富营养化水体中几种水生动植物对藻类的控制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化是指水体中氮、磷浓度过高,超过水体自净能力,使得水体中某些藻类类群及个体数量增加、透明度下降、溶解氧降低的水质恶化过程。由于目前淡水水体的藻类过度繁殖及水质富营养化问题的突出,开展水体修复技术的研究工作显得尤为重要。本文针对城市居住小区的景观水体面积小、自净能力差的缺点,以生态模拟的方法,选用适宜的水生动、植物种类,用以控制水体中浮游藻类生物量和营养盐含量,达到净化水质的目的。
     本研究通过对自然条件下水体中浮游生物种类、数量及优势类群的变化情况进行全年监测,研究富营养化水体的形成与水温、溶解氧、pH值、氮磷营养盐等环境因子的相关关系,分析各因子对藻类繁殖过程的影响;并在春、夏季节放养不同密度的滤食性鳙鱼(Aristichthys nobilis)对模拟水体中藻类的取食作用,结合放养过程中生态因子的变化情况探求鳙鱼合理的单种放养密度,以防止水华过度爆发;沉水植物具有很强的吸收功能,植物系统能够有效富集并降解水体中高浓度的营养物质,从而抑制浮游植物生长,提高水体透明度。本研究在藻类密度较高的水体中移栽沉水植物,比较相同生物量的黑藻(Hydrilla verticillata)、苦草(Vallisneria natans)、竹叶眼子菜(Potamogeton malaianus)、微齿眼子菜(Potamogeton maackianus)及菹草(Potamogeton crispus)对水体氮磷的吸收作用及对藻类生物量的影响强度。
     1. 2008年11月至2009年10月,通过对本地居住小区景观水体的水样监测,共检出藻类8门,55属,其中蓝藻、绿藻以及硅藻是该水体的三大主要门类,占藻类总属数的76.2%;其次,通过对其全年藻类组成及数量来看,浮游植物主要属之间的差异较大。
     2.本地居住小区景观水体水样的各项生化指标变化具有明显的周期性。总氮浓度的月平均变化范围在0.21-6.78mg/L之间,总磷含量变化范围为0.093-0.547mg/L。与浮游植物生物量(Ta)相关性较大的主要因子是总磷含量(TP),回归方程为:Ta=-123.304+925.208×TP(R=0.654),与总氮相关关系不明显。pH值与水温,溶解氧与pH值及总氮含量等环境因子间也存在显著的相关性。
     3.在相同条件下放养不同密度的鳙鱼对水体藻类生物量的控制效果不同。放养密度为0.29 g/L时,藻类随时间的逐渐下降,并在实验后期维持在较低的生物量水平;而放养密度在0.57g/L和0.86g/L时,藻类的生物量在放养后期均会出现不同程度的增长。因此将鳙鱼的放养密度控制在0.29-0.57g/L的水平,将会对藻类的控制起到较好的作用。
     4.从鱼体重与其他因子的相关关系分析结果来看,鱼体重与藻类生物量、总氮、总磷各项指标都呈极显著的正相关。单因素方差分析结果表明,密度为0.29g/L的鳙鱼对藻类的取食作用(p=0.000)和对水质总氮、总磷含量(p=0.006,p=0.000)影响最为显著。
     5.相同实验条件下通过对五种沉水植物去除营养盐的效率比较可知,总氮浓度的去除率大小顺序为:竹叶眼子菜>黑藻>苦草>微齿眼子菜>菹草;对总磷的吸收率大小依次为:竹叶眼子菜>黑藻>微齿眼子菜>苦草>菹草。
     6.通过与对照组比较可知,竹叶眼子菜在净化水质及控制藻类方面效果最佳,苦草、微齿眼子菜及菹草净化作用次之,黑藻对水体总磷及浮游植物的去除作用均为极显著(p=0.000,p=0.010),而对总氮含量的作用影响不明显(p=0.209)。
Eutrophication is the process of the deterioration of water quality, and that is algal blooms, lower transparency and dissolved oxygen due to the excessive concentration of nitrogen and phosphorus in urban water body. Because of the prominent problem, remediation technology of water environment becomes more important. Small urban landscape water bodies have the shortcoming of small and poor self-purification ability, so under simulated conditions we used two means to control algae biomass and nutrient concentrations in order to purification water by aquatic plants and animal.
