稻—麦轮作系统有机无机肥配施协同土壤氮素转化的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻和小麦是世界上最重要的主食作物。水稻—小麦轮作(R—W)是南亚各国普遍采取的耕作措施。在中国,R—W主要分布于长江流域,面积达1300万hm2。R→W的稳定生产关系到中国乃至世界的粮食安全。
     R—W系统中,作物籽粒产量的可持续生产依赖于既能满足作物需求,又能减少损失并最大化其利用率的养分管理。有机无机氮肥的配合施用(IOF)就是一种有望能实现此目标的施肥模式并已在R—W系统广泛应用。然而,当前的研究主要集中在其生物效应方面,有关IOF处理有机肥氮和无机肥氮的相互作用还没有详尽的报道,而探讨有机无机肥氮的协同效应有助于更深入了解不同形态氮素的转化及其作物利用,为高效利用肥料氮提供依据。
     采用盆栽模拟生物试验,设置5个处理:对照无氮处理(CK),无机氮肥处理(IF),有机氮肥处理(OF)和两个有机无机肥氮配施的处理,其中一个15N标记有机肥氮(IOF1),另一个15N标记无机肥氮(IOF2)。选用质地不同的两种土壤(粘壤土和黏土),以15N标记的硫酸铵和兔子粪作为无机氮和有机氮的氮源,研究了稻—麦轮作(R—W)系统肥料氮仅施用在水稻第一季(O. sativa L. cv. Wuyujing 7)(记为R—W系统)和小麦(Triticum aestivum L.cv Yangmai 6)第一季(记为W—R系统)后的转化利用情况。考虑到肥料氮施用后,相当一部分残留于土壤当中,本研究侧重于第一季肥料氮在土壤的残留及其残留氮素对第二季轮作作物有效性方面的研究。主要结果如下:
     在R—-W系统水稻季:1)IF与IOF处理水稻籽粒产量没有显著差异;2)无论粘壤土还是黏土,IF处理肥料氮吸收利用率(NUE)值最大,其次为IOF1和IOF2处理,OF处理最低,IOF处理相比IF处理其NUE在粘壤土和黏土分别约低20%和25%以上。与IF或OF处理相比,IOF处理有机肥氮显著降低了水稻植株对无机肥15N的吸收量,而无机肥氮却增加了籽粒和植株对有机肥15N的吸收量;3)与IF或OF处理相比,IOF处理有机肥氮的存在增加了无机肥15N在土壤矿质氮库和微生物量氮(MBN)库的分配,促进了无机肥15N在土壤氮库的残留,降低了损失率,粘壤土和黏土降幅分别为12%和28%;4)植株体内回收的肥料15N大部分积累在水稻籽粒(53%~78%),有机肥氮是IOF处理水稻籽粒氮素相对分配增加的主要贡献者。
     在R—W系统小麦季:1)粘壤土和黏土上IOF处理其小麦籽粒产量均达到最大,且黏土上OF处理籽粒产量与IOF处理相当;2)与IF处理相比,IOF处理小麦分蘖期、拔节期以及穗期均保持了较高的矿质氮含量和MBN含量;3)粘壤土上IOF处理较高的矿质氮含量主要来自有机肥15N和无机肥15N,而黏土上主要来自无机肥15N。两种土壤上IOF处理较高的MBN均主要来自无机肥15N;4)IOF处理相比IF处理其肥料氮的吸收利用率显著增加,黏土上增幅达173%。IOF处理有机肥氮的存在促进了土壤和小麦植株对无机肥15N的回收残留,而无机肥氮的存在也促进了黏土上有机肥’5N的回收残留;5)小麦籽粒积累了超过80%的植株体内肥料15N的回收量,IOF处理有机肥氮促进了无机肥15N在小麦营养器官的分配。
     在W—-R系统小麦季:1)无论粘壤土还是黏土,IF和IOF处理小麦籽粒产量最高,且两处理间无显著差异;2)IOF处理无机肥氮的存在显著提高了小麦籽粒和植株对有机肥15N的吸收,粘壤土和黏土籽粒增幅分别为514%和133.3%,而植株增幅分别达216%和100%,同时有机肥氮的存在降低了其对无机肥15N的吸收,粘壤土和黏土籽粒、植株降幅分别约为30%和15%;3)IOF处理相比OF处理其NUE显著增加,粘壤土和黏土上增幅分别约为114%和85%。与IF或OF处理相比,IOF处理有机肥氮降低了无机肥15N,而无机肥氮增加了有机肥15N在土壤矿质氮库的残留。而在MBN库,IOF处理有机肥氮和无机肥氮协同促进了对方的残留;4)与IF或OF相比,粘壤土上IOF处理增加了无机肥15N和有机肥15N在小麦营养器官的积累,而在黏土上增加了无机肥15N在营养器官、有机肥15N在生殖器官的积累。
     在W—R系统水稻季:1)粘壤土和黏土上IOF处理水稻籽粒产量均高于IF处理;2)与IF处理相比,IOF处理其矿质氮含量均保持较高水平,且IOF处理显著增加了粘壤土上穗期和黏土上分蘖期、拔节期、穗期土壤矿质氮中来自于无机肥15N的比例。此外,IOF处理显著增加了黏土上分蘖期和拔节期MBN中来自于有机肥15N,粘壤土和黏土上分蘖期、拔节期、穗期以及成熟期来自于无机肥15N的比例;3)IOF处理有机肥氮促进了小麦季残留无机肥15N在水稻生殖器官籽粒的分配比例,降低了其在叶片等营养器官的分配比例。与之相反,IOF处理无机肥氮降低了小麦季残留有机肥15N在水稻生殖器官籽粒的分配比例,降幅约为20%,却增加其在叶片等营养器官的分配比例;4)IOF处理相比IF处理其NUE显著增加。与IF或OF处理相比,IOF处理无机肥氮促进了有机肥15N在土壤的残留,而无机肥氮促进了有机肥15N在植株和土壤的回收利用。同时,有机肥氮和无机肥氮的协同降低了各自向环境的损失,降幅均达15%以上。
     结合四季盆栽试验数据,对比发现:1)W—R系统各处理总生物量显著高于R—W系统,尤其是OF处理。W—R系统OF处理总籽粒产量显著高于R—W系统对应值,粘壤土和黏土上分别高81%和23%,其余各处理总籽粒产量在两系统间没有显著差异;2)无论粘壤土还是黏土,OF处理NUE在W—R系统相对较高;3)同一处理的NUE、肥料15N利用率(15NUE)、肥料15N损失率(15NLR)在不同系统、不同土壤上存在较大差异,表明土壤质地、施肥方法、施肥季节显著影响着稻—麦轮作系统中肥料氮的利用和损失。
     综上所述,IOF处理模式降低无机肥投入的同时,保持了作物籽粒的产量。肥料氮施用当季,IOF处理提高了有机肥氮的吸收利用。IOF处理有机肥氮促进了无机肥15N在土壤MBN库的固持,而在第二季又促进了其逐渐释放,提高了无机肥氮的吸收利用。IOF处理相比IF或OF处理增加了肥料15N在作物-土壤系统的回收,减少了向环境的损失。在稻—麦轮作系统,土壤质地、施肥方法、施肥季节显著影响着肥料氮的利用和损失,实践中需从系统水平综合考虑各个影响因子,进行施肥运筹。
Both rice and wheat are the most important staple food crops in the world. In South Asia, most rice and wheat are grown in rice-wheat rotation system (R—W). R—W cropping has been widely practiced along the Yangtze River Basin in China with a total area of 13 million hectares. Therefore, it is critical for sustained production of R—W cropping to ensure the food security for China, and even for the whole world.
