北京凉水河(通州段)水环境污染特征及多环芳烃萘的吸附解吸研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京市地处华北平原西北部,属温带半干旱湿润性季风气候,城市长期缺水的现实让污水灌溉成为北京弥补农业用水不足的重要措施。凉水河作为北京市第二大排污河和南城主要污灌渠,大量未经处理的工业废水和生活污水直接排入河道,造成河水恶臭,水质严重恶化。其中所含的有毒有机物质可能随灌溉进入农田中,不仅污染土壤环境,还会通过水-土壤-植物-动物等途径进入食物链危害人体的生命和健康。
     因此,针对凉水河通州河段水环境,采用野外GPS定点采集环境样品,以通州段水、悬浮物和沉积物中典型有机污染物种类、含量和分布特征为切入点,探明凉水河(通州段)水体污染现状、有机污染物的分布特点和迁移转化规律,评价河流隐形污染源对水环境的影响,以及凉水河作为农田灌溉用水的安全性。同时,选用多环芳烃萘作为代表污染物,考察沉积物浸出液对污染物在沉积物上吸附-解吸行为特征的影响。
     结果表明,凉水河(通州段)所有监测断面水体中COD的含量超过了地表水V类标准,挥发酚的含量符合V类标准,二者的浓度均满足农田灌溉水质标准的要求。水中氮、磷营养盐的浓度亦超过了V类标准,采用修正后的卡尔森营养状态指数(TSI)评价凉水河通州段水体营养程度,发现所有监测断面的水体均处于富营养化状态;环境样品中共检测出苯系物、酚类、多环芳烃类、酯类、烷烃类、含氮杂环类和含氧杂环类7大类有机污染物。选择多环芳烃、酚类、苯系物和酞酸酯类物质进行定量分析,发现水体中的主要组成物质为酚类和苯系物,悬浮物和沉积物中以多环芳烃和苯系物为主。这4类有机污染物在悬浮物中的含量最高,平均浓度分别为72.70、3.94、12.45和3.00 mg·kg~(-1);传统以背景电解质溶液作为解吸介质来研究有机污染物解吸行为的方法会导致解吸体系的TOC值比吸附平衡体系减少74.68%-85.01%,这种吸附-解吸水化学条件的差异会增强污染物在沉积物上的滞后性,具体表现为萘在沉积物L和D浸出液中的平均解吸量相比其在背景电解质溶液中分别增加了3.14和2.40 mg·kg~(-1)(Ce=0.2 mg·L~(-1)),平均解吸滞后系数由在背景电解质溶液中的0.04和0.135降低至沉积物浸出液中的0.012和0.072,滞后现象显著变弱。此现象表明,在实际天然水体环境中,疏水性有机污染物在沉积物上具有更强的解吸能力,能够更容易的转移至水环境中,造成水体的二次污染,增加水体污染控制和治理的难度,从而威胁水生生物和人体健康安全。
Beijing is located in the northwest of north China plain and characterized by temperate semi-arid-humid monsoon climate. The lack of nature resource and the scale of urban development lead to the situation that sewage irrigation has been an important measure to solve the problem of agriculture water shortage in Beijing. Liangshui River is the second drainage river of Beijing, and it is also the main sewage-irrigated canal in Tongzhou area. The discharge of industrial wastewater and domestic sewage deteriorate the water environment, and organic pollutants can transfer into soil through sewage irrigation, to plant and/or animals subsequently, ultimately hazard human health.
     Samples were taken separately along the Liangshui River of Tongzhou area (Beijing) to investigate the water quality and study the transport, distribution and characteristics of organic contaminants in water, suspended solids and sediments, analyse the effects of invisible pollution on water environment and ecosystem, and estimate the security of using sewage for irrigation. At the same time, blank electrolyte was replaced with sediment extract to guarantee the aqueous chemical consistency. Batch equilibrium experiments were carried out to investigate the sorption and desorption behavior of naphthalene on and from two representative sediments (denoted as L and D, respectively), found out the significance of aqueous chemistry consistency on sorption and desorption process.
