巢湖水华时空分布特征及成因初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为识别巢湖藻类水华暴发的主要影响因素,采用为期一年的现场采样及野外模拟实验相结合的方法,研究了2008水华暴发现状及优势种的变化;采用多元统计方法对入湖河流进行了聚类和污染等级分级,并判别了藻类生物量与河流营养盐输入负荷的关系;分析了各水环境因子对藻类生物量的影响,并筛选出对对藻类生物量相对重要的因子;估算了水-沉积物界面氨氮的扩散通量,并利用氮形态的连续分级提取法研究了沉积物氮形态的季节性变化,并探讨了不同季节对有效氮形态起主要作用的氮形态;通过现场观测及围隔模拟试验,定量研究了水华暴发的整个过程,同时观测了风浪对巢湖水华藻类水平迁移和垂直混合的影响。研究结果表明:
     (1)蓝藻在巢湖水华藻类中常年占优势,但优势种群有所差别,春季鱼腥藻占优势,微囊藻次之;夏、秋两季微囊藻占绝对优势.表层沉积物中藻类生物量从1月到夏初呈下降趋势,最小值出现在6~7月份之间,然后逐渐升高,最大值出现在冬季.温度是巢湖藻类生物量变化最为显著的影响因子。
     (2)入湖河流可分为三类,为城市污染河流、清水产流河流和水质保持河流,其中城市污染河流输入到巢湖中CODMn、NH_4~+-N、TN、TP量分别占全部入湖河流污染负荷的41.29%、89.49%、72.27%和60.14%;因子分析显示有机污染是入湖河流主要污染来源,九条环湖河流污染分级排序为:南淝河>十五里河>派河>双桥河>柘皋河>裕溪河>白石山河>兆河>杭埠河;入湖区藻类生物量与入湖河流NH_4~+-N、TN、TP的输入量呈正相关,但TN的输入量更能显著增加藻类生物量。
     (3)巢湖水环境自西向东分为重度污染区、中度污染区和轻度污染区,Chla、DTN可作为巢湖水环境空间显著性差异的指示因子。各监测点污染分级排序为:南淝河入湖区>十五里河入湖区>塘西河入湖区>西半湖湖心>派河入湖区>杭埠河入湖区>忠庙>兆河入湖区>坝口>东半湖湖心>造船厂>中垾乡;水环境质量月平均污染分级排序为:8月>6月>9月>4月>5月>7月>10月>1月>3月>12月>11月>2月。不同季节筛选出对藻类生物量相对重要的环境因子不同,全年总磷、总氮、温度、硝氮、氨氮与藻类生物量较为密切。
     (4)上覆水中NH_4~+-N含量随水华暴发强度的增加而减小,溶解性总氮(DTN)含量在水华暴发后明显升高,而NO_3~--N含量只在水华暴发严重时才明显减少.上覆水中DTN的主要组成部分在大规模水华暴发前(4月~5月)是NO_3~--N和NH_4~+-N,在水华暴发后则是DON.间隙水中以NH_4~+-N为主,其浓度随温度的增加而升高;DON呈先下降后上升的趋势.通量计算结果表明,沉积物作为NH_4~+-N的“源”一直由间隙水向上覆水释放,西半湖扩散通量在13.06 mg/(m~2·d)~32.94 mg/(m~2·d)之间,东半湖扩散通量在4.54 mg/(m~2·d)~17.41 mg/(m~2·d)之间.
     (5) FN、EN呈夏季低而秋、冬季节高的分布趋势;HN在冬季含量较高,而春、夏季节含量较低;RN含量的季节性变化不明显;TN含量在夏较低而秋、季节较高;MN含量的季节性变化顺序为冬季>春季>秋季>夏季.不同季节对有效氮起主要作用的氮形态不同,春季为酸解氨基酸态氮(AAN),夏季、秋季为可交换态氮(EN) ,冬季为游离态氮(FN).