     The sustained grain production in R—W system depends mostly on better nutrient management satisifying crop demands both minimizing loss and maximizing the use efficiency. The integrated use of inorganic and organic N fertilizers (IOF) is a promising approach to achieve this requirement. However, previous studies were mainly concentrated on its biological effect in the R—W system; few report was on transformation and distribution of fertilizers nitrogen (N) among different soil N pools and plant parts. Moreover, little literature could be found on the interactive effects between organic and inorganic N fertilizers. It is helpful in investigating transformation mechanisms and interaction effects of different fertilizer N types for high utilization efficiency.
     Pot experiments were employed in present study with five treatments, namely, inorganic fertilizer N (IF), organic fertilizer N (OF), integrated inorganic fertilizer and organic fertilizer (IOF) with different 15N labelling at organic fertilizer N (IOF1) and inorganic fertilizer N (IOF2) and no fertilizer N as control (CK). Two soils with contrast textures (clay loam and clay) were selected, and 15N-labelled ammonium sulphate and rabbit feces were used as IF and OF sources, respectively. To investigate the availability of the soil residual N for subsequent crop, fertilizer N was applied only to rice (O. sativa L. cv. Wuyujing 7) season or only to winter wheat (Triticum aestivum L.cv Yangmai 6) season in R—W rotations and recorded as R—W system or W—R system accordingly.
     In the case that N was applied to only rice season in the R—W system, results for the current rice season showed that 1) grain yields were similar among IF and IOF treatments, 2) In two soils, clay loam and clay, NUE was lower in the IOF treament than in the IF treatment by more than 20% and 25%, respectively. In comparison with the treatment IF or OF alone, organic fertilizer N decreased the plant uptake of inorganic fertilizer 15N while inorganic fertilizer N increased the uptake of organic fertilizer 15N in grain and plants in the IOF treatments,3) for the treatment IOF, organic fertilizer N increased soil residual N and MBN pools of inorganic fertilizer 15N and thus reduced its loss by 12% in the clay loam and 28% in the clay, while inorganic fertilizer N increased N accumulation of organic fertilizer 15N fertilizer in rice grains in both clay loam and clay, and 4) fertilizer 15N recovered by plant was mainly (53% to 78%) allocated to rice grain and organic fertilizer N was the main contributor to grain N increase for the IOF treatment.
     Results for the subsequent winter wheat season in the R—W system showed that 1) treatment IOF produced the highest grain yields and treatment OF also gave similarly high grain yield in the clay,2) in comparison with the treatment IF, IOF treatment resulted in higher soil mineral N and MBN at tillering, jointing and heading stages of winter wheat,3) the increased soil mineral N in the IOF treatment was mainly derived from organic and inorganic fertilizer 15N for the clay loam, while for the clay, inorganic fertilizer 15N was the main contributor. The increased MBN in the IOF treatment was mainly derived from inorganic fertilizer 15N,4) IOF treament increased NUE compared with IF with 173% increase in the clay. In the IOF treatmet, organic fertilizer N increased the recovery of inorganic fertilizer 15N in soil and plant, while inorgaic fertilizer N increased the recovery of organic fertilizer 15N in the clay only, and 5) more than 80% of fertilizer 15N recovered by plant was accumulated in grain part and for the IOF treatment, organic fertilizer N increased the distribution rate of inorganic fertilizer 15N in vegetative organs of winter wheat.
     In the case that N was applied to only winter wheat season in the W—R system, results showed that 1) treatments IF and IOF produced the highest grain yields without significant difference,2) for the IOF treatment, inorganic fertilizer N enhanced N uptake of organic fertilizer 15N by grain and plant parts in the clay loam and clay to 514% and 133.3% for grain and 216% and 100% for plant, respectively whereas decreased uptake of inorganic fertilizer 15N by 30% for grain and 15% for plant, respectively,3) for the IOF treatment, inorganic fertilizer N increased plant uptake of organic fertilizer 15N while organic fertilizer N increased the soil residual N and MBN pools of inorganic fertilizer 15N, and 4) compared with OF, IOF treatment increased NUE by about 114% and 85% in the clay loam and clay, respectively. Compared with the IF or OF treatment, IOF treatment increased the accumulation of both inorganic and organic fertilizer 15N in vegetative organs in the clay loam, while for the clay, increased only inorganic fertilizer 15N in vegetative organs and organic fertilizer 15N in reproductive organs.
     For the subsequent rice season in the W—R system, results showed that 1) IOF treatment gave higher grain yields than IF treatment for both soils,2) compared with the IF, IOF maintained higher soil mineral N content. IOF treatment increased inorganic fertilizer 15N derived soil mineral N at heading stage in the clay loam and at tillering, jointing and heading stages in the clay. In addition, IOF treatment increased organic fertilizer 15N derived MBN at tillering and jointing stages in the clay, and inorganic fertilizer 15N at tillering, jointing and heading stages in both soils,3) organic fertilizer N increased the distribution rate of soil residual inorganic fertilizer 15N in reproductive organs, whereas inorganic fertilizer N decreased the distribution rate of soil residual organic fertilizer 15N in reproductive organs by about 20% but increased in vegetative organs, and 4) IOF treatment increased NUE of inorganic fertilizer N relative to IF treatment. In comparison with the IF or OF, organic fertilizer N increased plant uptake and soil residual of inorganic fertilizer 15N. Similarly, inorganic fertilizer N increased soil retention rate of organic fertilizer 15N. As a result, the losses of inorganic and organic fertilizer 15N were decreased by more than 15%.