     The results indicated that the average concentration of COD exceeded the values stipulated for water of Class V in all sections, while the phenols concentrations in water were below Class V , both of them met Standards for irrigation water quality. The NH3-N, TN, TP concentrations exceeded the values stipulated for water of Class V too, trophic state index showed that the Liangshui River in Tongzhou area was in serious eutrophication condition; There were 7 kinds of organic compounds detected in Liangshui River, including PAHs, benzene series, esters, phenols, alkanes,nitrogenous heterocyclic and oxygen heterocyclic. Choose PAHs, phenols, phthalic acid esters, benzene series as target pollutants to conduct quatitative analysis. It is found that phenols and benzene series were the dominant pollutants in water, but the suspend solids and sediments contained more PAHs and benzene series. The average concentration of these pollutants in suspended solids were 72.70、3.94、12.45 and 3.00 mg·kg~(-1), more than that in the water and sediments; Sorption and desorption of naphthalene from sediments exhibit obvious hysteresis as described by the hysteresis index (HI). Traditional desorption method decreased the TOC by 74.68%-85.01% as compared with extracts. Greater hysteresis exists in blank electrolyte than that in the sediment extracts, as indicated by the larger HI values of 0.04 and 0.135 in blank electrolyte than those of 0.012 and 0.072 in the sediment extracts for the sediment L and D respectively. Meanwhile, the average concentration of TOC in the extracts increases 3.14 and 2.40 mg·kg~(-1) more than in blank electrolyte. This research demonstrates that the average desorption of naphthalene increased significantly in sediment extract, and the results would be more accordant with the condition of nature water.
引文
[1] Larry K., William T.. ES&T Special Report: Priority pollutants: I-a perspective view[J].Environ. Sci. Technol., 1979, 13(4): 416-423
    [2]周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单[J].中国环境监测, 1990, 6(4):1-3
    [3]周文敏,傅德黔.中国水中优先控制污染物黑名单的确定[J].环境科学研究, 1991,4(6): 9-12
    [4]苏丽敏,袁星.持久性有机污染物(POPs)及其生态毒性的研究现状与展望[J].重庆环境科学, 2003, 25(9): 62-64
    [5] Lahvis G. P., Wells R.S., Gasper D., et al. In vitro lymphocyte response of bottlenosedolphins (torsions truncates): mutagen induced proliferation[J]. Marine Environmental Research, 1993, 35: 115-119
    [6] Brouwer A., Reijnders P. H., Koeman J. H.. Polychlorinated biphenyl (PCB)-contaminated fish induces vitamin A and thyroid hormone deficiency in the common seal (Phoca vitulina)[J]. Aquatic Toxicology, 1989, 15: 99-106
    [7]金相灿.沉积物污染化学[M].北京:中国环境科学出版社. 1992
    [8] Brian T. M., Kai U., Steven J. E.. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces[J]. Environ. Sci. Technol., 1997, 31: 1079-1086
    [9] Moreay C., Mouvet C.. Sorption and desorption of atrazine, deethylatrazine and hydroxyatrazine by soil and aquifer solids[J]. J.Environ, Qual., 1997, 26: 416-424
    [10] Xu D., Xu Z., Zhu S., et al. Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples[J]. Journal of Colloid and Interface Science, 2005, 285: 27-32
    [11] Daeyoung J., Thomas M. Y.. The Influence of Natural Organic Matter Rigidity on the Sorption, Desorption, and Competitive Displacement Rates of 1, 2-Dichlorobenzene[J]. Environ. Sci. Technol., 2005, 39: 7956-7963
    [12]贺宝根,周乃晟,袁宣民.底泥对合流的二次污染浅析[J].环境污染与防治, 1999, 21(3): 41-43
    [13]陈静生,周加义.中国水环境重金属研究[M].北京:中国环境科学出版社, 1992