     (6)充足的营养来源是藻类异常增殖的关键,沉积物作为水华暴发营养物质的内源和“种源”,为浮游藻类的生长提供必要的营养和“种子”;风浪的扰动加速了藻类的增殖以及藻类在水-沉积物界面的交换量;在风速小于3 m·s-1时,团状水华在水面漂移速度与风速呈指数相关性,相关性系数为0.91,当风速大于3 m·s-1时,藻类上下混合沉入水中;主导风向决定了水华的分布状况,试验期间,同一采样点,当其处于下风向时,湖水表层生物量是处于上风向时的8.8倍。
In order to identify the main factors that influencing of alga blooming in Chaohu Lake,Situ observation and constructed enclosure simulation experiment were conducted for one year.Algae distribution in Chaohu Lake and Variation of dominant species was investigated.the inflow rivers are clustered and the pollution levels are classified by statistical methods and the correlation between algal biomass and the river nutrients input loads are derived.Inorganic nitrogen fluxes at water-sediment interface was analyzed, seasonal occurrence characteristics of the free nitrogen , the exchangeable nitrogen , the acid hydrolysable nitrogen and the residual nitrogen in the surface sediment of Chaohu Lake were studied by sequential extraction methods. Quantitative research on alga blooming process was conducted and horizontal transference and vertical hybrid effects of blooming alga caused by wind waves in Chaohu Lake were also observed.The results indicates that:
     (1) cyanobacteria algae dominated in bloom algae all the year round in Chaohu Lake, but different dominant species appeared in different seasons. Anabaena dominanted in spring with microcystis as subdominant specie; Microcystis dominated through the whole summer and autumn. The algae biomass in surface sediments had a tendency to gradually decrease from January to early summer, and minimum appeared between June and July ,while it increased through mid-summer and autumn, maximum appeared in winter. Multiple stepwise regression showed that temperature was the most significant factor which impacted the variation of algae biomass in Chaohu Lake.
     (2) the inflow rivers could be classified into three types, namely urban pollution rivers, clear aquatic flow rivers, and water quality stable rivers. The input load of CODMn、NH_4~+-N、TN、TP from urban pollution rivers to the whole lake are 41.29%、89.49%、72.27% and 60.14% to all inflow rivers Respectively. Organic pollution is the main pollution resource of inflow rivers by factor analysis. The pollution rank of nine inflow rivers are as follows: Nanfei river>Shiwuli river>Paihe river>Shuangqiao river>Zhegao river>Yuxi river>Baishishan river>Zhaohe river>Hangbu river. The algal biomass and the NH_4~+-N, TN, TP inputs of inflow rivers are positively correlated, while the TN inputs could increase the algal biomass more significantly.
     (3) Chaohu Lake could be divided into severe polluted area, moderately polluted area, and mildly polluted area from the west to the east. The Chla and DTN are the directive factors for the significantly spatial differentiation of water environment. The pollution classification sequence of monitoring sites was Nanfei river inlake area> Shiwuli river inlake area> Tangxi river inlake area> West lake center area> Paihe river inlake area> Hangbu river inlake area> Zhongmiao area> Zhaohe river inlake area> East lake center area> Ship factory> Zhonghan town area. The classification sequence of monthly average water environment quality was August> June> September > April> May> July> October> January> March> December> November> February. The screened relatively important environmental factors to algal biomass vary with seasons. The TP, TN, temperature, NO_3~--N and NH_4~+-N are closely related to algal biomass all the year round.
     (4) NH_4~+-N decreased as the algal bloom intensity increased, while dissolved total nitrogen increased apparently after algal bloom, NO_3~--N decreased only during serious algal bloom period in overlying water. NO_3~--N and NH_4~+-N were the main part of nitrogen before algal bloom (in April and May) and then DON was the main part after that. In pore water, NH_4~+-N was the main part of nitrogen which increased as temperature rised. Dissolved organic nitrogen decreased first and then increased. Fluxes calculation results suggested that the sediment was the source of NH_4~+-N which dissolved from pore water to overlying water, NH_4~+-N fluxes were ranged from 13.06 mg/(m2·d)~32.94 mg/(m2·d) in west semi lake, and were ranged from 13.06 mg/(m2·d)~32.94 mg/(m2·d)in east semi lake; The sediment was the pool of NO_3~- -N before algal bloom period, but was the source of NO_3~--N which increased nitrate concentrations in overlying water after that.