     N utilization efficiency in the two consecutive crops was compared between the R—W and W—R systems. Results demonstrated that 1) W—R system yielded higher plant biomass than R—W system, without significant difference in grain yields except that W—R gave higher grain yield than R—W for OF treatment by 81% in the clay loam and 23% in the clay, than R—W system, without significant difference in grain yields except that W—R gave higher grain yield than R—W for OF treatment by 81% in the clay loam and 23% in the clay,2) W—R system had higher fertilizer N use efficiency (NUE) for OF treatment than R—W system both in clay loam and clay, and 3) NUE, fertilizer 15N use efficiency (15NUE), and fertilizer 15N loss rate (15NLR) under the same treatment within the two soils differed between R—W and W—R, suggesting that soil textures, fertilization methods and its application season have a significant effect on the transformation and fate of fertilizer N in the rice—wheat system.
     In summary, IOF approch produced similarly high grain yield for rice and winter wheat at reduced cost of inorganic fertilizer. During fertilizer application season IOF treatment increased the NUE of organic fertilizer N, while in the succeeding season increased the NUE of inorganic fertilizer N. In the IOF treament organic fertilizer N increased the immobilization of inorganic fertilizer 15N in soil MBN pool for the first crop season which will gradually release during the succeeding crop season. Moreover, IOF increased the recovery of fertilizer N in plant-soil system and thus decreased N loss to the environment. In the rice—wheat system, soil textures, fertilization methods and its application season have a significant effect on the transformation and fate of fertilizer N, thus all factors should be considered synthetically in the fertilization managements above a system level.
引文
[1]Abbasi M K, Hussain F, Majid S A. Changes in the behaviour and physical and chemical characteristics of soil after adding Populus euramericana leaves[J]. Sci Tech Develop,2002,21: 15-19
    [2]Abbasi M K, Shah Z, Adams W A. Effect of the nitrification inhibitor nitrapyrin on the fate of nitrogen applied to a soil incubated under laboratory conditions[J]. J Plant Nutr Soil Sci,2003, 166:513-518
    [3]Aguilera J F. Improvement of olive cake and grape by-products for animal nutrition[M]. In:van der Meer J M et al. (Eds) Degradation of Lignocellulosics in Ruminants and in Industrial Processes. Elsevier Applied Science, London,1987:45-54
    [4]Ahmad I, Abbasi M K, Rasool G. Integrated plant nutrition system (IPNS) in wheat under rainfed conditions of Rawalakot Azad Jammu and Kashmir[J]. Pak J Soil Sci,2002,21:79-86
    [5]Alburquerque J A, Gonzalvez J, Garcla D, et al. Effects of a compost made from the solid by-product ("alperujo") of the two-phase centrifugation system for olive oil extraction and cotton gin waste on growth and nutrient content of ryegrass (Lolium perenne L.) [J]. Bioresource Technol,2007,98:940-945
    [6]Arkhipchenko I A, Shaposhnikov A I, Kravchenko L V. Tryptophan concentration of animal wastes and organic fertilizers[J]. Appl Soil Ecol,2006,34:62-64
    [7]Arnold P W, Hunter F, Fernandez P G. Long-term grassland experiments at Cockle Park[J]. Ann Agron,1976,27:1027-1042
    [8]Asman W A H, van Jarrsveld J A. A variable resolution transport model applied for NHx in Europe [J]. Atmos Environ,1992,26:445-464
    [9]Baeta-Hall L, Saagua M C, Bartolomeu M L, et al. Biodegradation of olive oil husks in composting aerated piles[J]. Bioresource Technol,2005,96:69-78
    [10]Baker K F. Evolving concepts of biological control of plant pathogens[J]. Annu Rev Phytopathol, 1987,25:67-85
    [11]Bazzoffi B, Pellegrini S, Rocchini A, et al. The effect of urban refuse compost and different tractors tyres on soil physical properties, soil erosion and maize yield[J]. Soil Tillage Res,1998, 48:275-286
    [12]Bhattacharyya P, Chakrabarti K, Chakraborty A, et al. Municipal waste compost as an alternative to cattle manure for supplying potassium to lowland rice[J]. Chemosphere,2007,66:1789-1793
    [13]Boehm M J, Hoitink H A J. Sustenance of microbial activity in potting mixes and its impact on severity of Pythium root rot of poinsettia[J]. Phytopathology,1992,82:259-264
    [14]Bohlen P J, Edwards W M, Edwards C A. Earthworm community structure and diversity in experimental agricultural watersheds in Northeastern Ohio[J]. Plant Soil,1995,170:233-239
    [15]Boman R K, Taylor S L, Raun W R, et al. The Magruder Plots:A Century of Wheat Research in Oklahoma[M]. Department of Agronomy, Ok-lahoma State University,Stillwater, Oklahoma, 1996
    [16]Brouwer J, Powell J M. Increasing nutrient efficiency in West-African agriculture:The impact of micro-topography on nutrient leaching from cattle and sheep manure[J]. Agr Ecosyst Environ, 1998,71:229-239
    [17]Bulluck L R, Brosius M, Evanylo G K, et al. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms[J]. Appl Soil Ecol,2002,19:147-160
    [18]Bustamante M A, Perez-Murcia M D, Paredes C, et al. Short-term carbon and nitrogen mineralisation in soil amended with winery and distillery organic wastes[J]. Bioresource Technol, 2006,98:3269-3277
    [19]Buyanovsky G A, Brown J R, Wagner G H. Sanborn Field:Effect of 100 years cropping on soil parameters influencing productivity[M]. In:Paul E A, Elliot E T,Elliot K, et al.(eds) Soil Organic Matter in Temperate Agroecosystems. Long-Term Experiments in North America CRC Press, Boca Raton, Florida