    [14]姜建国,沈摄芬.截污工程完成后武汉东湖自然净化速率探讨[J].长江流域资源与环境, 2001, 10(5): 460-464
    [15]金相灿,刘树坤,章宗涉,等.中国湖泊环境(第一册)[M].北京:海洋出版社, 1995: 248-249
    [16] Swartz R. C., Deben W. A., Sereu K. A., et al. Sediment toxicity and distribution of amphipods in Commencement Bay, Washington, U.S.A.[J]. Marine Pollution Bulletin, 1982, 13: 359-364
    [17] Eisler R.. Elecroplating wastes in marine environments. A case history of Quonset Point, Rhode Island. In: Handbook of ecotoxicology, ed. DJ Hoffmann, BA Rattner, GA Burton, Jr., and J. Cairns, Jr., pp 609-630. Lewis Publishers, Boca Raton, Florida, 1995
    [18] Pitt R. E.. Effeets of urban runoff on aquatic biota. In: Handbook of Ecotoxicology, ed.D.J. Hoffillann, B.A. Rattner, G.A. Burton, Jr., and J. Cairns, Jr., 609-630. Lewis Publishers, Boca Raton, Florida., 1995
    [19] US EPA. An overview of sediment quality in the United States[EB].Office of Water Regulations and Standards, 1987
    [20] Baumann P. C., Smith W. D., Parland W. K.. Tumor Frequencies and Contaminant Concentrations in Brown Bullheads from an Industrialized River and a Recreational Lake[J]. Transactions of the American Fisheries Society, 1987, 116: 79-86
    [21] VanVeld P. A., Westbrook D. J., Woodin B. R.. Induced cytochrome P-450 in intestine and liver of spot (Leiostomus xanthurus) from a polycyclic aromatic hydrocarbon contaminated environment[J]. Aquatic Toxicology, 1990, 17(2): 119-131
    [22] Kubiak T. J., Harris H. L., Smith L. M., et al. Microcontaminants and reproductive impairment of the Forster's tern on Green Bay, Lake Michigan-1983[J]. Archives of Environmental Contamination and Toxicology, 1989, 18(5): 706-727
    [23] Aulerich R. J., Ringer R. K., Iwamoto S.. Reproductive failure and mortality in mink fed on Great Lakes fish[J]. Journal of reproduction and fertility Supplement, 1973, 19: 365
    [24] Baumanna P. C., Harshbarger J. C.. Frequencies of liver neoplasia in a feral fish population and associated carcinogens[J]. Marine Environmental Research, 1985, 17: 324-327
    [25] Becker D. S., Ginn T. C., Landolt M. L., et al. Hepatic lesions in English Sole(Parophyrsretulas) from Commencement Bay, Washington(U.S.A.)[J]. Marine Environmental Research, 1987, 23: 153-173
    [26] Black J. J.. Field and laboratory studies of environmental carcinogenesis in Niagara River fish. Journal of the great lakes resources[J], Journal of great lakes research, 1983, 9: 326-334
    [27] Chapman P. M.. Sediment quality criteria from the sediment quality triad: An example[J]. Environmental Toxicology and Chemistry, 1986, 5(11): 957-964
    [28] US EPA. Update: Listing of fish and wildlife advisories[EB]. Fact sheet. Office of water, 1997
    [29] Wobeser G.. Avian botulism--another perspective [J]. Journal of Wildlife Diseases, 1997, 33(2): 181-186
    [30] Trimbee A. M., Harris G. P.. Phytoplankton population dynamics of a small reservoir: use of sedimentation traps to quantify the loss of diatoms and recruitment of summer bloom-forming blue-green algae[J]. Journal of Plankton Research, 1984, 6(5): 897-918
    [31]刘晓端,徐清,葛晓立,等.密云水库沉积物中金属元素形态分析研究[J].中国科学(地球科学), 2005, 35: 288-295
    [32]赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素[J].生态环境, 2005, 14(2): 282-286
    [33]刘晶,滕彦国,崔艳芳,等.土壤重金属污染生态风险评价方法综述[J].环境监测管理与技术, 2007, 19(3): 6-11
    [34]林春野,董克虞,李萍,等.污泥农用对土壤及作物的影响[J].农业环境保护, 1994, 13(1): 23-25
    [35]邵孝侯,彭世彰,陈毓陵,等.二十一世纪我国污水灌溉技术研究与推广展望.中国农村水利水电[J], 1997 (增刊): 94-95
    [36]董克虞,杨春惠,林春野.北京市污水农业利用区划的研究[M].北京:中国环境科学出版社, 1994: 51-125
