水体富营养化对沉水植物与藻类生态关系的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化是全球性环境问题,水生植物化感控藻方法在治理水体富营养化及水华现象中具有多方面的优势,近年来该领域的研究备受世界各国关注。以往的化感作用研究主要侧重于水生植物对藻的抑制作用,较少顾及到藻对水生植物的影响。藻类和水生植物生长在同一环境时,必定存在相互影响和竞争,所以对两者之间的相互化感作用进行研究,可以为防止水体富营养化和水化爆发提供更科学、全面的依据。在我国大部分富营养化水体中,铜绿微囊藻(Microcystis aeruginosa)的数量和爆发频率均占一定优势,而粉绿狐尾藻(Myriophyllum aquaticum)和穗状狐尾藻(Myriophyllum spicatum)是能够强烈抑制铜绿微囊藻生长的高等水生植物。本文通过对两种狐尾藻不同营养水平和光照强度处理,旨在弄清环境因子与其有效成分积累之间的关系;采用提取植物种植水初始添加法、连续添加法等方法,探讨了不同初始密度藻细胞、两种狐尾藻不同营养水平和光照强度处理、不同种植密度及不同组织部位等因素对其化感效应的影响;同时采用共培法,研究了不同藻细胞、不同藻类生物质对两种狐尾藻的化感效应影响。研究结果表明:
     1、光照和遮荫环境下,粉绿狐尾藻的Fo、Fv/Fm都随着营养浓度的升高而降低,但梯度间并没有显著差异,说明营养过剩并未对粉绿狐尾藻造成严重损害。
     2、富营养环境下,光照组和遮荫组两种狐尾藻的新增节数有明显差异,因此在富营养环境下,两种狐尾藻可以通过改变节数的密度来应对弱光环境。
     3、超富营养、富营养、贫营养三种营养水平下,两种狐尾藻的总黄酮含量都随着全N含量的升高而降低,结果符合C/N平衡假说。
     4、超富营养、富营养、贫营养三种营养水平下,两种狐尾藻遮荫组的抑藻效应均明显高于光照组,而营养梯度之间的抑藻效应差异不大,所以,遮荫条件下,植株释放了更多的化感物质,光照条件比营养盐对植株化感物质的释放影响更大。
     5、不同接种藻密度下,不同种植密度粉绿狐尾藻的抑藻效应无明显差异,但在20g/L到40g/L之间是抑藻效果更好。在藻液接种密度OD=0.4时,穗状狐尾藻种植密度大于等于20g/L才能产生强烈的抑藻效应,在藻液接种密度OD=0.8时,种植密度要大于等于40g/L才能产生强烈抑藻效应,因此,穗状狐尾藻种植密度和藻液接种密度比处于一个固定比值范围内就能保持较好的抑藻效应。
     6、低浓度(OD=0.2~OD=0.5)的铜绿微囊藻液可以对狐尾藻植株产生促进作用,随着培养液中藻密度的增加,促进作用就越弱。但在藻液密度OD=0.5时,粉绿狐尾藻的生长已经开始受到抑制。
     7、不同藻类生物质下穗状狐尾藻的长度增加均超过对照组,且鲜藻液>干燥藻液>击碎藻液。击碎藻液和干燥藻液下的穗状狐尾藻湿重呈现负增长,应该是藻液的遮光效应和化感效应共同作用的结果。
The water eutrophication is a global environmental problems,the aquatic vegetalization feeling controls the algae method to govern in the water eutrophication and the water bloom phenomenon has various superiority, so this area of research by the world's attention in recent years. The former allelopathic effects research mainly stresses on the aquatic plant to algae's inhibitory action, little takes into consideration to the algae to aquatic plant's influence. The algae and the aquatic plant grow when the identical environment, has the mutual influence and the competition surely, therefore melts the allelopathic effects to both between to conduct the research mutually, may to prevent the water body eutrophication and the hydrated eruption provides scientifically, the comprehensive basis. Most of the water body eutrophication in our country, Microcystis aeruginosa`s quantity and the eruption frequency occupy certain superiority, but the water plant of a higher level like Myriophyllum aquaticum and the Myriophyllum spicatum is able to hold a strong growth. In this article through compare Myriophyllum aquaticum and Myriophyllum spicatum with different nutritional level and strength of illumination processing, is for the purpose of clarifying the environment factor to accumulate with its effective component the relations. Uses the extraction plant planter water initial increase law, the company to add methods and so on addition, has discussed different initial density factors and so on algae cell, two kind of aquatic plants different nutritional level and strength of illumination processing, different planting density and different organization spot melts the allelopathic effects to it the influence; Simultaneously uses the altogether cultivates method, studied the different algae cell, the different algae biology to confront two kind of Myriophyllum aquaticum the feeling effect influence. The findings indicated:
     1. The illumination and provides shade under the environment, Myriophyllum aquaticum's Fo, Fv/Fm elevate along with the nutrition density reduce, but between the gradient the remarkable difference, had not shown that the excess nutrient has not created the serious damage to the powder green Myriophyllum aquaticum.