    [20]Celik I, Ortas I, Kilic S. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil[J]. Soil Tillage Res,2004,78:59-67
    [21]Central Statistical Organisation. Statistical abstracts. Department of Statistics, Ministry of Planning, Government of India, Dehli,2000
    [22]Chambers B J, Smith K A, Pains B F. Strategies to encourage better use of nitrogen in animal manures[J]. Soil Use Manage,2000,16:157-161
    [23]Cheng H F, Xu W P, Liu J L, et al. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth[J]. Ecol Eng,2007,29:96-104
    [24]Choi W J, Ro H M, Chang S X. Recovery of fertilizer-derived inorganic-15N in a vegetable field soil as affected by application of an organic amendment[J]. Plant Soil,2004,263:191-201
    [25]Chonker P K, Datta S P, Joshi H C, et al. Impact of industrial effluents on soil health and agriculture—Indian experience. Part Ⅰ:distillery and paper mill effluents[J]. J Scientific Ind Res, 2000,59:350-361
    [26]Christensen B T, Petersen J, Kjellerup V, et al. The Askov long-term experiments on animal manure andmineral fertilizers:1894-1994[C].SP Report No 3, April 1994. Danish Institute of Plant and Soil Science, Skovbrynet, Lyngby, Denmark,1994
    [27]Cook R J. Twenty-five years of progress towards biological control[M]. In:Hornby (Eds) Biological Control of Soil-Borne Pathogens. C A B. International, Wallingford, UK,1990
    [28]Dawe D, Frolking S, Li C S. Trends in rice-wheat area in China[J]. Field Crops Res,2004,87: 89-95
    [29]Day A D, Katterman F R H. Sewage sludge provides plant growth factors in arid environments[J]. J Arid Environ,1992,23:229-233
    [30]Edmeades D C. The long-term effects of manures and fertilizers on soil productivity and quality: a review[J]. Nutr Cycl Agroecosyst,2003,66:165-180
    [31]Edwards L, Burney J R, Richter G, et al. Evaluation of compost and straw mulching on soil-loss characteristics in erosion plots of potatoes in Prince Edward Island, Canada [J]. Agr Ecosyst Environ,2000,81:217-222
    [32]Eghball B, Gilley J E. Phosphorus and nitrogen in run-off following beef cattle manure or compost application[J]. J Environ Qual,1999,28:1201-1210
    [33]Eneji A E, Inanaga S, Li X, et al. Effectiveness of Mulching vs. Incorporation of Composted Cattle Manure in Soil Water Conservation for Wheat Based on Eco-Physiological Parameters [J]. J Agron Crop Sci,2001,194:26-33
    [34]Erzengin M, Kiiciik M M. Liquefaction of sunflower stalk by using supercritical extraction[J]. Energ Convers Manage,1998,39:1203-1206
    [35]Felipoo M T. Compost as a source of organic matter in Mediterranean soils[M]. In:de Bertoldi M, Sequi P, Lemmes B, Papi T(Eds) The Science of Composting. Blackie Academic and Professional, Glasgow, UK,1996.403-412
    [36]Ferreras L, Gomez E, Toresani S, et al. Effect of organic amendments on some physical,chemical and biological properties in a horticultural soil[J]. Bioresource Technol,2006,97:635-640
    [37]Fixon P E, West F B. Nitrogen fertilizers:meeting contemporary challenges [J]. Amibo,2002,31: 169-176
    [38]Food and Agriculture Organisation.1989
    [39]Fertilizer and Food production, FAO Fertilizer Program.1961-1986, Rome, Italy
    [40]Food and Agriculture Organisation. FAOSTAT database,2003. http://www.fao.org
    [41]Food and Agriculture Organisation. FAOSTATdata,2004. http://faostat.fao.org/faostat/collections? version=ext&hasbulk=0&subset=agriculture (Select Fertilizer, then China, TOTAL FERTI-LIZERS+, Consumptions,1980 and 2000
    [42]Filippi C, Bedini S, Levi-Minzi R, et al. Composting of olive mill by-products:chemical and microbiological evaluations[J]. Compost Sci Util,2002,10:63-71
    [43]Frankenberger W T Jr, Arshad M. Auxins in phytohormones in soils[M]. Microb Product Funct, 1995:17-136
    [44]Gentile R, Vanlauwe B, Chivenge P, et al. Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations [J]. Soil Biol Biochem,2008,40:2375-2384
    [45]Gil M V, Carballo M, Calvo L F. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients[J]. Waste Manag,2007,28:1472-1440
    [46]Giusquiani P L, Pagliai M, Gigliotto G, et al. Urban waste compost:effects on physical, chemical, and biochemical soil properties[J]. J Environ Qual,1995,24:175-182
    [47]Hati K M, Biswas A K, Bandyopadhyay K K, et al. Soil properties and crop yields on a vertisol in India with application of distillery effluent[J]. Soil Till Res,2007,92:60-68
    [48]Hoitink H A J, Boehm M J, Hadar Y. Mechanisms of suppression of soil borne plant pathogens in compost[M]. In:Hoitink H A J, Keener H (Eds) Science and Engineering of Composting:Design, Environmental, Microbiological, and Utilization Aspects, Renaissance Publications, Worthington, 1993:602-621
    [49]Husted S, Schjoerring J K. Ammonia flux between oilseed rape plants and the atmosphere in response to changes in leaf temperature, light Intensity, and air humidity[J]. Plant physiol,1996, 112:67-74
    [50]Iniguez-Covarrubias G, Franco-Gomez M D J, Pena-Romero M, et al. Evaluation of the protein quality of solids recovered from hog manure slurry[J]. Agr Waste,1986,16:113-120
    [51]Juma N G, Robertson J A, Izaurralde R C, et al. Breton, Alberta:crop rotations on a northern wooded soil[M]. In:Paul E A, Elliot E T, Paustian K et al. (eds) Soil Organic Matter in Temperate Agroecosystems. Long-TermExperiments in North America.CRC Press, Boca Raton, Florida,1997
    [52]Kaya Y, Sengul M, Ogutcu H, et al. The possibility of useful usage of biodegradation products of sunflower plants[J]. Bioresource Technol,2006,97:599-604
