June 2010, we monitored 12 monitoring points 16 times for knowing the water quality, the change of phytoplankton species composition, density variation, the correlation between phytoplankton and environmental factors, and did the dynamic studies for knowing the growth of phytoplankton. The main results as follows:
     1. A total of 8 phylum,89 genera,285 species of phytoplankton were identified (with varietas). That includes Chlorophyta(43 genera 135 species), Bacillariophyta(18 genera 58 species), Euglenophyta(5 genera 34 species), Cyanophyta(9 genera 32 species), Cryptophyta(4 genera 8 species),Chrysophyta(4 genera 8 species), Pyrrophyta(3 genera 7 species), Xanthophyta(3 genera 3 species).The dominated species were Chroomonas acuta, Chlorella vulgaris, Ulothrix flaccidum, Synedra acus, Melosira ambiuga Microcystis, Oscillatoria mainly. Lake Dianshan is in eutrophication currently, and has the trend to be heavy eutrophication.
     2. Number of phytoplankton species in Lake Dianshan had relevance with distribution of monitoring points. Area around outlet had more phytoplankton species. The season order of species from low to high was autumn, winter, summer, spring. The percentage of phytoplankton species number in different months was different. Except Cyanophyta was the main kind species in summer, the Bacillariophyta was main species in other seasons.
     3. The mean phytoplankton density was on average 2.19×107cells·L-1 in one year, peak in mid-September 2009. The density order of phytoplankton from low to high was autumn, winter, spring, summer. The point order of mean density from low to high was Lake Yuandang, lake central, lake east, lake west, (equal to lake north), lake south. The lowest density point was Lake Yuandang, the highest point was the No.1 point. The phytoplankton density of different points in algae-blooming period was different from non-blooming period, and decided pinots'density order. Lake Dianshan had the furifying function, the phytoplankton density in outlet was lower than inlet.
     4. The mean chlorophyll-a was 13.47 mg/m3 on average from May 2009 to June 2010, and ranged from 0.59 to 38.64mg/m3. The season order of chlorophyll-a from low to high was autumn, winter, summer, spring. The change of season was obvious. The points order of chlorophyll-a from low to high was Lake Yuandang, lake central, lake east, lake west, lake south, lake north. The lowest chlorophyll-a point was Lake Yuandang, the highest point was the No.7 point. The average of chlorophyll-a was 23.64 mg/m3, in algae-blooming period, the lowest point was Port Lanlu, the highest point was NO.1 point. The average of chlorophyll-a was 11.85 mg/m3 in non-blooming period, the lowest point was Port Lanlu, the highest point was NO.7 point.
     5. The correlation between environmental factors and phytoplankton community in year, algae-blooming period was different. The main factors that impact the phytoplankton community in year were as followed:PH, DO, temperature, transparency, dissolved phosphorus, ammonian, TN. The main factors that impact the phytoplankton community in algae-blooming period were as followed:DO, transparency, TP, ammonian, TN. Except DO, transparency, TP, TN, the relationship between others environmental factors and phytoplankton community was declined in algae-blooming period.
     6. The Microystis aeruginosa grows normally when the concentrations of TN and TP are greater than 4.0 mg-L-1、0.50mg-L-1 respectively. The optimum concentration ranges of TN and TP for the growth of Microystis aeruginosa are 16.0~64.0 mg-L-1 and 1.5.0~5.40 mg-L-1 respectively. KsN is higher than Ksp, which indicates that the affinity of TP to Microystis aeruginosa is higher than TN.
     7. The Scenedesmus quadricauda grows normally when the concentrations of TN and TP are greater than 4.0 mg·L-1.0.20 mg-L"1 respectively. The optimum concentration ranges of TN and TP for the growth of Scenedesmus quadricauda are16,0-32.0 mg-L-1 and 2.0~5.40 mg-L-1 respectively. KsN is higher than Ksp, which indicates that the affinity of TP to Scenedesmus quadricauda is higher than TN.
引文
1. Reynold C S, Walsby A E. Water-blooms [M]. Biol. Rev.1975,50:437-481.
    2. Reynold C S. The ecology of fresh water phytoplankton[N].Cambridge studies in ecology. London:Cambridge Univ Press,1984.
    3. Robert E L. Phycology(Second edition)[N]. London:Cambridge Univ Press,1985.
    4. Schwimmer D and Schwimmer M.In algae and Man[N],Jackson,D F ed. New york, Plenum Press,1964:368-412.
    5. Schwimmer M and Schwimmer D. In algae, Man and Environment[N], Jackson, D F ed. New york, Syracuss Univ, Press,1968:278-358.
    6. Gorham P R and Carmichael W W. Pure and appl[J]. Chem.1979,52:165-174.
    7. Carmichael W W. Advances in Botanical Res[M].1986,12:47-101.
    8. Ingrid C, Jamie B. Toxic Cyanobaeteria in water[M]. London and New York. E&NF Spon Publisher,1999,416.
    9. SEPA. Nutrient Criteria Technical Guidance Manual[J]. Lakes and Reservoirs). United States,2000,5.
    10. Goldman J C, Carpenter E J. Akinetic approach to the effect of temperature on algal growth..Limnol.O-ceanogr,,1974,19:156-766.