     2. Under the rich nutrition environment, the illumination group and provides shade the group Myriophyllum aquaticum and Myriophyllum spicatum additional pitch numbers to have the obvious difference, therefore under the rich nutrition environment, two kind of aquatic plants may deal with the weak light environment through the change pitch number density.
     3. In the ultra rich nutrition, the rich nutrition, under the poor nutrition three nutritional levels, Myriophyllum spicatum and Myriophyllum aquaticum's total flavanone content elevate along with the entire N content reduce, finally conforms to the C/N balanced hypothesis.
     4. In the ultra rich nutrition, the rich nutrition and under the poor nutrition three nutritional levels, Myriophyllum spicatum and Myriophyllum aquaticum provide shade the group to damp the algae effect obviously to be higher than the illumination group, but between the nutrition gradient of the allelopathic inhibition effects difference not to be big, therefore, provides shade under the condition, the adult plant released the more allelochemicals, the illumination condition has affected the nutrient salt to the adult plant feeling material release is more bigger.
     5. Under the different vaccination algae density, the different planting density powder green Myriophyllum aquaticum damps the algae effect not obvious difference, but is damps the algae effect in 20g/L to 40g/L between to be better. When algae fluid vaccination density OD=0.4, the fringy Myriophyllum spicatum planting density is bigger than was equal to that 20g/L can produce intensely damps the algae effect, when algae fluid vaccination density OD=0.8, the planting density must be bigger than was equal to that 40g/L can produce damps the algae effect intensely, therefore, the fringy Myriophyllum spicatum planting density and the algae fluid vaccination density compared to is in a fixed ratio scope to be able to maintain good damps the allelopathic inhibition effects.
     6. In the low concentration (OD=0.2~OD=0.5) the verdigris Microcystis aeruginosa fluid may have the promoter action to the Myriophyllum spicatum and Myriophyllum aquaticum Along with the nutrient fluid in algae density's increase, the promoter action is weaker. But when Microcystis aeruginosa fluid density OD=0.5, the Myriophyllum aquaticum's growth already started to receive suppresses.
     7. The different algae biomass under the material the fringy Myriophyllum spicatum length is surpass increase to the control group, and the fresh algae fluid > the dry algae fluid > crushes the algae fluid. Under the crushing algae fluid and the dry algae fluid's fringy Myriophyllum spicatum wet weight presents the negative growth, should be the algae fluid shade effect and the feeling effect combined action result.
引文
BauerN, Grossart HP, Hilt S (2008) .Do bacteria influence the sensitivity of phytoplankton to allelochemicals from submerged macrophytesl InternationalAssociation of Theoretical and Applied Limnology Proceeding Montreal :307-311.
    BojanS, Gorazd K, JanaBB, et al (1998) .The role of microcystins in heavycyanobacterial bloom formation. J Plankton Res 20 (6) : 691-708.
    Bryant, J.P, I.F.S. ChapinC 1983) .Carbon/nutrient balance of boreal plants in relationto vertebrate herbivory. Oikos 40: 357-368.
    Delia GM, FerraraM, Fiorention A (1998) .Antialgal compounds fromZantrdeschiaaethiopica. Phytochemistry 49: 1299-1304.
    Everall NC,Lees DR(1997) .The identification and significance of chemicals releasedfrom decomposing barley straw during reservoir algal control. Water Research31 (3) : 614-620.