    [53]Kravchenko L V, Leonova E I, Tikhonovich I A. Effect of root exudates of non-legume plants on the response of auxin production by associated diazotrophs[J]. Microb Release,1994,2:267-271
    [54]Ladha J K, Fischer K S, Hossain M, et al. Improving the productivity and sustainability of rice-wheat systems of the Indo-Gangetic Plains:a synthesis of NARS-IRRI partnership research [C]. Discussion paper no 40. International Rice Research Institute, Makati City, Philippines,2000: 1-31
    [55]Landry H, Thirion F, Lague C, et al. Numerical modeling of the flow of organic fertilizers in land application equipment[J]. Comput Electron Agr,2006,51:35-53
    [56]Larcheveque M, Ballini C, Korboulewsky N, et al. The use of compost in afforestation of Mediterranean areas:Effects on soil properties and young tree seedlings[J]. Sci Total Environ, 2006,369:220-230
    [57]Ledgard S F, De Klein, Crush J R et al. Dairy fanning, nitrogen losses and nitrate-sensitive areas. Proc. New Zealand Soc[J]. Animal Production,2000,60:256-260
    [58]Lerch R N, Barbarick K A, Sommers L E, et al. Sewage sludge proteins as labile carbon and nitrogen sources[J]. Soil Sci Soc Am J,1992,56:1470-1476
    [59]Leroy B L M M, Bommele L, Reheul D, et al. The application of vegetable, fruit and garden waste (VFG) compost in addition to cattle slurry in a silage maize monoculture:Effects on soil fauna and yield[J]. Eur J Soil Biol,2006,43:1-10
    [60]Louli V, Ragoussis N, Magoulas K. Recovery of phenolic antioxidants from wine industry by-products[J]. Bioresource Technol,2004,92:201-208
    [61]Mandal A, Patra A K, Singh D, et al. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages[J]. Bioresource Technol,2006,98:3585-3592
    [62]Manna M C, Swarup A, Wanjari R H, et al. Soil organic matter in a West Bengal Inceptisol after 30 years of multiple cropping and fertilization [J]. Soil Sci Soc Am J,2006,70:121-129
    [63]Martinez F, Cuevas G, Calvo R, et al. Biowaste effects on soil and native plants in semiarid ecosystem[J]. J Environ Qual,2003,32:472-479
    [64]Marechal V, Rigal L. Characterization of by-products of sunflower culture-commercial applications for stalks and heads[J]. Ind Crop Prod,1999,10:185-200
    [65]Marinari S, Masciandaro G, Ceccanti B, et al. Influence of organic and mineral fertilisers on soil biological and physical properties [J]. Bioresource Technol,2000,72:9-17
    [66]McKay HM, Moffat A J. GB experience in the last decade:from research to practice. Biosolids utilisation in forestry[C]. International Workshop,29-30 March 2001, Bordeaux, France. INRA editions
    [67]Melero S, Madejon E, Ruiz J C, et al. Chemical and biochemical properties of a clayey soil under dryland agriculture system as affected by organic fertilization [J]. Eur J Agron,2007,26:327-334
    [68]Melero S, Porras J C R, Herencia J F, et al. Chemical and biochemical properties in a silty loam soil under conventional and organic management[J]. Soil Till Res,2006,90:162-170
    [69]Monaco S, Hatch D J, Sacco D, et al. Changes in chemical and biochemical soil properties induced by 11-yr repeated additions of different organic materials in maize-based forage systems[J]. Soil Biol Biochem,2008,40:608-615
    [70]Moure J. Recuperacion de tartrato de calcio en las destilerias vinicolas, Aliment[J]. Equip Tecnol, 1994,8:57-61
    [71]Palm A C, Gachengo C N, Delve R J, et al. Organic inputs for soil fertility management in tropical agroecosystems:application of an organic resource database[J]. Agr Ecosys Environ, 2004,83:27-42
    [72]Parkinson R, Gibbs P, Burchett S, et al. Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure[J]. Bioresource Technol,2004,91:171-178
    [73]Pathak H, Joshi H C, Chaudhary A, et al. Soil amendment with distillery effluent for wheat and rice cultivation[J]. Water Air Soil Pollut,1999,113:133-140
    [74]Parkinson R, Gibbs P, Burchett S, et al. Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure[J]. Bioresource Technol,2004,91:171-178
    [75]Place F, Barrett C B, Freeman H A, et al. Prospects for integrated soil fertility management using organic and inorganic inputs:evidence from smallholder African agricultural systems[J]. Food Policy,2003,28:365-378
    [76]Rasmussen P E, Smiley R W, Pendalton O R. Crop residue experiment[M]. In:Paul E A, Elliot E T, Paustian K, Cole C V (eds) Soil Organic Matter in Temperate Ag-roecosystems. Long- Term Experiments in North America.CRC Press, Boca Raton, Florida,1997
    [77]Sequi P. The role of composting in sustainable agriculture[M]. In:de Bertold M, Sequi P, Lemmes B Papi T (Eds) The Science of Composting. Blackie Academic and Professional, Glasgow, UK,1996:23-29
    [78]Sharma PK, Ladha J K, Verma T S, et al. Rice-wheat productivity and nutrient status in a lantana-(Lantana spp.)amended soil[J]. Biol Fertil Soils,2003,37:108-114
    [79]Soumare M, Tack F M G, Verloo M G. Effects of a municipal solid waste compost and mineral fertilization on plant growth in two tropical agricultural soils of Mali[J]. Bioresource Technol, 2003,86:15-20
    [80]Stamatiadis S, Doran J W, Kettler T. Field and laboratoryevaluation of soil quality changes resulting from injection of liquid sewage sludge[J]. Appl Soil Ecol,1999,12:263-272
    [81]Timsina J, Singh S B, Timsina D. Integration of crop, animal, and tree in rice-based farming systems of hills and Terai of Nepal:some successful cases[C]. In:Proceedings of the third international workshop on crop-animal systems research. IRRI, Los Banos, Philippines,1991: 234-255
    [82]Vaccarino C, Tripodo M M, Lo Curto R B, et al. The effects of NaOH treatments of grape-marc vinasse and wheat-straw mixtures on their degradability in vitro[J]. Bioresource Technol,1993, 44:197-202