    [37]占伟,吴文忠,徐盈,等.有机有毒污染物在土壤及底泥系统中的吸附/解吸行为研究进展[J].环境科学进展, 1998, 6: 1-13
    [38] Stumm W.. Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems. Stumm W. (Eds) [M]. New York: Wiley, 1992
    [39]曾清如.化学改性腐殖酸和沉积物对有机农药吸附特征研究[D].北京:中国科学院生态环境研究中心, 2005
    [40]周岩梅.多环芳烃有机物在天然颗粒物界面上的吸附机理研究[D].北京:中科院生态环境研究中心, 2003
    [41] Gregg S. J., Sing K. S..Adsorption, Surface Area and Porosity 2nd edition[M]. New York: Academic Press, 1982: 303
    [42] Chiou C. T., Daniel E. K.. Derivations from sorption linearity on soils polar and nonpolar organic compounds at low relative concentrations[J]. Environ.Sci.Technol., 1998, 32(3): 338-343
    [43] Laird D. A., Yen P. Y., Koskinen W. C., et al. Sorption of atrazine on clay components[J]. Environ.Sci.Technol., 1994, 28: 1054-1061
    [44] Freeze R. A., Cherry J. A.. Groundwater, Prentice-Hall: Englewood Cliffs[M]. New Jersey, Prentice-Hall, 1979
    [45] Chiou C. T., Peters L. J., Freed V. H.. A physical concept of soil water equilibriums for nonionic organic compunds[J]. Science, 1979, 206: 831-832
    [46] Aiken G. R., Mcknight D. M., Wershaw R. L., et al. Humic substances in soils, sediment and water: geochemistry, isolation and characterization[M]. New York: John Wiley & Sons, 1985: 536-543
    [47] Huc A. Y.. Origin and formation of organic matter in recent sediments and its relation to kerogen. In Kerogen: Insoluble Organic Matter from Sediment Rocks[M]. Paris, France, Editions Technip, 1980
    [48] Hedges J. I.. Polymerization of humic substances in natural environments. In Humic Substances and Their Role in the Environment[M]. Wiley, New York, 1988
    [49] Bovey F. A., Macromolecules: An Indroduction to Polymer Science [M]. Academic Press, New York, 1979
    [50] Weber W. J. Jr., McGinley P. M., Kars L E. Sorption phenomena in subsurface systems: concept model and effects on contaminant fate and transport[J]. Wat.Res. 1991, 25(5): 499-528
    [51] Swindell A. L., Reid B. J..The influence of a NAPL on the loss and biodegradation of 14C-phenanthrene residues in two dissimilar soils[J]. Chemosphere. 2007, 66(2):332-339
    [52] Hinz C.. Description of sorption data with isotherm equation[J], Geoderma, 2001, 99: 225-243
    [53] Dastgheib S. A., Ment B. S.. Adsorption characteristics and isotherm models for single and binary metal ions solutes in aqueous solutions onto activated carbon produced from pecan shells[D], New Moxico State University, 2002
    [54] Means J. C.. Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons[J]. Mar.Chem. 1995, 51(1): 3-16
    [55] Lambert S. M., Omega a useful index of soil sorption equilibria[J]. J. Agric. Fd. Chem., 1968, 16: 340-343
    [56] Lambert S. M., Fuctional relationship between sorption in soil and chemical structure[J]. J. Agric. Fd. Chem., 1967, 15: 572-576
    [57] Karickoff S. W., Brown D. S., Scott T. A.. Sorption of hydrophobic pollutants on nature sediments[J]. Water Res. 1979, 13: 241-248
    [58] Giannakopouloua F., Haidoutib C., Chronopouloua A., et al. A.Sorption behavior of cesium on various soils under different pH levels[J]. J.Hazard.Mater., 2007, 149(3): 553-556
    [59] Young T. M., Huang W. A., Schalutman M. A., et al. A distributed reactivity model for by soils and sediments.3.Efects of diagenetic processes on sorption energetics sorption [J]. Environ Sci.Techno1., 1995, 29(1): 92-97
    [60] Weber Jr. W. J., Huang W. A.. A distributed reactivity model for sorption soils and sediments.1.Conceptual basis and equilibrium aeeseements[J]. Environ.Sci.Technol., 1992, 26(10): 1955-1962