    Figueiredo DR, Azeiteiro UM, Esteves SM, et al (2004) .Microcystin-producingblooms-a serious global public health issue. Ecotoxicology and EnvironmentalSafety 59 (2) : 151-163.
    Fitzgerald GP( 1969) .Some factors in the competition or antagonism among bacteria,algae and aquatic weeds. Journal of Phycology 5: 351-359.
    Gross EM (2003) . Differential response of tellimagrandin II and total bioactivehydrolysable tannins in an aquatic angio-sperm to changes in light and nitrogen.Oikos 103:497-504.
    Harada KI, et a/(1996).Trace analysis of microcystins. Phycologia 35 (Suppl6) :36-41. Hasler AD, Jones E.Demonstration of the antagonistic action of large aquatic plantson algal and rotifers. Ecology 30 (3): 359-364.
    Hein L (2006) . Cost-efficient eutrophi cation control in a shallow lake ecosvstem subject to two states. Ecological Economics 59 (4): 36-54.
    Hong Y, Hu HY (2008) .Physiological and biochemical effects of allelochemicalethyl2-methyl acetoacetate (EMA) on cyanobacterium. Microcystis aeruginosaof Chemical Ecology 28:2223-2235.
    Padhi S B (1995) . Ecotoxicology and Environmental Safety 71: 527-534.
    KenefickSL, HrudeySE, Peterson HG, et al (1993) .Toxin release from Microcystisaeruginosa after chemical treatment. Wat. Sci. Tech 27 (3-4) : 433-440.
    Maxwell, K., G.Johnson (2000) .Ghlorophy IIflurescence-apractical guide. Journalof Expermental Botany 51: 659-668.
    McelhineyJ, LawtonLA, Leifert C (2001) .Investigations into the inhibitory effectsof microcystins on plant growth and the toxicity of plant tissues followingexposure. Toxicon 39 (9) : 1411-1420.
    Mcguigan KG, et al (1999) .Use of sunlight to decontaminate drinking water indeveloping countries. Journal of Medical Microbiology 48 (9) : 785-787.
    Mitsch W J (1998) .Ecological engineering—the 7-year itch. Ecological Engineering10: 119-130.
    Moss B (1990) .Engineering and biological approaches to the restoration fromeutrophication of lakes in which aquatic plant communities are importantcomponents. Hydrohiologia 200/201: 367-377.
    Mulderij G, Mooij WM, Van Donk GE (2005 ) .Allelopathic inhibition ofphytoplankton by exudates from. Stratiotesaloides Aquatic Botany 82: 284-296.
    Nakai S, Inoue Y? Hosomi M, et al (1999) .Growth inhibition of blue-green algaeby allelopathic effects of macrophytes. Water Science and Technology 39: 47-53.
    Nakai S, Inoue Y? Hosomi M, et al (2000) .Myriophyllum spicatum-releasedallelopathic polyphenols inhibiting growth of blue-green algae Microcystisaeruginosa. Water Research 34: 3026-3032.Algal ecology-an overview. India:International Bood Distributor 131-148.
    Putnam AR, Duke WB(1974).Biological suppression of weeds Evidence forallelopathy in accessions of cucumber. Science 185: 370-372.
    Rice EL(1984). Allelopathy (2ndedition) . New York:Academic Press: 1-50.RostitanoJ, NewcombeG, Nicholson B (2001) .Ozonation of NOM and algaltoxins in four treated water. Water Res 35 (1): 23-32.
    Sabine H, Gross EM (2008) .Can allelopathically active submerged macrophytesstabilize clear water states in shallow lakes. Basic and Applied Ecology 9:422-432.
    Sand-Jensen K, Borum J (1984) .Epiphyte shading and its effect on photosynthesisand metabolism of Lobelia dortmanna L.during the spring bloom in a Danishlake. Aauatic Botany 20:109-119.
    Sanna S, GiovanaOF, Edna G (2004). Allelopathic effects of the Baltic cyanobacteriaNodularia spumigena,Aphanizomenon flos-aquae and Anabaenalemm ermanniion algalmonocultures. Journal of Experimental Marine Biology 308: 85-101.
    ShortFT, BurdickDM, KaldyJEK (1995) .Mesocosm experiments quantify theeffects of eutrophication on eelgrass, Zostera marina. Limnology andOceanography 40: 740-749.