     (5) The concentrations of FN and EN was lower in summer and higher in autumn and winter; HN had a higher level in the winter and a lower level in spring and summer; While RN varied little; The TN concentrations had a lower level in summer and higher level in autumn and winter; the seasonal order of mineralizable nitrogen (MN) content was winter> spring> autumn> summer. The nitrogen forms playing a major role on available nitrogen had a disparity in difference seasons, which was the amino acid nitrogen (AAN) in spring, EN in summer and autumn, FN in winter.
     (6) sufficient nutrient sources played a crucial role in algal blooming process. Sediment supplied nutrients and seeds for this process as the resource of nutrients and algae seeds. Hybrid caused by wind waves accelerated alga multiplication and alga sedimentation and suspension on water-sediment interface. When wind speed was less than 3m·s-1alga clusters drifted on water surface with speed which was exponential dependent on wind velocity with dependent coefficient equaling 0.9052. When wind speed was larger than 3m·s-1, alga mixed up-down together and sunk into lake water. Leading wind directions dominate the distributions of alga blooms. During the test period alga biomass on surface water in leeward wind is 8.8 times as that on upper drift.
引文
[1]金相灿,屠清英.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990
    [2] Dokulil M, Chen W, Cai Q. Anthropogenic impacts to large lakes in China: the Tai Hu example[J]. Aquatic Ecosystem Health and Management 2000, 3: 81-94
    [3]李克强,王修林,石晓勇,等.胶州湾围隔浮游生态系统氮、磷营养盐迁移-转化模型研究[J].海洋学报, 2007,29(3):76-83
    [4]金相灿,姜霞,王琦,等.太湖梅梁湾沉积物中磷吸附/解吸平衡特征的季节性变化[J].环境科学学报, 2008 ,28 (1) : 24 - 30
    [5]姜霞,王琦,金相灿,等.光照与通气方式对蓝、绿藻竞争生长和磷的水-沉积物界面过程的影响[J].环境科学学报, 2008,28(1):31-36
    [6]程曦,李小平.淀山湖氮磷营养物20年变化及其藻类增长响应[J].湖泊科学, 2008, 20(4):409-419
    [7] Reynold C S.The ecology of freshwater phytoplankon cambride studies in ecolgy[M]. London:Unive Press,1984.
    [8] Robert EL.Phycology(seconde dition)[M].London:Cambride Unive Press,1985.
    [9] Carpenter E J. Capone D G. Nitrogen in the Marine Environmen〔tM〕.New York: Academic Press,1983.
    [10] Dugdale V A,Dugdele R C, 1965. Nitrogen metabolism in lakes III. Tracer studies of the assimilation of inorganic nitrogen sources[J]. Limnol. Oceanogr. W, 53-57.
    [11] Balch W M. Exploring the mechanism of ammonium up take in phytoplankton w ith an ammonium analogue methylamine[J]. Marine Biol, 1986,92 (2) : 163-171.
    [12] Balch W M. Kinetics of nitrate up take by freshwater algae[J]. Hydrobio logia, 1984, 114 (3) : 209-214.
    [13] Wheeler K, Kokkinakis D. Ammonium recycling limits nitrate use in the oceanic subarctic Pacific[J]. L imno lOceanogr, 1990 ,(35) : 1 267-1 278.
    [14] Dortch Q ,Clayton J R, Thoreson S S. Response of marinephytop lankton to nitrogen deficiency decreased nitrate up take vs enhanced ammonium up take[J]. Mar Biol, 1982, 70 (1) :13-19.