     Using the annual plankton population changes of natural water as contrast, we studied the relationship of water temperature, dissolved oxygen, pH, Total Nitrogen, Total Phosphorus and the other environmental factors, and analyzed the role of every studied environmental factor in the process of algae growth. In the spring and summer, stocking Aristichthys nobilis can effectively prevent from algal blooms. By feeding different densities of the planktivore, we studied it fed on planktonic algae in the simulated water, and combined with the result of the changes of the environmental factor to investigate a reasonable of Aristichthys nobilis's single-species stocking density.
     As we known, submerged plants having the ability of absorption, the plant systems can effectively enriched nutrients and then degraded high concentration of nutrients in water. Thus, submerged plants can inhibit the growth of phytoplankton and increase water transparency. In this study, we transplanted submerged plants into the water of high algae density, compared the same biomass of Hydrilla verticillata, Vallisneria natans, Potamogeton malaianus, Potamogeton maackianus, Potamogeton crispus's absorption of nitrogen, phosphorus nutrients, and its functional intensity on algae biomass.
     1. We evaluated the present situation of the nature water quality, and 8 phyla,55 genera of phytoplankton were detected from November 2008 to October 2009. Mostly what we had surveyed were Chlorophyta, Cyanophyta and Bacillariophyta, accounted for 76.2% at genera level. Then the analysis revealed the annual of population composition and species number of phytoplankton had a massive difference.
     2. All the biochemical indicators of the nature water had a remarkable periodicity. Total nitrogen monthly average ranged 0.21-6.78 mg/L, and total phosphorus ranged 0.093-0.547 mg/L. In addition, total algae biomass (Ta) and total phosphorus (TP) had remarkable correlation, and the regression equation:Ta=-123.304+925.208×TP (R=0.654). The relativity was not distinct between phytoplankton biomass and total nitrogen. Between other environmental factors also existed closer correlativity.
     3. The different controlling effect when the stocking density of Aristichthys nobilis was different, although the condition was the same. The algae decreased with time accumulating when the fish density was 0.29g/L, and kept the lower biomass in the later period. However, when the density of fish was 0.57g/L and 0.86g/L, the algae biomass would reincrease in the later period. So the density of Aristichthys nobilis between 0.29-0.57g/L could especially better for managing algae.
     4. Between the body weight of Aristichthys nobilis and biomass of algae, total nitrogen, total phosphorus showed extremely positive correlation. There was the most significant effection on removing algae and total nitrogen, total phosphorus when stocking density was approximately 0.29g/L by ANOVA analysis.
     5. Compared the removal efficiency on nutrients between these five submerged plants under the same experiment condition, knew that the total nitrogen sequence was Potamogeton malaianus> Hydrilla verticillata> Vallisneria natans> Potamogeton maackianus> Potamogeton crispus, and the total phosphorus was Potamogeton malaianus> Hydrilla verticillata>Potamogeton maackianus> Vallisneria natans> Potamogeton crispus.
     6. Compared with control group, it was showed that Potamogeton malaianus had the best effect on purifying the water quality and controlling the biomass of algae, Vallisneria natans and Potamogeton maackianus, Potamogeton crispus had taken the second place. Hydrilla verticillata had the significant removal effect on total phosphorus (p=0.000) and phytoplankton (p=0.010), except total nitrogen (p=0.209).
引文
1.金相灿.中国湖泊环境[M].北京:海洋出版社.1995.