    Susan DR (1999) .Water analysis. Anal Chem 71 (2) : 181R-215R.
    Vasconcelos V M, Carmichael W W, Croll B, et al (1996) .Hepatotoxic microcystindiversity in cyanobacterial blooms collected in Portuguese Freshwaters. Wat Res30 (10) : 2377-2384.
    Vyvyan JR (2002) .Allelochemicals as leads for new herbicides and agrochemicals.Tetradron58: 1631-1646.
    White A J , Critchley C(1999). Rapid light curves : a new fluorescence met hod toassess the state oft he photo synthetic apparatus. Photosynth. Res 59:63-72
    Wium-Andersen S, Anthoni Houen G (1983) .Elemental sulfur, a possibleallelopathic compounds from Ceratophyllum demersum. Phytochemistry 22:2613.
    Yasuno M, Sugaya Y, OkadaM, et aK 1998).Variations in the toxicity of Microcystisspecies to Motna macrocopa. Phcological Research 46 (1): 31-36.
    蔡昌风,徐建平(2003).景观水微污染控制.安徽工程科技学院学报18(1):42-45.
    陈洪达(1989).养育对武汉东湖生态系的影响.水生生物学报13(4):359-368.
    陈建民,俞晓平,程家安(2006).叶绿素荧光动力学及其在植物抗你生理研究中的应用.浙江农业学报18(1):51-55.
    陈开宁,李文潮,吴庆龙等(2003).滇池蓝藻对沉水植物生长的影响.湖泊科学 15(4):364-368.
    陈卫民,张清敏,戴树桂(2009).苦草与铜绿微囊藻的相互化感作用.中国环境科学29(2):147-151.
    崔理华,朱夕珍,骆世明等(2002).垂直流人工湿地系统对污水磷的净化效果.环境污染治理技术与设备3(7):13-17.
    高讳等(2000).污水土壤处理试验研究.吉林地质19(3):22-25.
    郭蔚华(2002)高等水生植物修复双龙湖水体叶绿素变化试验研究.重庆环境科学24(3):45-48,87.
    韩志国等(2001).淡水水体中微囊藻毒素的监测技术.中国环境监测17(6): 35-39.
    何池全,叶居新(1999).石菖蒲(Acorus tatarlnowii)克藻效应的研究.生态学报19(5):754-758.
    贺立红,贺立静,梁红(2006).银杏不同品种叶绿素荧光参数的比较.华南农业大学学报27(4):43-46.
    黄泽波,沈银武,刘永定等(1998).鱼腥藻提取液对水稻生长发育和产量的剌进作用.水生生物学报22(3):229-235.
    姜建国,沈韫芬(2001).裁污工程完成后武汉东湖自然净化速率探讨.长江流域资源与环境10(1):460-464.
    金相灿,稻森悠平等(2007).湖泊和实地水环境.北京科学出版社:15-39.
    金相灿,李兆春,郑朔方等(2004).铜绿微囊藻生长特性研究.环境科学研究17 (增1):52.61.
    孔垂华(1998).植物化感作用研究中应注意的问题.应用生态学报9(3):332-336.
    李磊,侯文华(2007).荷花和水莲种植水对铜绿微囊藻生长的抑制作用研究.环境科学28(10):2180-2186.
    李敦海,李根保,王高鸿等(2007).水华蓝藻生物质对沉水植物五剌金鱼藻生长的影响.水生生物学报31(5):659-692.
    李锋民,胡洪营,种云霄等(2004).芦苇化感物质EMA对铜绿微囊藻生理特性的影响.中国环境科学27(3):377-381.
    李海燕,吴雨川,张跃武等(2003).城市景观水污染控制.科技进展26(3): 132-134.
    李鸿峰(2000).中国环境.中国环境报5(17):28-31.
    李小路,潘慧云,徐洁等(2008).金鱼藻与铜绿微囊藻共生情况下的化感作用.环境科学学报28(11):2243-2249.
    刘建康(1980).东湖渔业增产试验综述.海洋与湖沼11(2):185-188.
    彭少麟,邵华(2001).化感作用的研究意义及发展前景.应用生态学报12(5): 780-786.