    [15] MURO-PASTOR MI,FLORENCIO F J. Regulation of ammonium assimilation in eyanobacteria [J].Plant Physiol Biochem, 2003,41:595-603
    [16]唐全民,陈峰,向文洲,等.铵氮对铜绿微囊藻的生长、生化组成和毒素生产的影响[J].暨南大学学报(自然科学版), 2008,29(3):290-294
    [17]王正方,张庆,卢勇,等.氮、磷、维生素和微量金属对赤潮生物海洋原甲藻的增殖效应[ J ].东海海洋, 1996,14 (3) : 33 - 38.
    [18]徐宁,陈菊芳,王朝晖,等.广东大业湾海藻类水华的动力学分析II藻类水华与营养元素的关系研究[ J ].环境科学学报, 2001,21 (4) : 400 - 404.
    [19] Bush R M, Welch E B. Plankton association and related factors in a hypereutrophic lake. Water Air Soil Pollut, 1972,1: 257-274.
    [20] Paerl H W. Nuisance phytoplankton booming coastal.Estuarine,and in land waters[J]. Limnol Oceanogr, 1988,33:823-847
    [21] Welch E B. Ecological effects of wastewater[M].U.K., London:Chapman and Hall,1992
    [22] U K. Environmental Agency. Environmental Issues Series Aquatic Eutrophication in England and Wales.UK Environmental Agency Consultative Report, 1998.
    [23] LEVEINE SW, SCH INDLER DW. Radiochemical analysis of orthophosphate concentrations and seasonal changes in the flux of orthophosphate to season in two cannadin shield Lakes [ J ]. Can J Fish Aqual Sci 1980, 37: 479 - 487.
    [24] Goldman C R .Molybdenum as a factor limiting prmary production in Castle Lake[J]. California science1960:673-674
    [25] Twiss M R ,Auclair J C ,Charlton M N. An investigation into irons stimulated phytoplankton productivity in epipelagic Lake Erie during thermal stratification usingtrace metal clean techniques [J].Canadian Journal of Fisheries and Aquatic Sciences , 2000 ,57(8) :86 - 95.
    [26] Martin J H.Iron defiencytimits phytoplantonts growth in Antarcti waters[J].Global Biogechemic Cycle,1990:4,5-12
    [27]尹大强等,稀土元素对富营养化水体中藻类增长的影响,环境科学,1998, (9):56 -59
    [28] Redfield AC. The biological control of chemical factors in the environment[J].Am .Sci.,1958 ,4 6: 561-600.
    [29]吴重华,王晓蓉,孙昊.羊角月牙藻的生长与湖水中几种磷形态关系的建立[ J ].环境化学, 1997, 16 (4) :341-346.
    [30]饶群,丙孝芳,富营养化机理及数学模拟研究进展,水文,2001,21 (2):15-24 [ 31] RHEE G YULL. Effects of N P atomic ratios and nitrate limation algal growth, cell composition and nitrate up take[ J ]. Limnol. Oceanogar, 1987, 23 (1) : 10 - 25.
    [32] Smith V H. Low nitrogen to phosphorus ratios favor dominance in blue-green algae in Lake Phytoplankton[J].science ,1983,21:669-671
    [33] Xie L,Xie P,Li S,et al.The low TN:TP ratio,a cause or aresult of Mierecystisblooms?[J].Water Res,2003,37(9):2073-2080.
    [34]王雨春,万国江,等.湖泊现代沉积物中磷的地球化学作用及环境效应[J].重庆环境科学,2002,22(4):39-42
    [35]万晓红,周怀东,等,2008.白洋淀湖泊湿地中氮素分布的初步研究[J].水土保持学报,22(2):166-170
    [36]王东红,黄清辉,等,2004.长江中下游浅水湖泊中总氮及其形态的时空分布[J].环境科学,25(2):28-30.