    11.Eppley, R.W. Temperature and phytoplank to growth in the sea.Fish.Bull.1972,70:1063-1085.
    12. Geider R J, O sborne B A, Raven J A. Light dependence of growth and photosynthesis in Phaeodactylum tricornlum[J]. J.Phycol,1985(21):610-619.
    13. Anning T, M acintyre H, Pratt S M, et a. Iphoto2acclimaion in the marine diatom skeletone to nemacostatum[J]. Limnol Oceanogr,2000(45):1807-1817.
    14. Thompson P. The response of growth and biochemical composition to variation in day length, temperature and irradiance in the marine diatom Thalassiosira pseudonana [J].Phcol,1999(35):1215-1223.
    15. Zhang X C, Eric B, Marianne P, et al. Effect of light fluxdensity and its spectra quality on photosynthesis and respectration in Porphyayye zoensis[J]. Phycological Reaseach,1997(45):29-37.
    16. Webster I T. Effect of wind on the distribution of phytoplankton cells in lakes[J].Limnol Oceanogr,1990,35:989-1001
    17. McNaughton S J.Relationshop among functional prosperities of California grassland[J]. Nature,1967,216:168.
    18. OECD. Eutrophication of waters, monitoring, assessment andcontrol[M].(Eds) OECD, Paris:Vollenweider R & Kerekes J.1982.
    19. Bucka.Ecology of selected planktonic algal causing water blooms[J].Acta Hydrobiol,1989,31(4):207-258.
    20. JOHN P C, DADVIDW T, JOSEPH P M. Water column nutrients and sedimentary gentrification in the Gulf of Marine[J]. Continental shelf research,1996,16(4): 489-515.
    21.金相灿.湖泊富营养化调查规范(第二版).北京:中国环境科学出版社,1990.
    22.刘建康.东湖生态学研究[M].科学出版社,北京.1991
    23.大连水产学院主编,海水化学.1986,农业出版社,116.
    24.王红兵,朱会刚.淡水浮游藻类污染及其毒性[J].上海环境科学.1995,14(8):38-41.
    25.金鼎馨,高伟生.淀山湖的保护与开发[J].自然杂志,1983,6(7):527-531.
    26.郑亚西,王关民.湖(库)水体富营养化综合防治对策[J].重庆环境科学.2001,23(4):30-33.
    27.程曦,李小平.淀山湖氮磷营养物长期变化规律及其对藻类增长影响研究[J].上海环境科学,2008,1(27):9-16.
    28.方如康.淀山湖地区生态环境保护若干问题的探讨[J].生态学报1988,8(4):363-368.
    29.阮仁良.淀山湖富营养化程度综合评价研究[J].上海水务,1992,1:13-1.
    30.朱梦杰,汤琳,吴阿娜.近10年淀山湖浮游植物群落结构特征及变化趋势探讨[J].上海环境科学,2010,29(4):153-156.
    31.由文辉.淀山湖的浮游植物及其能量生产[J].海洋湖沼通报,1995,(1):3-53.
    32.赵爱萍,刘福影,吴波等.上海淀山湖的浮游植物[J].上海师范大学学报(自然科学版),2005,34(4):70-76.
    33.王丽卿,施荣,季高华等.淀山湖浮游植物群落特征及其演替规律[J].生物多样性,2011,19(1):48-51.
    34.吴雪峰.淀山湖浮游植物增长营养物限制初步研究[D].上海:东华大学,2010.
    35.郑朔方,杨苏文,金相灿.铜绿微囊藻生长的营养动力学[J].环境科学,2005,26(2):152-156.
    36.许海,杨林章,茅华等.铜绿微囊藻、斜生栅藻生长的磷营养动力学特征[J].生态环境,2006,15(5):921-924.
    37.许海,杨林章,刘兆普.铜绿微囊藻和斜生栅藻生长的氮营养动力学特征[J].环境科学研究,2008,21(1):69-73.
    38.易文利,王国栋,刘选卫等.氮磷比例对铜绿微囊藻生长及部分生化组成的影响[J].西北林业科技大学学报(自然科学版),2005,33(6):151-154.
    39.彭近新.水质富营养化与防治[M],北京:中国环境科学出版社,1988:1-2.
    40.李夜光,李中奎,耿亚红等.富营养化水体中N、P浓度对浮游植物生长繁殖速率和生物量的影响[J].生态学报.2006,26(2):317-32
    41.金相灿,储昭升,杨波等.温度对水华微囊藻及孟氏浮游蓝丝藻生长、光合作用及浮力变化的影响[J].环境科学学报,2008,28(1):50-55 1218-1223.