    2. Jorgensen. Application of ecology in environmental management[M]. Boca Raton, FL, USA:CRC Press.1983.
    3. Nixon SW. Coastal marine eutrophication:A definition, social causes, and future concerns[J]. Ophelia,1995,41:199-219.
    4.李佐荣,鲍素敏,黄祥明.水体的富营养化及其防治[J].安徽农学通报,2007,13(10):67-68.
    5.马井泉,周怀东,董哲仁.我国应用生态技术修复富营养化湖泊的研究进展[J].中国水利水电科学研究院学报,2005,3(3):209-215.
    6. 马蕊,林英,牛翠娟.淡水水域富营养化及其治理[J].生物学通报,2003,38(11):5-9.
    7. 中国水资源公报[Z].北京:中华人民共和国水利部.2000.
    8.秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-202.
    9. 范成新,季江,陈荷生.太湖富营养化现状、趋势及其综合整治对策[J].上海环境科学,1997,16(8):4-7,17.
    10.郭沛涌.杭州西湖水体富营养化的控制[J].环境保护科学,2005,31(2):9-11.
    11.金相灿.湖泊和湿地水环境生态修复技术与管理指南[M].北京:科学出版社.2007.
    12.曹秀梅.湖泊富营养化的防治对策研究[J].研究与探讨,2006,10:54-55,58.
    13.李文朝.五里湖富营养化过程中水生生物及生态环境的演变[J].湖泊科学,1996,8(S):38-44.
    14.吴国平.浮游藻类与水体富营养化[J].生物学教学,2006,31(11):13.
    15.唐迎洲,阮晓红.城区河道底泥修复技术探讨[J].北方环境,2003,28(2):39-41.
    16. Steinman AD, Mclntire CD. Effects of current velocity and light energy on the st-ructure of periphyton assemblage in laboratory streams[J]. Journal of Phycology, 1986,22(3):352-361.
    17.蔡秀萍,吴启堂.湖泊富营养化治理[J].水利天地,2006,5:25-27.
    18.孙文浩,俞子文,余叔文.城市富营养化水域的生物治理和凤眼莲抑制藻类生长的机 理[J].环境科学学报,1989,9(2):188-195.
    19.王凌云.景观水体富营养化过程的微宇宙模拟及其修复研究[D].哈尔滨:哈尔滨工业大学,2006.
    20.陈少莲,刘肖芳,华俐.鲢、鳙在东湖生态系统的氮、磷循环中的作用[J].水生生物学报,1991,15(1):8-25.
    21.刘俊利,熊邦喜,王基松,等.鲢、鳙对养殖水体的生态功能评价[J].水利渔业,2008,28(4):8-10.
    22.谷孝鸿,刘桂英.滤食性鲢鳙鱼对池塘浮游生物的影响[J].农村生态环境,1996,12(1):6-10,41.
    23.赵玉宝.鲤鱼种和鲢鳙对池塘浮游生物的影响[J].生态学报,1993,13(4):348-354.
    24.曹廷龙,陈武.放养鲢鳙鱼净化城市生活污水技术[J].水产养殖,2007,28(1):38-39.
    25.王宇庭,赵文,张久国,等.根据渔获物评价鲢、鳙放养比例的方法及应用[J].大连水产学院学报,2001,16(2):99-105.
    26.史为良,金文洪,王东强,等.放养鲢鳙对水体富营养化的影响[J].大连水产学院学报,1989,4(3-4):11-24.
    27.刘健康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践[J].生态科学,2003,22(3):193-196.
    28.王海珍,刘永定,肖邦定,等.围隔中鲢和菹草控藻效果及其生态学意义[J].水生生物学报,2004,28(2):141-146.
    29. Domaizon I, Devaux J. Nouvelle approche des biomanipulations des reseaux trophiques aquatiques. Introduction d'un Poisson phytoplanctonophage, la carpe argentee (Hypophthalmichthys molitrix)[J]. L'Annee Biologique,1999,38(2):91-106.