    任南,严国安,马剑敏等(1996).环境因子对东湖大型水生植物的影响研究.武汉大学学报(自然科学版)42:213-217.
    施银桃,曾庆福,陆晓华(2001).湖水净化研究进展.自然杂志23(1):15-19.
    司友斌,包军杰,曹德菊等(2003).香根草对富营养化水体净化效果研究.应用生态学报14(2):277-279.
    孙文浩,俞子文,余叔文(1988).水葫芦对藻类的克制效应.植物生理学报14 (3):294-300.
    孙文浩,俞子文,余叔文(1989).城市富营养化水域的生物治理和风眼莲抑制藻类生长的机理.环境科学学报9(2):188-195.
    唐萍,吴国容,陆长梅等(2000).风眼莲根系分泌物对栅藻结构及代谢的影响.环境科学学报20(3):355-359.
    屠清瑛,张信宝(2000).湖泊富营养化的综合防治战略与实践.中国湖泊富营养化及其防治国际学术研讨会专家论文集:224-228.
    万宏,张昀(2000).降解稻草对蓝藻生长的抑制作用.北京大学学报(自然科学版)36(4):485-488.
    王国祥,成小英,濮培民(2002).湖泊藻型富营养化控制——技术、理论及应用.湖泊科学14(3):273-282.
    王立新,吴国荣,王建安等(2004).黑藻对铜绿微囊藻抑制作用.湖泊科学16 (4):337-342.
    吴程,常学秀,董红娟等(2008).粉绿孤尾藻(Myrriophllum aquaticum)对铜绿微囊藻(Micrcystls aeruglnosa)的化感抑制效应及其生理机制.生态学报 6(28):2595-2602.
    吴振斌,邱东茹,贺锋等(2001).水生植物对付营养水体水质净化作用研究.武汉植物学研究19(4):299-303.
    夏汉平(2000).香根草和水花生对垃圾污水中N、P、Cl的吸收效果.植物生态学报24(5):613-616.
    鲜啟呜,陈海东,邹惠仙等(2006).沉水植物中挥发性物质对铜绿微囊藻的化感作用.生态学报:3549-3554.
    谢雄飞,肖锦(2000).水体度营养化问题评述.四川环境19(2):22-25.
    许木启,黄玉瑶(1998).受损水域生态系统恢复与重建研究.生态学报18(5): 547.558.
    阎飞,杨振明,韩丽梅(2000).植物化感作用及其作用物的研究方法.生态学报20(4):629.696.
    阳承胜,蓝崇钰,张干(2005).N、P、K在宽叶香蒲人工湿地系统中的分布与积累.深圳大学学报(理工版)22(3):264-268.
    尹黎燕,黄家权,李敦海等(2004).微囊藻毒素对沉水植物苦草生长发育的影响.水生生物学报28(2):147-150.
    袁东海,任全进,高士祥等(2004).集中湿地植物净化生活污水COD、总氮的比较.应用生态学报15(12):2337-2341.
    袁峻峰,章宗涉(1993).金鱼藻对藻类的升华干预作用.生态学报13:45-50.
    曾宇,秦松(2000).光台细菌法在水处理中的应用.城市环境与城市生态13 (6):76-78.
    曾爱平,刘洪见,施于文(2009).不同沉水植物水质改善效应研究.浙江农业科学(5):1000-1002.
    张宇,王圣瑞,李重祥等(2009).沉水植物对富营养化水体的修复作用及其研究展望.内蒙古草业21(4):17-21.
    张建平,谢洁,赵井泉等(2001).多管藻种R-藻蓝蛋白能量传递途径及动力学.生物物理学报17(4):767-772.
    张守仁(1999).叶绿素荧光动力学参数的意义及讨论.植物学通报16(4)
    张维吴,徐小清,丘昌强(2001).水环境中微囊藻毒素研究进展.环境科学研究
    张维吴,周连风,吴小刚(2006).菖蒲对铜绿微囊藻的化感作用.中国环境科学
    张艳丽,芦鹏,吴晓芙(2006).植物化感作用在抑藻方面的研究进展.环境科学与管理31(7):50-52.
    庄源益,赵凡,戴树桂等(1995).高等水生植物对藻类生长的克制效应.环境科学进展3(6):44-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700