    [37]马红波,宋金明.海洋沉积物中的氮循环[J].海洋科学集刊,2001,43:6-10
    [38] De Lange G J.Distribution of exchangeable,fixed,organic and total nitrogen in interbdedded turbiditic/pelagic sediments of the Madeira Abyssal Plain,eastern north atlantic[J].MAR.GEOL,1992,109(2):115-139
    [39]马红波,宋金明,吕晓霞,等.渤海沉积物中氮的形态及其在循环中的作用[J].地球化学,2003, 32(1):48-54
    [40]杨龙元,蔡启铭,秦伯强,等.太湖梅梁湾沉积物-水界面氮迁移特征初步研究[J].湖泊科学,1998,10(4):41-47.
    [41]吴丰昌.云贵高原湖泊沉积物和水体氮磷和硫的生物地球化学作用和生态环境效应[J].地质地球化学,1996,(6):88-89.
    [42] John A.Nitrogen biogeochemistriy of aquaculture ponds[J].Aquaculture, 1998,166:181-212.
    [43] Jones D L,Shannon D,Murphy D V,et al. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils[J] Soil Biology Biochemistry ,2004,36(5):749-756.
    [44] Abril G,rankingnoulle M F.Nitrogen-alkalinity Interactions in the highly pllluted Sceldt Basin(Belgium)[J].Water Research,2001,35(3):844-850
    [45] Mackin J K,Aller R C.Ammonium adsorption in marine sdeiment.Limnol Oceanogr,1984,29:250-257
    [46] Rosenfeld J K.Ammonium adsorption in nearshore anoxic sediments.Linmology and Oceanography,1979,24:356-364
    [47] Rysgaa S,Thastum P,Dalsgaard T .Effects of salinity on NH4+ adsorption capacity,nitrification,and denitification in Danish estuary sediments [J] .ESTUARIES,1999,22:21-30
    [48]王娟,王圣瑞,金相灿,等.长江中下游浅水湖泊表层沉积物对氨氮的吸附特征[J].农业环境科学学报,2007,26(4):1224-1229
    [49]杨龙元,GARDNER W S.休伦湖Saginaw湾沉积物反硝化率的测定及时空特征[J].湖泊科学,1998,10(3):548-553.
    [50] Aller R C,M ck in J E,Ullman W J,et al.Continental Shelf Research,1985,4:227-251
    [51]张兴正,陈振楼,等.长江口北支潮滩沉积物-水界面无机氮的交换通量及季节变化[J].重庆环境科学,2003,25(9),31-34
    [52]刘素美.渤海莱州湾沉积物-水界面溶解无机氮的扩散通量[J].环境科学,1999,3,12-16.
    [53] Hantke B,Fleiseher P,Domany L.1996.P release from DOP by phosphstes activity in comperison to P excretion by zooplankton studies in hardwater Lakes of different trophiic level[J].Hydrogio-logia,317:151-162.
    [54]尹大强,覃秋荣,阎航.环境因子对五里湖沉积物磷释放的影响[J].湖泊科学,1994, 6(3):240-244.
    [55]王晓蓉,华兆哲,徐菱,等.环境条件变化对太湖沉积物P释放的影响[J].环境化学, 1996,1:15-19.
    [56] Istvanovics V.1988.Seasonal variation of phosphorous release from the sediments of shallow lake [J].Water Research,22(12):1473-1481.
    [57] Gomez E, Durillon C. Phosphate adsorption and release from sediments of brackish lagoons: pH, O2 and loading inluence[J].Water Research, 1999, 33(10):2437-2447
    [58]姚扬,金相灿,姜霞,等.光照对湖泊沉积物磷释放及磷形态变化的影响研究[J].环境科学研究,2004,17(增):30-34
    [59] Lijklema L. Interaction of orthophosphate with ironⅢand aluminum hydroxides [J]. Environmental science and technology, 1980,14(5):537-541
    [60] Lijklema L,Gelencser P,Szilagyi F,et al. Sediment and its interaction with water, in:somlyody L,van straten G.(eds):Modeling and managing shallow Lake eutrophication.With application to lake Balatom [J].Springer Verlag,Berlin, 1986
    [61]李小平.美国湖泊富营养化的研究和治理[J].自然杂志, 2002, 24(2):63-68
    [62] Michael R.P. and Martin R A. Seasonal variability in phosphorus speciation and deposition in a calcareous, eutrophic lake[J]. Marine Geology, 1997, 139: 47-59.