    30.姜希泉.富营养型水库网箱养殖鲢鳙技术[J].水利渔业,2006,26(2):49-50.
    3].陈少莲,胡传林,张水元.鲢、鳙在天然条件下的摄食强度(Ⅰ)鲢、鳙鱼种在夏季的摄食强度[J].水生生物学报,1986,10(3):277-284.
    32. Xie Ping. Gut contents of silver carp, Hypophthalmichthys molitrix, and the disruption of a centric diatom, Cyclotella, on passage through the esophagus and intestine[J]. Aquaculture,1999,180(3-4):295-305.
    33.乔宁宁,李铭红,王宇,等.浙西南地区沉水植物的区系分布与物种多样性[J].生态科 学,2009,28(5):404-408.
    34.陈晓.利用浮萍进行富营养化修复及控藻研究[D].哈尔滨:哈尔滨工业大学,2006.
    35. Takamura N, Kadono Y, Fukushima M, et al. Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes[J]. Ecological Research,2003, 18:381-395.
    36.方云英.不同水生植物吸收去除水体氮效果及机理研究[D].杭州:浙江大学,2006.
    37.何池全,叶居新.石菖蒲净化富营养水体的研究[J].南昌大学学报,1999,23(1):73-76.
    38. Fraser LH, Carty SM, Steer D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms[J]. Bioresource Technology,2004,94(2):185-192.
    39.黄亚.植物修复富营养化及有机农药污染水体技术研究[D].上海:同济大学,2006.
    40.包先明,陈开宁,范成新.浮叶植物重建对富营养化湖泊氮磷营养水平的影响[J].生态环境,2005,14(6):807-811.
    41. Dhote S, Dixit S. Water quality improvement through macrophytes-a review[J]. Environmental Monitoring and Assessment,2009,152(1-4):149-153.
    42.刘玉超,于谨磊,陈亮,等.浅水富营养化湖泊生态修复过程中大型沉水植物群落结构变化以及对水质影响[J].生态科学,2008,27(5):376-379.
    43. Sole J, Estrada M, Garcia-Ladona E. Biological control of harmful algal blooms:A modelling study[J]. Journal of Marine Systems,2006,61:165-179.
    44. Fistarol GO, Legrand C, Selander E, et al. Allelopathy in Alexandrium spp.:effect on a natural plankton community and on algal monocultures[J]. Aquatic Microbial Ecology, 2004,35:45-56.
    45.鲜启鸣,陈海东,邹慧仙,等.四种沉水植物的克藻效应[J].湖泊科学,2005,17(1):75-80.
    46.施丽丽,刘听雁,刘瑶,等.黄花水龙克藻效应的研究及其野外应用[J].南京大学学报(自然科学版),2006,42(5):499-505.
    47.王卫红,季民,张楠,等.川蔓藻水浸提液的克藻效应与机理[J].天津大学学报,2006,39(12):1417-1421.
    48.孙文浩,俞子文,余叔文.水葫芦对藻类的克制效应[J].植物生理学报,1988,14(3):294-300.
    49.叶居新,何池全,陈少风.石菖蒲的克藻效应[J].植物生态学报,1999,23(4):379-384.
    50.唐萍,吴国荣,陆长梅,等.太湖水域几种高等水生植物的克藻效应[J].农村生态环境,2001,17(3):42-44,47.
    51.俞子文,孙文浩,郭克勤,等.几种高等水生植物的克藻效应[J].水生生物学报,1992,16(1):1-7.
    52. Erhard D, Gross EM. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton[J]. Aquatic botany,2006,85(3):203-211.
    53. Mulderij G, Van Donk E, Roelofs JGM. Differential sensitivity of green algae to allelopathic substances from Chara[J]. Hydrobiologia,2003,491(1-3):261-271.
    54. Mulderij G, Mooij WM, Smolders AJP, et al. Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides[J]. Aquatic Botany,2005,82:284-296.