    [83]van Bruggen A H C, Semenov A M. In search of biological indicators for soil health and disease suppression[J]. Appl Soil Ecol,1993,15:13-24
    [84]Vanlauwe B, Diels J, Aihou K, et al. Direct interactions between N fertilizer and organic matter: evidence from trials with 15N-labelled fertilizer[M]. In:Vanlauwe B, Diels J, Sanginga, N et al. (Eds) Integrated Plant Nutrient Management in Sub-Saharan Africa:from Concept to Practice. CAB International, New York,2002:173-184
    [85]Vriens L, Nihoul R, Verachtert H. Activated sludges as animal feed:a review[J]. Biol Wastes, 1989,27:161-207
    [86]Wu H S, Yang X M, Fan J Q, et al. Suppression of fusarium wilt of watermelon by a bio-organic fertilizer[J]. Biol Control,2009,54:287-295
    [87]Yaduvanshi N P S. Substitution of inorganic fertilizers by organic manures and the effect on soil fertility in rice-wheat rotation on reclaimed sodic soil in India[J]. J Agr Sci,2003,140:161-168
    [88]蔡延江,王连峰,温丽燕,等.培养实验研究长期不同施肥制度下中层黑土氧化亚氮的排放特征[J].农业环境科学学报,2008,27(2):617-621
    [89]曾江海,王智平,张玉铭,等.小麦-玉米轮作期土壤排放N20通量及总量估算[J].环境科学,1995,16(1):32-35
    [90]陈双臣,贺超兴,邹志荣,等.温室有机土栽培番茄营养吸收特性研究[J].植物营养与肥料学报,2005,11(3):369-374
    [91]丁洪,蔡贵信,王跃思,等.玉米一小麦轮作系统中氮肥反硝化损失与N20排放量[J].农业环境科学学报,2003,22(5):557-560
    [92]董玉红,欧阳竹,李运生,等.不同施肥方式对农田土壤CO2和N20排放的影响[J].中国土壤与肥料,2007,4(4):34-39
    [93]郭胜利,党廷辉,郝明德.施肥对半干旱地区小麦产量、N03-N累积和水分平衡的影响[J].中国农业科学,2005,38(4):754-760
    [94]韩晓日,郑国砥,刘晓燕,等.有机肥与化肥配合施用土壤微生物量氮动态、来源和供氮特征[J].中国农业科学,2007,40(4):765-772
    [95]黄东迈,朱培立,高家骅.有机、无机肥氮在水稻—土壤系统中的转化与分配[J].土壤学报,1981,18(2):108-120
    [96]黄东迈,朱培立,高家骅.有机、无机态肥料氮在水田和旱地的残留效应[J].中国科学B辑,1982,10:907-912
    [97]黄鸿翔,李书田,李向林,等.我国有机肥的现状与发展前景分析[J].土壤肥料,2006,1:3-8
    [98]靳乐山,王金南.中国农业发展对环境的影响分析[M].北京:中国环境科学出版社,2004:74-105
    [99]金维续,余永年,王小平,等.有机-无机肥料配合施用研究的进展(1973-1983)[J].土壤肥料, 1983.3:8-10
    [100]金维续,赵学蕴,王小平,等.厩肥与氮肥配合对蔬菜品质影响的研究[J].中国农业科学,1985,3:52-56
    [101]金维续.提高农作物产品品质的施肥技术[J].土壤肥料,1991,4:9-13
    [102]李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[M].南昌:江西科学技术出版社,1998
    [103]刘芳,于振文,亓新华.应用~(15)N示踪法对旱地冬小麦施肥与氮素吸收利用的研究[J].土壤肥料,1997,2:30-31
    [104]刘果,李绍才,杨志荣.我国多功能肥料的发展概况[J].中国土壤与肥料,2006,5:7-9
    [105]刘世亮,马政华,华党领,等.潮土定位施肥对中筋型小麦生长和品质的影响[J].中国农学通报,2005,21(4):188-193
    [106]马俊永,李科江,曹彩云,等.有机-无机肥长期配施对潮土土壤肥力和作物产量的影响[J].植物营养与肥料学报,2007,13(2):236-241
    [107]马文奇,毛达如.山东省蔬菜大棚养分积累状况[J].磷肥与复肥,2000,15(3):65-67
    [108]孟琳,张小莉,蒋小芳,等.有机肥料氮替代部分化肥氮对稻谷产量的影响及替代率[J].中国农业科学,2009,42(2):532-542
    [109]赖涛,沈其荣,褚冰倩,等.新型有机肥的氮素在土壤中的转化及其对草莓生长和品质的影响[J].土壤通报,2005,36(6):891-895
    [110]马文奇.山东省作物施肥现状、问题与对策[M].北京:中国农业大学资环学院植物营养系,1999
    [111]帕提曼·阿不都热合曼,松中照夫,秦勇.有机肥和化肥对菠菜产量及品质的影响[J].北方园艺,2007(11):28-30
    [112]彭世彰,杨士红,丁加丽,等.农田土壤N20排放的主要影响因素及减排措施研究进展[J].河海大学学报(自然科学版),2009,37(1):1-6
    [113]庞锤.中国有机肥料发展存在问题剖析[J].江苏农村经济·品牌农资,2008,12:42-44
    [114]乔洁,毕利东,张卫建,等.长期施用化肥对红壤性水稻土中微生物生物量、活性及群落结构的影响[J].土壤,2007,39(5):772-776
    [115]秦晓波,李玉娥,刘克樱,等.不同施肥处理对稻田氧化亚氮排放的影响[J].中国农业气象,2006,27(4):273-276
    [116]任祖淦,邱孝煊,蔡元呈,等.氮肥施用与蔬菜硝酸盐积累的相关研究[J].生态学报,1998,18(5):523-528
    [117]宋勇生,范晓晖.稻田氨挥发研究进展[J].生态环境,2003,12(2):240-244
    [118]索东让.养分平衡及肥料利用率长期定位研究[J].磷肥与复肥,2008,23(4):65-69
    [119]唐莉娜,陈顺辉.不同种类有机肥与化肥配施对烤烟生长和品质的影响[J].中国农学通报,6(11):258-262
    [120]王激清,刘全清,马文奇,等.中国养分资源利用状况及调控途径[J].资源科学.2005,27(3):47-52
    [121]王奎波,余美炎,申秀珍,等.有机无机肥配施对小麦吸收氮磷及土壤肥力的影响[J].核农学报,1994,8(4):233-239
    [122]王胜佳,陈义,吴春艳,等.施用不同肥料对稻田作物产量与土壤肥力的长期影响[J].浙江农业学报,2004,6:372-376
    [123]王岩,沈其荣,史瑞和,等.有机、无机肥料施用后土壤微生物量C、N、P的变化及氮素转化[J].土壤学报,1998,35(2):227-234
    [124]王艳群,彭正萍,薛世川,等.过量施肥对设施农田土壤生态环境的影响[J].农业环境科学学报,2005,24(增刊):81-84
    [125]吴小庆,徐阳春,沈其荣.植物叶片氨挥发的研究进展[J].生态与农村环境学报,2006,22(2):80-84
    [126]熊正琴,邢光熹,鹤田治雄,等.豆科绿肥和化肥氮对双季稻稻田氧化亚氮排放贡献的研究[J].土壤学报,2003,40(5):703-710
    [127]徐明岗,李冬初,李菊梅,等.化肥有机肥配施对水稻养分吸收和产量的影响[J].中国农业科学,2008,41(10):3133-3139
    [128]徐阳春,沈其荣.长期施用不同有机肥对土壤各粒级复合体中碳、氮、磷含量与分配的影响[J].中国农业科学,2000,33(5):65-71
    [129]杨劲峰,韩晓日,战秀梅,等.不同施肥处理对棕壤N20排放量的影响[J].生态环境2007,16(2):560-563
    [130]张福锁.对提高养分资源利用效率的几点思考[C].载中国土壤学会编.迈向21世纪的土壤科学——中国土壤学会第九次全国委员会代表大会论文集.1999:42-48
    [131]张秀君,徐慧,陈冠雄.长白山阔叶红松林树木N2O排放及总量初步估算[J].生态学杂志,2004,23(5):232-235
    [132]章慧玉,王存刚,徐国举,等.土壤肥料与农业可持续发展[J].安徽农业通报,2008,14(21):94-109
    [133]赵乘强,林治安,冀建华,等.有机无机复合肥养分协同优化技术研究[J].磷肥与复肥,2008,23(5):39-42
    [134]2008年中国统计年鉴http://bbs.jjxj.org/中国统计年鉴2008/indexch.htm
    [135]朱兆良,[英]David Norse,孙波.中国农业面源污染控制对策[M].北京:中国环境科学出版社,2006,12
    [136]朱兆良.合理使用化肥充分利用有机肥发展环境友好的施肥体系[J].中国科学院院刊,2003,2:89-93
    [137]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.75-87
    [138]邹建文,黄耀,宗良纲,等.不同种类有机肥施用对稻田CH4和N2O排放的综合影响[J].环境科学,2003,24(4):7-12
    [1]Anderson T H, Domsch K H. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effect of environmental conditions, such as pH, on the microbial biomass of forest soils[J]. Soil Bio Biochem,1993,25:393-395
    [2]Anderson T H. Microbial eco-physiological indicators to asses soil quality[J]. Agr Ecosyst Environ,2003,98:285-293
    [3]Aulakh M S, Khera T S, Doran J W, et al. Yield and nitrogen dynamics in a rice-wheat system using green manure and inorganic fertilizer[J]. Soil Sci Soc Am J,2000,64:1867-1976
    [4]Bar A R, Baggie I, Sanginga N. The use of Sesbania (Sesbania rostrata) and urea in lowland rice production in Sierra Leone[J]. Agroforest Syst,2000,48:111-118
    [5]Barkle G F, Stenger R, Brown T N, et al. Fate of the 15N-labelled faeces fraction of dairy farm effluent (DFE) irrigated onto soils under different water regimes [J]. Nutr Cycl Agroecosyst,2001, 59:85-93
    [6]Bengtsson G, Bergwall C. Fate of 15N labelled nitrate and ammonium in a fertilized forest soil[J]. Soil Biol Biochem,2000,32:545-557