    [63] Xiangcan Jin,Xia Jiang,Dongmei Liu. Seasonal variations of adsorption/ desorption equilibrium concentrations of P at water-sediment interface in different trophic states of Taihu Lake , China. Chinese Journal of GEOCHEMISTRY,2006,25 (Suppl.):164.
    [64] Xia Jiang,Xiangcan Jin,Dongmei Liu. Seasonal variations of adsorption/ desorption equilibrium concentrations of P at water-sediment interface in the Meiliang Bay,Taihu Lake,China. Chinese Journal of GEOCHEMISTRY,2006,25 (Suppl.):164-165.
    [65]朱伟,万蕾,赵联芳.不同温度和营养盐质量浓度条件下藻类的种间竞争规律[J].生态环境,200817(1):6-11
    [66] MARCIN PLI?SKI,TOMASZ Jó?WIAK.Temperature and N:P ratioas factors causingblooms of blue-greenalgae in the Gulfof Gdańsk[J].Oceanologia,1999, 41 (1):73-80.
    [67] J?rgensen, S.E. et.al., 1975. A Submodel for Anaerobic Mud-Water Exchange of Phosphat (with L.Kamp-Nielsen og O.S. Jacobsen). Ecol. Modelling, 1:133-146.
    [68] Jorgensen,S E. A Sediment Phosphorus Model (with HMejer and L K Nielsen) in Proceedings of the 2nd Joint MTA/IIASA Task Force Meeting on Lake Balaton Modell -ing ,1980,104-132.
    [69] Michel L, Wojciech S, Jean D,Michel P. Selective echanisms controlling algal succession in Aydat Lake[J]. Wat Sci Tech, 1995,32(4): 117-127.
    [70] Reynolds C S.The ecology of planktonic blue-green algae in the north Shropshire meres[J]. Field Studies, 1971,3:409-431
    [71] Oliver R L,Ganf G G. Freshalgal blooms[M].Kluwer Academic Publishier, 2000,149-194
    [72]杨清心.太湖水华成因及控制途径初探[J].湖泊科学, 1996,8(1):67-74.
    [73]范成新,陈宇炜,吴庆龙.夏季盛行风对太湖北部藻类水华分布的影响[J].上海环境科学, 1998,17(8):4-11.
    [74]朱永春,蔡启铭.风场对藻类在太湖中迁移影响的动力学研究[J].湖泊科学, 1997,9(2):152-157
    [75] Schlesinger W H Biogeochemistry: An Analysis of Global Change [M]. Academic Press, San Diego, 1991.
    [76] Vitousek P M, Mooney H A, Lubchenko J, Melillo J M. Human Domination of Earth’s Ecosystems [J].Science, 1997, 277: 494-499
    [77]吴晓东,孔繁翔.水华期间太湖梅梁湾微囊藻原位生长速率的测定[J].中国环境科学,2008,28(6):552-555.
    [78] Walsby A E, Kinsman R, George K I. The measurement of gas vesicle volume and buoyant density in planktonic bacteria [J].Journal of Microbiology Methods, 1992, 15: 293-309.
    [79] Walsby A E.Gas vesicles[J].Microbiol Rev,1994,58:94-10l.
    [80]张晓峰,孔繁翔,曹焕生等.太湖梅梁湾水华蓝藻复苏过程的研究[J].应用生态学报2005,16(7):1346-1350.
    [81] Reynolds C S. The Ecology of Freshwater Phytoplankon [M]. CambridgeUniversity Press, 1984,384.
    [82] Bostr?m B, Petterson A K, Ahlgren I. Seasonal dynamics of a cyanobacteria- dominated microbial community in surface sediments of a shallow, eutrophic lake [J]. Aquatic Sciences, 1989, 51: 153-178.