    55. Mulderij G, Smolders AJP, Van Donk E. Allelopathic effect of the aquatic macrophyte, Stratiotes aloides, on natural phytoplankton[J]. Freshwater Biology,2006,51:554-561.
    56. Wium-Andersen S, Anthoni U, Christophersen C, et al. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes(Charales)[J]. Oikos, 1982,39:187-190.
    57. Pflugmacher S. Possible allelopathic effects of Cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems[J]. Environmental toxicology,2002,17:407-413.
    58. Van Donk E, van de Bund WJ. Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities:allelopathy versus other mechanisms[J]. Aquatic Botany,2002,72(3-4):261-274.
    59. Legrand C, Rengefors K, Fistarol GO, et al. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects[J]. Phycologia,2003,42(4):406-419.
    60.石苗,邹莉,刘新尧,等.水华杀藻微生物的分离与分子生物学鉴定[J].水生生物学报,2005,29(5):587-590.
    61.纪振,尹业新,单爱琴,等.浅论微生物技术控藻[J].资源开发与市场,2007,23(2):138-140,104.
    62.唐晨.放线菌AN02溶藻活性物质的初探及其改性剂对铜绿微囊藻的控制能力研究[D].武汉:华中师范大学,2009.
    63.肖绍祥,廖国新,周增香.北京动物园水体藻华成因及人造生物膜控藻效果[J].污染防治技术,2008,21(2):70-73.
    64.唐汇娟,谢平,刘丽,等.武汉东湖浮游植物群落结构的时空变化与环境因子的关系[J].中山大学学报(自然科学版),2008,47(3):100-104.
    65.汤宏波,胡圣,胡征宇,等.武汉东湖甲藻水华与环境因子的关系[J].湖泊科学,2007,19(6):632-636.
    66.况琪军,夏宜(?).武汉东湖主要湖区的藻类与营养型评价[J].湖泊科学,1995,7(4):351-356.
    67.章宗涉.武汉东湖湖水的藻类生长潜力(AGP)测试[J].环境科学学报,1990,10(4):445-452.
    68.崔毅,陈碧鹃,马绍赛.乳山湾浮游植物与环境因子的相关关系研究[J].应用生态学报,2000,11(6):935-938.
    69.朱根海,许卫忆,朱德第,等.长江口赤潮高发区浮游植物与水动力环境因子的分布[J].应用生态学报,2003,14(7):1135-1139.
    70. Reynolds CS, Irish AE, Elliott JA. The ecological basis for simulating phytoplankton responses to environmental change (PROTECH)[J]. Ecological Modelling,2001, 140(3):271-291.
    71. Fauchot J, Levasseur M, Roy S, et al. Environmental factors controlling Alexandrium tamarense (Dinophyceae) growth rate during a red tide event in the St. Lawrence Estuary (Canada)[J]. Journal of Phycology,2005,41(2):263-272.
    72.刘东艳,孙军,钱树本.胶州湾浮游植物研究Ⅱ环境因子对浮游植物群落结构变化的影响[J].青岛海洋大学学报,2002,32(3):415-421.
    73.赵颖.水文、气象因子对藻类影响作用的试验研究[D].南京:河海大学,2006.
    74.柴小颖.光照和温度对三峡库区典型水华藻类生长的影响研究[D].重庆:重庆大学,2009.
    75.赵颖,张永春.流速与温度的交互作用对铜绿微囊藻生长的影响[J].江苏环境科技,2008,21(1):23-26.
    76.李一平.太湖水体透明度影响因子实验及模型研究[D].南京:河海大学,2006.
    77.王云华.杞麓湖水体藻量和透明度变化分析[J].云南环境科学,2002,21(2):49-50.
    78.张澎浪,孙承军.地表水体中藻类的生长对pH值及溶解氧含量的影响[J].中国环境监测,2004,20(4):49-50.