    [61] Weber Jr. W. J., Huang W. A.. A distributed reactivity model for sorption soils and sediments.4.Intrapartical heterogeneity and phase-distribution relationships under nonequilibrium condition[J]. Environ.Sci.Technol., 1996, 30(3): 881-888
    [62] Pignatello J. J., Xing B.. Mechanisms of slow sorption of organic chemicals to natural particles[J]. Environ.Sci.Technol., 1996, 30: 1-11
    [63] Surlock F. C.. Estimation of humic-based sorption enthalpies from nonlinear isotherm temperature dependence: Theoretical development and application to substitudedphenylureas[J]. J Environ Qual, 1995, 24: 42-49
    [64] McGroddy S. E., Farrington J. W., Gschwend P. M.. Comparison of the in situ and desorption sediment-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls[J]. Environ.Sci.Technol., 1996, 30(1): 172-177
    [65] Xing B., Pignatello J. J.. Competitive sorption between 1,3-dichlorobenzene or 2,4-dichlorophenol and natural aromatic acids in soil organic matter[J]. Environ.Sci.Technol., 1998, 32(5): 614-619
    [66] Xing B., Pignatello J. J., Gigioti B.. Competitive sorption between atrazine and other organic compounds in soils and model sorbents[J]. Environ.Sci.Technol., 1996, 30(8): 2432-2440
    [67] Kleineidam S., Rugner H., Ligouis B.. Organic matter facies and equilibrium sorption of phenanthrene[J].Environ.Sci.Technol., 1999, 33(10): 1637-1644
    [68] Crittenden J. C., Luf P., Hand D. W., Oravitz J. L., et al. Prediction of multicomponent adsorption equilibrium using ideal adsorbed solution theory[J]. Environ Sci.Technol., 1985, 19(11): 1037-1043
    [69] Leboeuf W. J., Weber Jr. W. J.. A distributed reactivity model for sorption by soils and sediments. 8. Discoery of a humic acid glass transition and an argument for invoking polymer sorption theory[J]. Environ. Sci. Technol., 1997, 31: 1697-1702
    [70] Carroll K. M., Harkness M. R., Bracco A. A., et al. Application of a permeant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson river sediments[J]. Environ. Sci. Technol., 1994, 28: 253-258
    [71]党志,于虹,黄伟林.土壤/沉积物吸附有机污染物机理研究的进展[J].化学通报, 2001(2): 81-85
    [72] Xing B., Pignatello J. J.. Dual-mode sorption of low-polarity compounds in glassy poly (vinyl choride) and soil organic matter[J]. Environ. Sci. Technol., 1997, 31: 792-799
    [73] Spurlock F. C., Biggar J. E.. Thermodynamics of organic chemical partition in soils. 1. Development of a general partition model and application to linear isotherms[J]. Environ. Sci. Technol., 1994, 28: 985-995
    [74] Spurlock F. C., Biggar J. E.. Thermodynamics of organic chemical partition in soils. 2. Nonlinear partition of substituted phenylureas from aqueous solutions[J]. Environ. Sci.Technol., 1994, 28: 996-1002
    [75] Spurlock F. C., Biggar J. E.. Thermodynamics of organic chemical partition in soils. 3. Nonlinear partition from water-miscible cosolvent solutions[J]. Environ. Sci. Technol., 1994, 28: 1003-1009
    [76] Yang Y., Sheng G.. Pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environ.Sci.Technol., 2003, 37: 3635-3639
    [77] Kleineidam S., Rugner H., Ligouis B. Organic matter facies and equilibrium sorption of phenanthrene[J]. Environ.Sci.Technol., 1999, 33(10): 1637-1644
    [78] Chiou C. T., kile D. E., rutherford D. W., et al. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions[J]. Environ. Sci. Technol., 2000, 34(7): 1254-1258
    [79] Luthy R. G., Aiken G. R., Brusseau M. L., et al. Sequestration of hydrophobic organic contaminants by geosorbents[J]. Environ. Sci. Technol., 1997, 31: 3341-3347