    [83] Brunberg A K, Blomqvist P. Benthic overwintering of Microcystis colonies under different environmental conditions [J]. Plankton Res, 2002,24:1247-1252.
    [83] Jolanda M H Verspagen, Eveline O F M Snelder, Petra M Visser, et al. Benthic-pelagic coupli4ng in the population dynamics of the harmful cyanobacterium Microcystis [J].Freshwater Biology, 2005, 50: 854-867.
    [85] Preston T, Stewart W D P, Reynolds C S. Bloom-forming cyanobacterium Microcystis aeruginosa overwinters on sediment surface [J]. Nature, 1980,288, 365-367.
    [86]阎荣,孔繁翔,韩小波.太湖底泥表层越冬藻类群落动态的荧光分析法初步研究[J].湖泊科学, 2004,16:163-168.
    [87]金相灿,屠清英.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990.
    [88] Reynolds C S . Growth and buoyancy of Microcystis aeruginosa Kütz.Emend.Elenkin in a shallow eutrophic lake[J].Proceedings of the Royal Society B:Biological Sciences.1973, 184: 29-50.
    [89] Tsujimura S,Tsukada H ,Nakahara H, et al. Seasonal variations of Microcystis populations in sediments of lake Biwa, Japan Hydrobiologia, 2000, 434:183-192.
    [90] Verspagen J M H , Snelder E O F M , Visser P M,et al. Recruitment of benthic Microcystis (cyanophyceae) to the water column: internal buoyancy changes or resuspension? Journal of Phycology, 2004, 40: 260-270.
    [91]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-594.
    [92] Rodusky A J, Maki R P, Sharfstein B. Back-pumping of agricultural runoff into a large shallow lake and concurrent changes in the macroinvertebrate assemblage[J]. Waters Research, 2008, 42: 1489-1500
    [93]王书航,姜霞,钟立香,金相灿,孙世群.巢湖沉积物不同形态氮季节性赋存特征[J].环境科学,2010,31(4):115-122
    [94]姜霞,钟立香,王书航,金相灿.巢湖水华暴发期水-沉积物界面溶解性氮形态的变化[J].中国环境科学,2009,11:1158-1163
    [95] Kowalkowski T, Zbytniewski R, Szpejna J, Buszewski B. Application of chemometrics in river water classification. Water Research,2006. 40 (4),744-752
    [96]谢平.翻阅巢湖的历史[M].北京:科学出版社, 2009,116-125.
    [97]屠清英,顾丁锡,尹澄清,徐卓然,寒久智.巢湖-富营养化研究.合肥:中国科学技术出版社
    [98]黄卫,张祥志,朱泽华,郝英群江苏省太湖流域入湖河流污染物入湖总量监测,中国环境监测,2005,21(2):52-55
    [99]孟伟,张远,王西琴,张楠.流域水质目标管理技术研究:Ⅴ.水污染防治的环境经济政策[J].环境科学研究2008,21(4):1-9
    [100] An, S M, Gardner, W S. Dissimilatory nitrate reduction to ammonium(DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary(Laguna Madre/Baffin Bay, Texas)[J]. Marine Ecology Progress Series,2002,237, 41-50
    [101]吴丰昌,万国江,蔡玉蓉.沉积物-水界面的生物地球化学作用[J].地球科学进展, 1996,11(2): 191-197.
    [102] Bremner J M. Organic forms of soil nitrogen [A]. Black CA et al (eds). Methods of Soil Analysis[C].USA: Madison, American Society of Agronomy, 1965, 1148-1178.
    [103] Stevenson F J. Organic forms of soil nitrogen[J]. Humus Chemistry, Wiley, New York, 1997,55-119.
    [104]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:中国农业出版社, 1986.