    79.刘春光,金相灿,孙凌.pH值对淡水藻类生长和种类变化的影响[J].农业环境科学学报,2005,24(2):294-298.
    80.黄钰铃,纪道斌,陈明曦,等.水体pH值对蓝藻水华生消的影响[J].人民长江,2008,39(2):63-65.
    81.莫美仙,张世涛,叶许春,等.云南高原湖泊滇池和星云湖pH值特征及其影响因素分析[J].农业环境科学学报,2007,26(B03):269-273.
    82.游亮,崔莉风,刘载文,等.藻类生长过程中DO、pH与叶绿素相关性分析[J].环境科学与技术,2007,30(9):42-44.
    83.朱伟,万蕾,赵联芳.不同温度和营养盐质量浓度条件下藻类的种间竞争规律[J].生态环境,2008,17(1):6-11.
    84.万蕾,朱伟,赵联芳.氮磷对微囊藻和栅藻生长及竞争的影响[J].环境科学,2007,28(6):1230-1235.
    85.高玉荣,黄玉瑶,曹宏,等.氮磷对污水净化中藻类群落结构的影响[J].生态学报,1994,14(1):68-74.
    86.高玉荣,黄玉瑶,曹宏,等.氮磷对污水净化中藻类叶绿素含量的影响[J].水生生物学报,1995,19(4):289-298.
    87.陈琳,王寿兵,李娟娟,等.自来水中添加N,P后的浮游藻类生长试验[J].复旦学报(自然科学版),2007,46(3):344-347,355.
    88.刘东艳,孙军,陈宗涛,等.不同氮磷比对中肋骨条藻生长特征的影响[J].海洋湖沼通报,2002,2:39-44.
    89.郭迎庆.城市景观水体的污染控制和修复技术[J].环境科学与技术,2005,28(B06):148-150.
    90.黄廷林,宋李桐,钟建红,等.人工浮床净化城市景观水体的试验研究[J].西安建筑科技大学学报(自然科学版),2007,39(1):30-33.
    91.李利强,张建波,田琪.洞庭湖南嘴水域浮游藻类及与水质关系的研究[J].甘肃环境研究与监测,2002,15(3):158-161.
    92.陈伟民,黄祥飞,周万平,等.湖泊生态系统观测方法[M].北京:中国环境科学出版社.2005.
    93.胡鸿钧,李尧英,魏印心,等.中国淡水藻类[M].上海:上海科学技术出版社,1979.
    94.赵文.水生生物学[M].北京:中国农业出版社,2005.
    95.冯玉国.湖泊富营养化灰色评价模型及其应用[J].系统工程理论与实践,1996,18(8):43-47.
    96.廖祖荷,周振明,康彩艳,等.应用浮游藻类评价桂湖水质的研究[J].湖南师范大学自然科学报,2005,28(4):70-74.
    97.金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990.
    98.段婷婷.水源水中藻类监测及水质变化原因分析[D].西安:西安建筑科技大学,2009.
    99.曲克明,陈碧鹃.氮磷营养盐影响海水浮游硅藻种群组成的初步研究[J].应用生态学报,2000,11(3):445-448.
    100.林碧琴,王起华.小生境对硅藻群落组成的影响[J].植物学报(英文版),1998,40(3):277-281.
    101.徐大勇,徐祖信,尹海龙,等.实验室条件下淡水藻类生长影响因素研究[J].供水技术,2008,2(4):4-7.
    102.王志红,崔福义,安全,等.PH在藻类“水华”现象中的影响探讨[J].环境污染与防治,2004,26(2):158.
    103.胡川,康升云.蓝藻发生与控制方法初探[J].江西水产科技,2001,4:35-37.
    104.况琪军,夏宜铮.水体酸化对藻类影响的初步研究[J].环境科学学报,1991,11(4):397-392.
    105.许海,刘兆普,袁兰,等.pH对几种淡水藻类生长的影响[J].环境科学与技术,2009,32(1):27-30.