    [80] Alexander M..How toxic are toxic chemicals in soil?[J]. Environ. Sci. Technol., 1995, 29:2713-2717
    [81] Kan A. T., Fu G., Hunter M., et al. Irreversible Sorption of Neutral Hydrocarbons to Sediments: Experimental Observations and Model Predictions[J]. Environ. Sci. Technol., 1998, 32 (7): 892–902
    [82] Braida W. J., Pignatello J. J., Lu Y. F., et al. Sorption hysteresis of benzene in charcoal particles[J]. Environ.Sei.Teehnol., 2003, 37 (2): 409-417
    [83] Lu Y. F., Pignatello J. J.. Demonstration of the conditioning effect in soil organic matter in support of a pore deformation mechanism fro sorption hysteresis [J]. Environ. Sci. Technol., 2002, 36 (21): 4553-456
    [84] Gunasekara A. S., Xing B.. Sorption and Desorption of Naphthalene by Soil Organic Matter Importance of Aromatic and Aliphatic Components[J]. Journal of environmental quality, 2003, 32: 240-246
    [85] Ding G., Novak J. M., Herbert S., et al. Long-term tillage effects on soil metolachlor sorption and desorption behavior[J]. Chemosphere, 2002, 48(9): 897-904
    [86] Lu Y. F., Pignatello J. J.. History-Dependent Sorption in Humic Acids and a Lignite in the Context of a Polymer Model for Natural Organic Matter[J]. Environ.Sei.Technol.,2004, 38(22): 5853-5862
    [87] Huang W., Weber Jr. W. J.. A Distributed Reactivity Model for Sorption by Soils and Sediments.10: Relationships between Sorption, Hysteresis, and the Chemical Characteristics of Organic Domains[J]. Environ.Sci.Technol., 1997, 31(9): 2562-2569
    [88] LeBoeuf E. J., Weber Jr. W. J.. Macromolecular Characteristics of Natural Organic Matter. 1. Insights from Glass Transition and Enthalpic Relaxation Behavior[J]. Environ. Sci. Technol., 2000, 34 (17): 3623–3631
    [89]陈怀满,郑春荣.复合染污的交互作用研究-农业环境保护研究中的热点与难点[J].农业环境保护, 2002, 4: 192
    [90] Pei Z. G., Shan X. Q., Wen B..Effect of copper on the adsorption of p-nitrophenol onto soils[J]. Environ.Pollut. 2006, 139(3): 541-549
    [91] Zhu L. Z., Lou B. F., Yang K., et al. Effects of ionizable organic compounds in different species on the sorption of p-nitroanline to sediment[J]. Water.Res. 2005, 39(2): 281-288
    [92] David M., Kinson S. L..Laboratory studies to investigate short-term oxidation and sorption behaviour of neptunium in artificial and natural seawater solutions[J]. Mar.Chem. 1997, 56(1): 107-121
    [93] Yongkoo S., Linda S. L.. Effect of dissolved organic matters in treated effluents on sorption of atrazine and prometryn by soils[J]. Soil.Sci.Soc., 2000, 64: 1976-1983
    [94] Maxin C. R., K gel-Knanber I.. Partition of polycyclic aromatic hydrocarbons (PAH) to water-soluble soil organic matter[J]. Eur.J.Soil.Sci., 1995, 46(2): 193-204
    [95] Thornton S. F.. Attenuation of landfill leachate by U.K Triassic sand stone aquifermaterials 2.Sorption and degradation of organic pollutants in laboratory columns[J]. Contam.Hydrol., 2000, 43(3): 355-383
    [96] Celis R., Barriuso E., Houot S.. Effect of liquid sewage sludge addition on atrazine sorption and desorption by soil[J]. Chemosphere.1998, 37(6): 1091-1107
    [97] Willams C. F., Agassi M., Letey J.. Facilitated transport of napropamide by dissolved organic matter through soil columns[J]. Soil.Sci.Soc.Am.J., 2000, 64: 590-594
    [98] Totsche K. U., Danzer J., K gel-Knanber I. Dissolved organic matter-enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments[J]. Environ.Qual., 1997, 26: 1090-1100