    [105]钟立香,王书航,姜霞,金相灿.采用连续分级提取法研究巢湖沉积物中不同结合态氮的赋存特征[J].农业环境科学学报.(已接收)
    [106]高磊,李道季,王延明等,长江口最大浑浊带潮滩沉积物间隙水营养盐剖面研究[J]环境科学,2007,Vol.27(9):1744-1752
    [107]高丽,杨浩,周健民等.滇池水体和沉积物中营养盐的分布特征[J].环境科学研究. 2004, 17(4):1-4
    [108]郝永俊,吾松维,吴伟祥等.好氧氨氧化菌的种群生态学研究进展[J].生态学报,2007,27(4):1573-1580
    [109] Xu J R, Wang Y S. The characteristics of nitrogen fixation ammonification、nitrification and denitrification in coastal zones [J]. Acta Ecological sinica. 2004, 24(12):2907-2914
    [110]尤本胜,王同成,范成新等.太湖草型湖区沉积物再悬浮对水体营养盐的影响[J].环境科学,2008,29(1):26-31
    [111]王绪伟,王心源,史杜芳.巢湖污染现状与水质恢复措施[J].环境保护科学,2007,33(4):13-15
    [112]陈文煊,王志红.不同形态氮对富营养化水源藻华暴发的潜在影响[J].给水排水,2008, 34(9):22-26
    [113] A Guidance Manual to support the assessment of Contaminated Sediments in Freshwater ecosystems [S].US EPA,2002.
    [114] Stevenson F J. Humus chemistry[M]. Wiley, New York, 1994, 496.
    [115] Schulten H R. The three-dimensional structure of humic substances and soil organic matter studied by computational analytical chemistry [J]. Fresenius J Anal Chem, 1995, 351:62-73.
    [116]何桐,谢健,余汉生,方宏达,高全洲.大亚湾表层沉积物间隙水与上覆水中营养盐分布特征[J].环境科学学报,2009,28(11):2361-2368
    [117] Xie L,Xie P,Li S,et al. The low TN:TP ratio,a cause or aresult of Mierecystis blooms?[J].Water Res, 2003,37(9):2073-2080.
    [118] Xia Jiang,Xiangcan Jin,Dongmei Liu. Seasonal variations of adsorption/ desorption equilibrium concentrations of P at water-sediment interface in the Meiliang Bay,Taihu Lake,China. Chinese Journal of GEOCHEMISTRYVol. 2006,25 (Suppl.):164-165.
    [119]储昭升,金相灿.杨波,等.不同群体形态蓝藻的气囊与光的相互作用研究[J].环境科学学报, 2006,26(11):1909-1913
    [120] Jolanda M H,Verspagen Evelien O F M,et a. Benthic-pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis.Freshwater Biology , 2005,50:854-867
    [121] Reynolds C S, Rogers D A. Seasonal variations in the vertical distribution and buoyancy of Microcystis aeruginosa Kütz[J] .emend. Elenkin in Rostherne Mere,England,1976.
    [122] Trimbee A M , Harris G P. Phytoplankton population dynamics of a small reservoir: use of sedimentation traps to quantify the loss of diatoms and recruitment of summer bloom-forming blue-green algae[J]. Plantkon Res,1984,6: 897-918.
    [123] Trimbee A M, Prepas E E. The effect of oxygen depletion on the timing and magnitude of blue-green algal blooms.Verh. int. Ver. Limnol, 1988,23: 220-226.
    [124] Ringelberg J , Baard R. Growth and decline of a population of Microcystis aeruginosa in mesotrophic Lake Maarsseveen I (The Netherlands) [J]. Hydrobiol, 1988, 111: 533-545.
    [125] Avnimelech Y ,Troeger B W , Reed L W . Mutual flocculation of algae and clay: evidence and implications[J].Science, 1982,216:63–65
    [126] Oliver R.L.Thomas R.H.Reynolds C S & Walsby A E . The sedimentation of buoyant Microcystis colonies caused by precipitation with an iron-containing colloid. Proceedings of the Royal Society London B, 1985,223:511–528.
    [127] Stolzenbach K D,Newman K A ,Wong C S. Aggregation of fine particles at the sediment-water interface[J]. Journal of Geophysical Research , 199,15:17889-17898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700