    106.聂国朝.襄阳护城河水体中溶解氧含量研究[J].水土保持研究,2004,11(1):60-62,112.
    107.刘学铭,梁世中.不同氮水平下异养小球藻生物量和叶绿素含量的变化[J].植物生理学通讯,1999,35(3):198-201.
    108.胡晗华,石岩峻,丛威,等.不同氮磷水平下中肋骨条藻对营养盐的吸收及光和特性[J].应用与环境生物学报,2004,10(6):735-739.
    109.李创宇.于桥水库沉积物中营养盐释放特性试验研究[D].西安:西安建筑科技大学,
    110.Lazzaro X, Drenner RW, Stein RA. Planktivores and plankton dynamics:effects of fish biomass and planktivore type[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992,49(7):1466-1473.
    111.Crisman TL, Beaver JR. Applicability of planktonic biomanipulation for managing eutrophication in the subtrophics[J]. Hydrobiologia,1990,200/201:177-185.
    112.Ramcharan CW, France RL, McQueen DJ. Multiple effects of planktivorous fish on algae through a pelagic trophic cascade[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1996,53:2819-2828.
    113.Drenner RW, Threlkeld ST, McCracken MD. Experimental analysis of direct and indirect effects of an omnivorous filter-feeding clupeid on plankton community structure[J]. Canadian Journal of Fisheries and Aquatic Sciences,1986,43:1935-1945.
    114.Threlkeld ST. Plantivory and planktivore biomass effects on zooplankton, phytoplankton and the trophic cascade[J]. Limnology and Oceanography,1988,33:1362-1375.
    115.李琪,李德尚,熊邦喜,等.放养鲢鱼(Hypophthalmichys mdlitrix)对水库围隔浮游生物群落的影响[J].生态学报,1993,13(1):30-37.
    116.李思发,蔡正纬,陆伟民,等.长江水系鲢鱼和珠江水系鲢鱼的生长差异[J].水产学报,1984,8(3):211-218.
    117.鲁翠云,孙效文,梁利群.鳙鱼微卫星分子标记的筛选[J].中国水产科学,2005,12(2):192-196.
    118.于波.鱼体消毒法[J].畜牧兽医科技信息,2000,4:13.
    119.王洪礼,冯剑丰,孙景.高等动物捕食对赤潮藻类模型非线性动力学行为的影响[J].海洋环境科学,2004,23(1):19-21.
    120.谭镇,钟萍,应文晔,等.惠州西湖底泥中氮磷特征的初步研究[J].生态科学,2005,24(4):318-321.
    121.祝云龙.滩塘水体营养盐的动态变化及其对浮游植物和鱼生长的影响[D].南京:南京农业大学,2004.
    122.李传红,谢贻发,刘正文.鱼类对浅水湖泊生态系统及其富营养化的影响[J].安徽农业科学,2007,36(9):3679-3681.
    123.马鸿媚.氮磷营养盐对养殖水体的影响[J].福建环境,2001,18(5):21-22.
    124.张平,沈志良.营养盐限制的水域性特征[J].海洋科学,2001,25(6):16-19.
    125.Domaizon I, Devaux J. Impact of moderate silver carp biomass gradient on zooplankton communities in a eutrophic reservoir. Consequences for the use of silver carp in biomanipulation[J]. Comptes Rendus de 1'Academie des Sciences,1999,322(7):621-628.
    126.管卫兵,杨红.我国内陆水域增殖渔业发展存在的问题[J].海洋水产研究,2005,26(3):80-85.
    127.汪松林,刘安文.鲢鱼放养密度对浮游生物及初级产量的影响[J].水产科学,1986,5(3):11-14.
    128.安克敬.水体中溶解氧的含量变化及相关问题[J].生物学教学,2005,30(6):70-71.
    129.雷泽湘,谢贻发,徐德兰,等.大型水生植物对富营养化湖水净化效果的试验研究[J].安徽农业科学,2006,34(3):553-554.