    [99] Brunk B. K., Jirka G. H., Lion L. W.. Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrene: implications for pollutant trapping in estuaries[J]. Environ. Sci. Technol., 1997, 31: 119-125
    [100] Murphy E. M., Zachara J. M., Smith S. C., et al. Interaction of hydrophobic organic compounds with mineral-bound humic substances[J]. Environ. Sci. Technol., 1994, 28: 1291-1299
    [101] Conte P., Piccolo A.. Conformational arrangement of dissolved humic substances: influence of solution composition on association of humic molecules[J]. Environ. Sci. Technol., 1999, 33: 1682-1690
    [102] Ferreira J. A., Nascimento O. R., Martin-Neto L.. Hydrophobic interactions between spin-label 5-SASL and humic acid as revealed by ESR spectroscopy[J]. Environ. Sci. Technol., 2001, 35: 761-765
    [103] Wang Z. D., Gamble D. S., Langford C. H.. Interaction of atrazine with Laurentian soil[J]. Environ.Sci.Technol., 1992, 26(3): 560-56
    [104] Houch M.. Assessment of salinity variations in TBT adsorption onto kaolinitie and montmorillonite different pH levels[J]. Water.Air.Soil.Pollut., 2004, 152(1): 349-362
    [105]雷志芳,叶常明.苯胺在水体悬浮颗粒物上吸附特征[J].环境科学, 1998, 11:70-72
    [106] Murphy E. M., Zachara J. M., Smith S. C.. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds[J]. Environ. Sci. Technol., 1990, 24: 1507-1516
    [107] Wershaw R. L.. Model for humus in soils and sediments[J]. Environ. Sci. Technol., 1993, 27: 814-816
    [108] Conte P., Piccolo A.. Conformational arrangement of dissolved humic substances: influence of solution composition on association of humic molecules[J]. Environ. Sci. Technol., 1999, 33: 1682-1690
    [109] Ferreira J. A., Nascimento O. R., Martin-Neto L.. Hydrophobic interactions between spin-label 5-SASL and humic acid as revealed by ESR spectroscopy[J]. Environ. Sci. Technol., 2001, 35: 761-765
    [110] Laor Y., Rebhun M.. Evidence for nonlinear binding of PAHs to dissolved humic acids[J]. Environ. Sci. Technol., 2002, 36: 955-961
    [111] Garrison S., Ladislau M., Andrew Y.. Atrazine complexation by soil humic acids[J]. Environ.Qual., 1996, 25: 1203-1209
    [112]朱达.盐度对有机物在海底沉积物上吸附行为的影响[J].环境保护, 1995, 4: 34-37
    [113] Pusino A., Liu W., Gessa C.. Dimepiperate adsorption and hydrolysis on Fe3+、Al3+、Ca2+、Na+ montmorillonite[J]. Clay and Clays Minerals, 1993, 41: 335-340
    [114] Pusino A., Liu W., Fang Z., et al. Effect of metal-binding ability on the adsorption of acifluorfen on soil[J]. Agric. Food Chem., 1993, 41: 502-505
    [115]百度知道. http://baike.baidu.com/view/468084.htm[Z]. 2008
    [116]李志萍,丁仁伟,陈肖刚,等.凉水河污染对土壤和地下水的影响[J].水利水电科技进展, 2006, 26(2): 17-20
    [117]朱桂珍.北京市东南郊污灌区土壤环境重金属污染现状及防治对策[J].农业环境保护, 2001, 20(3): 164-166
    [118]王玉红.北京市凉水河污灌区土壤重金属污染研究[D].北京林业大学, 2008
    [119]北京市水务局. http://www.bjwater.gov.cn/Portal0/InfoModule_1431/13972.htm[Z]. 2008
    [120]北京市环境保护局.北京市环境质量报告书[EB]. 2001
    [121]陈华林,陈英旭. 2002.污染底泥修复技术进展[J].农业环境保护, 21(2): 179-182
    [122]国家环保局.水和废水检测分析方法(第四版)[M].北京:中国环境科学出版社, 2002
    [123] US EPA. Continuous Liquid-Liquid Extraction[S]. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods
    [124] Norashikin S., John R. D., Md P. A., et al. An Experimental Design Approach for the Determination of Polycyclic Aromatic Hydrocarbons from Highly Contaminated Soil Using Accelerated Solvent Extraction[J]. Anal. Chem., 1998, 70: 420-424
    [125] Wang W., Meng B., Lu X., et al. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: A comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques[J]. Analytica chimica acta, 2007, 602: 211-222