    42.徐宁,陈菊芳,王朝晖等.广东大亚湾藻类水华的动力学分析(Ⅱ)—藻类水华与营养元素的关系研究[J].环境科学学报,2001,21(4):400-404.
    43.陈明曦.蓝藻水华生消机制室内模拟试验研究[D].宜昌:三峡大学,2007.
    44.马祖友.蓝藻的生长生理特征及其竞争优势研究[D].陕西:西北农林科技大学,2005.
    45.何振平,王秀云,樊晓旭等.温度和光照对塔胞藻生长的影响[J].水产科学.2007,26(4):218-221.
    46.陆开形,蒋霞敏,翟兴文.光照对雨生红球藻生长的影响[J].河北渔业,2002(6):56-62.
    47.沈东升,平原水网水体富营养化的限制因子研究[J].浙江大学学报(农业与生命 科学版),2002,28(1):94-97.
    48.严美娇,王银东,胡贤江.光照对小球藻、斜生栅藻生长速率及叶绿素含量的影响[J].安徽农学通报,2007,13(23):27-31.
    49.曹春晖,孙世春,麦康森等.光照强度对四株海洋绿藻总脂含量和脂肪酸组成的影响[J].生态学报,2010,30(9):2347-2353.
    50.石娟,潘克厚.不同培养条件对微藻总脂含量和脂肪酸组成的影响[J].海洋水产研究,2004,25(6):79-85.
    51.朱永春,蔡启铭.风场对藻类在太湖中迁移影响的动力学研究[J].湖泊科学,1997,9(2):152-158.
    52.邓健明,蔡永久,陈宇玮等.洪湖浮游植物群落结构及其与环境因子的关系[J].湖泊科学,2010,22(1):70-78.
    53.朱英,顾詠洁,王耘,徐娜娜.苏州河水文条件变化对浮游植物群落的影响[J].华东师范大学学报(自然科学版),2008,3(2):30-36.
    54.黄钰铃,纪道斌,陈明曦等.水体pH值对蓝藻水华生消的影响[J].人民长江,2008,39(2):63-65.
    55.胡章立,沈银武,刘永定等.湖水含盐量和Cu2+浓度变化对Kinneret湖浮游植物的影响[J].水生生物学报,2003,27(1):31-35.
    56.向刚,龚西旭,蒋欣琳等.Ca2+对普通念珠藻生长影响的试验[J].贵州师范大学学报(自然科学版),2003,21(2):49-51.
    57.任健,商兆堂,蒋名淑等.2007年太湖蓝藻暴发的气象条件分析[J].安徽农业科学,2008,(27):11874-11877.
    58.王全喜,曹建国,刘妍等.上海九段沙湿地自然保护区及其附近水域藻类图谱[M].北京:科学出版社,2008.
    59..周凤霞,陈剑红.淡水微型生物图谱[J].北京:化学工业出版社,2005.
    60.韩茂森.淡水浮游生物图谱[J].北京:农业出版社,1980.
    61.韩茂森,束蕴芳.中国淡水生物图谱[J].北京:海洋出版社,1995.
    62.张淼丽.如何计算显微镜下视野面积[J].断病理学杂志,2009,16(1):79.
    63.王英典,刘宁.植物生物学实验指导[M].北京:高等教育出版社,2004.
    64.张自杰,周帆.活性污泥反应动力学[M].北京:中国环境科学出版社,1989.
    65.宋永昌,王云,戚仁海.淀山湖富营养化及其防治研究[M].上海:华东师范大学出版社,1992.
    66.杨虹.淀山湖浮游植物群落时空分布于环境因子关系的研究[D].上海:华东师范大学,2010.
    67.杨漪帆,朱永青,林卫青.淀山湖蓝藻水华及其控制因子的模型研究[J].环境污染与防治,2009,31(6):58-63.
    68.吴阿娜,朱梦杰,汤琳,等.淀山湖蓝藻水华高发期叶绿素a动态及相关环境因子分析[J].湖泊科学,2011,23(1):67-72。
    69.卢嘉,陈小平,李小华.淀山湖总氮和总磷的时空模拟分布[J].环境监测管理与技术,2010,22(6):32-38.
    70.李博.生态学[M].北京:高等教育出版社,2000.
    71.刘建康.高级水生生物学[M].北京:科学出版社,1999.
    72.王丽卿,张军毅,王旭晨等.淀山湖水体叶绿素a与水质因子的多元分析[J].上海水产大学学报,2008,17(1):58-64.
    73.郑忠明,白培峰,陆开宏等.铜绿微囊藻和四尾栅藻在不同温度下的生长特性 及竞争参数计算[J].水生生物学报,2008,32(5):720-728.
    74.彭近新.水质富营养化与防治[M].北京:中国环境科学出版社,1988.
    75.崔启武.生物种群增长的营养动力学[M].北京:科学出版社,1991.
    76.刘其根,陈立侨,陈勇.千岛湖水华发生与主要环境因子的相关性分析[J].海洋湖沼通报,2007(1):117-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700