    [7]Blagodatskaya E, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:critical review[J]. Biol Fertil Soils,2008,45:115-131
    [8]Blagodatskaya E V, Anderson T H. Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies[J]. Appl Soil Ecol,1999,11:207-216
    [9]Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil[J]. Soil Biol Biochem,1985,17:837-842
    [10]Bulluck LR, Brosius M, Evanylo G K, et al. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms [J]. Appl Soil Ecol,2002,19:147-160
    [11]Cassman K G, Peng S, Olk D C, et al. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems[J]. Field Crops Res,1998,56:7-38
    [12]Dittert K, Goerges T, Sattelmacher B. Nitrogen turnover in soil after application of animal manure and slurry as studied by the stable isotope 15N:a review[J]. Z Pflanzenernahr Bodenk,1998,161: 453-463
    [13]Edmeades D C. The long-term effects of manures and fertilizers on soil productivity and quality: a review[J]. Nutr Cycl Agroecosyst,2003,66:165-180
    [14]Elmaci O L, Secer M, Erdemir O, et al. Ammonium fixation properties of some arable soils from the Aegean region of Turkey[J]. Eur J Agron,2002,17:199-208
    [15]Freney J R, Simpson J R, Denmead O T. Volatilization of a ammonia[M]. In:Freeny JR, Simpson JR(Eds), Gaseous loss of nitrogen from plant-soil systems. Martinus Nijhoff/Dr W Junk Publishers, The Hague, the Netherlands,1983:1-32
    [16]Gil M V, Carballo M, Calvo L F. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients[J]. Waste Manag,2007,28:1472-1440
    [17]Gill H S, Meelu O P. Studies on the substitution of inorganic fertilizers with organic manure and their effect on soil fertility in rice—wheat rotation[J]. Nutr Cycl Agroecosyst,1982,3:303-314
    [18]Hauck R D. Nitrogen-isotope ratio analysis[M]. In:Page A L, Miller R H, Keeney D R (eds) Methods of Soil Analysis. Part 2:Chemical and Microbiological Properties Agronomy Monograph 9. SSSA and ASA, Madison, Wisconsin, USA,1982:735-779
    [19]Havlikova M, Kroeze C, Huijbegts M A J. Environmental and health impact by dairy cattle livestock and manure management in the Czech Republic[J]. Sci Total Environ,2008,396: 121-131
    [20]Ichir L L, Ismaili M, Van Cleemput O. Effect of organic and mineral fertilizers on N-use by wheat under different irrigation frequencies [J]. Plant Biol Pathol,2003,326:391-399
    [21]Jensen L S, Pedersen I S, Hansen T B, et al. Turnover and fate of 15N-labelled cattle slurry ammonium-N applied in the autumn to winter wheat[J]. Eur J Agron,2000,12:23-35
    [22]Jorgensen R G, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value[J]. Soil Biol Biochem,1996,28:33-37
    [23]Ju X T, Liu X J, Pan J R, et al. Fate of 15N-Labelled urea under a winter wheat- summer maize rotation on the north China plain[J]. Pedosphere,2007,17:52-61
    [24]Kramer A W, Doane T A, Horwath W R, et al. Short-term nitrogen-15 recovery vs long-term total soil N gains in conventional and alternative cropping systems[J]. Soil Biol Biochem,2002a,34: 43-50
    [25]Kramer A W, Doane T A, Horwath W R, et al. Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California[J]. Agr Ecosyst Environ, 2002b,91:233-243
    [26]Ladha J K, and Kundu D K. Legumes for sustaining soil fertility in lowland rice[C]. In:Extending nitrogen fixation research to farmers fields:Proceedings of the international workshop on managing legume nitrogen fixation in cropping systems of Asia, ICRISAT, Asia Center, Patancheru, India,1997:76-102
    [27]Ladha J K, Fischer K S, Hossain M, et al. Improving the productivity and sustainability of rice-wheat systems of the Indo-Gangetic Plains:a synthesis of NARS-IRRI partnership research[M]. Discussion paper no 40. International Rice Research Institute, Makati City, Philippines,2000:1-31
    [28]Ladha J K, Hill J E, Duxbury J M, et al. Improving the productivity and sustainability of rice-wheat system:issues and impacts[M]. ASA Special Publication, ASA, CSSA, SSSA, Madison, Wisconsin, USA,2003:231
    [29]Li C, Fan X, Mengel K. Turnover of interlayer ammonium in loess-derived soil grown with winter wheat in the Shaanxi Province of China[J]. Biol Fertil Soils,1990,9:211-214
    [30]Lopez-Bellido L, Lopez-Bellido R J, Redondo R. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application[J]. Field Crop Res,2005,94: 86-97
    [31]Madejon E, Lopez R, Murillo J M, et al. Agricultural use of three (sugarbeet) vinasse composts: effect on crop and on chemical properties of a soil of the Guadalquivir River Valley (SW Spain) [J]. Agr Ecosyst Environ,2001,84:55-67
    [32]Manna M C, Swarup A, Wanjari R H, et al. Soil organic matter in a West Bengal Inceptisol after 30 years of multiple cropping and fertilization[J]. Soil Sci Soc Am J,2001,70:121-129
    [33]Marschner H. Mineral Nutrition of Higher Plants[M].2nd ed. Academic Press,1995
    [34]Melero S, Madejon E, Ruiz J C, et al. Chemical and biochemical properties of a clayey soil under dryland agriculture system as affected by organic fertilization [J]. Eur J Agron,2007,26:327-334
    [35]Melero S, Porras J C R, Herencia J F, et al. Chemical and biochemical properties in a silty loam soil under conventional and organic management[J]. Soil Till Res,2006,90:162-170
    [36]Monaco S, Hatch D J, Sacco D, et al. Changes in chemical and biochemical soil properties induced by 11-yr repeated additions of different organic materials in maize-based forage systems[J]. Soil Biol Biochem,2008,40:608-615