    [126] Diane M., Wagrowski, Ronald A., et al. Polycyclic Aromatic Hydrocarbon Accumulation in Urban, Suburban, and Rural Vegetation[J]. Environ. Sci. Technol., 1996,31(1): 279–282
    [127] Hendershot W. H., Duquette M.. A simple barium chloride method for determining cation exchange capacity and exchangeable cations[J]. Soil Sci. Am. J., 1986, 50: 605-608
    [128] Oren A., Chefetz B.. Sorption-desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments[J]. Chemosphere, 2005, 61: 19-29
    [129] Huang W., Yu H., Webber J. J.. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments 1.A comparative analysis of experimental protocols[J]. Journal of Contaminant Hydrolog, 1998, 31(2): 129-148
    [130]沈新强,胡方西.长江口外水域叶绿素a分布的基本特征[J].中国水产科学, 1995(1): 71-80
    [131] Liu W., Qiu R.. Water eutrophication in China and the combating strategies[J]. Journal of Chemical Technology and Biotechnology, 2007, 82: 781-786
    [132] Carlson R. E., A trophic state index for lakes[J]. Limnology Oceanography, 1977, 22(2): 361-369
    [133] Ceballos R. S., Konig A., Oliverra J. F.. Dam reservoir eutrophication: A simplified technique for a fast diagnosis of environmental degradation[J]. Water Res, 1998, 32: 3477-3483
    [134]杨顶田,陈伟民,曹文熙.太湖梅梁湾水体透明度的影响因素分析[J].上海环境科学, 2003, S2: 34-38
    [135]赵大传,王伟.黄河水中有机物的分析及去除规律的研究[J].山东建筑大学学报, 2008, 23(4): 320-327
    [136] Kordybach B. M.. Polycyclic Aromatic Hydrocarbons in Agricultural Soils in Poland: Preliminary Proposals for Criteria to Evaluate the Level of Soil Contamination[J]. Appl.Geochem., 1996, 11(1-2): 121-127
    [137] Aannokkee G. J.. MT-TNO research into the biodegradation of soils and sediments contaminated with oils and PAHs. In: World (ed.) Contaminated soil[M]. New York: Kulwer Academic Publishers, 1990
    [138]马玲玲.北京城近郊土壤中有机污染研究[D].北京:中国科学院生态环境研究中心, 2004.
    [139] Abu A., Smith S.. Assessing sequestration of selected polycyclic aromatic hydrocarbons by use of adsorption modeling and temperature-programmed desorption[J]. Environ.Sci.Technol., 2005, 39(19): 7585-7591
    [140] Lennartz B., Louchart X.. Effect of drying on the desorption of diuron and terbuthylazine from natural oils[J]. Environmental Pollution, 2007, 46(1): 180-187
    [141] Johnson M. D., Keinath H. M., Weber Jr. W.. A distributed reactivity model for sorption soils and sediments.14.Characterization and modeling of phenanthrene desorption rates[J]. Environ. Sci. Technol., 2001, 35(8): 1688-1695
    [142] Li J., Werth C. J.. Evaluating competitive sorption mechanisms of volatile organic compounds in soils and sediments using polymers and zeolites[J]. Environ. Sci. Technol., 2001. 35(3): 568-570
    [143]曲久辉,贺宏,刘会娟.典型环境微界面及其对污染物环境行为的影响[J].环境科学学报, 2009, 29(1): 2-10
    [144]娄保锋,朱利中,杨坤.苯及其取代物与对硝基苯胺在沉积物上的竞争吸附[J].中国环境科学, 2004,24(3): 327-331
    [145]陶庆会,汤鸿霄.共存污染物对阿特拉津在天然沉积物上吸附的影响[J].环境科学学报, 2004, 24(4): 696-701
    [146]吴文伶,孙红文.菲在沉积物上的吸附-解吸研究[J].环境科学, 2009, 30(4): 1133-1138
    [147]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社, 1994: 966-967
    [148] Wang X., Sato T., Xing B.. Sorption and Displacement of Pyrene in Soils and Sediments[J]. Environ. Sci. Technol., 2005, 39 (22), 8712-8718
    [149]朱利中,陈宝梁,陶澍.溴化十四烷基吡啶增强固定土壤中萘及其机理[J].中国环境科学, 2003, 23 (1) : 42-46
    [150] Chen S., Marianne C., Nyman. Sorption and desorption behavior of benzidine in different solvent–sediment systems[J]. Chemosphere, 2007, 66: 1523-1534
    [151]郎印海,聂新华,曹正梅,等.胶州湾近岸沉积物中五氯酚钠的吸附-解析研究[J].海洋环境科学, 2008, 27(3): 231-235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700