    130.马剑敏,严国安,罗岳平,等.武汉东湖受控生态系统中水生植被恢复结构优化及水质动态[J].湖泊科学,1997,9(4):359-363.
    131.Clayton J, Edwards T. Aquatic plants as environmental indicators of ecological condition in New Zealand lakes[J]. Hydrobiologia,2006,570(1):147-151.
    132.尚士友,杜健民,李旭英,等.草型湖泊沉水植物收割工程对生态改善的试验[J].农业工程学报,2003,19(6):95-100.
    133.乔建荣,任长久,陈艳卿,等.常见沉水植物对草海水体总磷去除速率的研究[J].北京大学学报(自然科学版),1996,32(6):785-789.
    134.李文朝.富营养水体中常绿水生植被组建及净化效果研究[J].中国环境科学,1997,17(1):53-57.
    135.吴振斌,邱东茹,贺锋,等.沉水植物重建对富营养水体氮磷营养水平的影响[J].应用生态学报,2003,14(8):1351-1353.
    136.马凯,蔡庆华,谢志才,等.沉水植物分布格局对湖泊水环境N、P因子影响[J].水生生物学报,2003,27(3):232-236.
    137.林连升,缪为民,袁新华,等.三种沉水植物对富营养化池塘水质的改良效果[J].金陵科技学院学报,2006,22(2):69-74.
    138.高镜清,熊治廷,张维昊,等.常见沉水植物对东湖重度富营养化水体磷的去除效果[J].长江流域资源与环境,2007,16(6):796-800.
    139.丁玲.沉水植物修复受污水体效能的研究[D].苏州:苏州科技学院,2007.
    140.Hofstra DE, Clayton J, Green JD, et al.. Competitive performance of Hydrilla verticillata in New Zealand[J]. Aquatic Botany,1999,63(3-4):305-324.
    141.Sand-jensen K. Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams[J]. Freshwater Biology,1998,39(4):663-679.
    142.吴晓辉.常见眼子菜科沉水植物对浮游藻类的化感作用研究[D].武汉:中国科学院水生生物研究所,2005.
    143.Jasser I. The influence of macrophytes on a phytoplankton community in experimental conditions[J]. Hydrobiologia,1995,306(1):21-32.
    144.李俊清,刘传照,姚成滨.林冠下红松幼树叶绿素含量与生长关系的研究[J].东北林业大学学报,1990,18(2):21-26.
    145.张新胜,郭从俭,张万钦,等.楸树叶绿素含量与生长相关研究[J].河南林业科技,1996,1:22-23.
    146.吴月燕,吴秋峰,曾华军.富营养化水体中水生植物的生态和生理生化效应[J].浙江大学学报(农业与生命科学版),2009,35(3):337-344.
    147.孔祥生,易现峰.植物生理学实验技术[M].北京:中国农业出版社.2008.
    148.崔心红,熊秉红,蒲云海,等.5种沉水植物无性繁殖和定居能力的比较研究[J].植物生态学报,2000,24(4):502-505.
    149.王立新,吴国荣,王建安,等.黑藻(Hydrilla verticillata)对铜绿微囊藻(Microcystis aeruginosa)抑制作用[J].湖泊科学,2004,16(4):337-342.
    150.任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116.
    151.王珺,顾宇飞,朱增银,等.不同营养状态下金鱼藻的生理响应[J].应用生态学报,2005,16(2):337-340.
    152.童昌华,杨肖娥,濮培民.富营养化水体的水生植物净化试验研究[J].应用生态学报,2004,15(8):1447-1450.
    153.陈永根,刘伟龙,韩红娟,等.太湖水体叶绿素a含量与氮磷浓度的关系[J].生态学杂志,2007,26(12):2062-2068.
    154.白峰青,郑丙辉,田自强.水生植物在水污染控制中的生态效应[J].环境科学与技术,2004,27(4):99-100,110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700