    [37]Murashkina M A, Southard R J, et al. Silt and fine sand fractions dominate K fixation in soils derived from granitic alluvium of the San Joaquin Valley, California[J]. Geoderma,2007,141: 283-293
    [38]Page A L. Methods of Soil Analysis [M]. In part 2:Chemical and Microbiological Properties,2nd edn. ASA, Inc. Madison, Wisconsin, USA,1982:643-724
    [39]Phongpan S, Mosier A R. Effect of rice straw management on nitrogen balance and residual effect of urea-N in an annual lowland rice cropping sequence[J]. Biol Fertil Soils,2003,37:102-107
    [40]Place F, Barrett C B, Freeman H A, et al. Prospects for integrated soil fertility management using organic and inorganic inputs:evidence from smallholder African agricultural systems[J]. Food Policy,2003,28:365-378
    [41]Powlson D S, Hart P B S, Pruden G, et al. Recovery of 15N-labelled fertilizer applied in autumn to winter wheat at four sites in eastern wheat under Mediterranean conditions studied with 15N-labelled fertilizers[J].Eur J Agron,1986,11:145-155
    [42]Rasool R, Kukal S S, Hira G S. Soil physical fertility and crop performance as affected by long term application of FYM and inorganic fertilizers in rice-wheat system[J]. Soil Till Res,2007,96: 64-72
    [43]Rowe E C, Noordwijk M v, Suprayogo D, et al. Root distributions partially explain 15N uptake patterns in Gliricidia and Peltophorum hedgerow intercropping systems[J]. Plant Soil,2001,235: 167-179
    [44]Saam H, Powell J M, Jackson-Smith D B, et al. Use of animal density to estimate manure nutrient recycling ability of Wisconsin dairy farms[J]. Agr Syst,2005,84:343-357
    [45]Singh R B. Environmental consequences of agricultural development:a case study for the green revolution state of Haryana[J]. India Agr Ecosyst Environ,2002,82:97-103
    [46]Sorensen P, Jensen E S. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies[J]. Plant Soil,1996,183:213-220
    [47]Stahr K, Ruck F, Gaiser T. Soil Nitrogen-reserves and mineralisation as affected by climate, soil and land use[M]. In:Kohler W (eds) The terrestrial nitrogen cycle as influenced by man. Nova Acta Leopoldina. Deutsche Akademie der Naturforscher Leopoldina, Halle (Saale),1994:213-235
    [48]Thomsen I K. C and N transformations in 15N cross-labelled solid ruminant manure during anaerobic and aerobic storage[J]. Bioresource Technol,2000,72:267-274
    [49]Tian Y, Haibara K, Toda H, et al. Microbial biomass and activity along a natural pH gradient in forest soils in a karst region of the upper Yangtze River, China[J]. J For Res,2008,13:205-214
    [50]Timsina J, Connor D J. Productivity and management of rice-wheat cropping systems:issues and challenges[J]. Field Crops Res,2001,69:93-132
    [51]Timsina J, Singh S B, Timsina D. Integration of crop, animal,and tree in rice-based farming systems of hills and Terai of Nepal:some successful cases[C]. In:Proceedings of the third international workshop on crop-animal systems research. IRRI, Los Banos, Philippines,1991: 234-255
    [52]Van Cleemput O, Hofman G, Baert L. Fertilizer nitrogen balance study on sandy loam with winter wheat[J]. Fertilizer Res,1981,2:119-126
    [53]van Kessel C, Hartley C. Agricultural management of grain legumes:has it led to an increase in nitrogen fixation[J]. Field Crops Res,2000,65:165-181
    [54]van Veen J A, Ladd J N, Amato M. Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with[14C(U)]glucose and[15N](NH4)2SO4 under different moisture regimes[J]. Soil Biol Biochem,1985,17:747-756
    [55]Weigel C. Fertilisations organiques. Pour raccourcir la chaine alimentaire[J]. Aqua Rev,1993,51: 16-23
    [56]Yadav R L, Dwivedi B S, Prasad K, et al. Yield trends,and changes in soil organic-C and available NPK in a long-term rice-wheat system under integrated use of manures and fertilisers [J]. Field Crops Res,2000,68:219-246
    [57]鲍士旦主编.土壤农化分析[M].第3版.北京:中国农业出版社,2000
    [1]Aggarwal G C, Sidhu A S, Sekhon N K, et al. Puddling and N management effects on cropresponse in a rice-wheat cropping systems[J]. Soil Till Res,1995,36:129-139
    [2]Bengtsson G, Bergwall C. Fate of 15N labelled nitrate and ammonium in a fertilized forest soil[J]. Soil Biol Biochem,2000,32:545-557
    [3]Bristow A W, Ryden J C, Whitehead D C. The fate at several time intervals of 15N-labelled ammonium nitrate applied to an established grass sward[J]. J Soil Sci,1987,38:245-254
    [4]Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil[J]. Soil Biol Biochem,1985,17:837-842
    [5]Carranca C, de Varennes A, Rolston D E. Variation in N-recovery of winter wheat under Mediterranean conditions studied with 15N-labelled fertilizers[J]. Eur J Agron,1999,11:145-155
    [6]Choi W J, Jin S A, Lee S M, et al. Corn uptake and microbial immobilization of 15N-labeled urea-N in soil as affected by composted pig manure[J]. Plant Soil,2001,235:1-9
    [7]Choi W J, Ro H M, Chang S X. Recovery of fertilizer-derived inorganic-15N in a vegetable field soil asaffected by application of an organic amendment[J]. Plant Soil,2004,263:191-201
    [8]Coester M, Dittert K, Sattelmacher B. Contribution of fresh-shredded green material to the nitrogen nutrition of oilseed rape (Brassica napus) on a Black Earth Soil (Stagnic Phaeozem) [J]. Nutr Cycl Agroecosyst,2001,59:259-267
    [9]Dittert K, Goerges T, Sattelmacher B. Nitrogen turnover in soil after application of animal manure and slurry as studied by the stable isotope 15N:a review[J]. Z Pflanzenernahr Bodenk,1998,161: 453-463
    [10]Gil M V, Carballo M T, Calvo L F. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients[J]. Waste Manag,2007,28:1472-1440
    [11]Hassink J. Effect of soil texture on the size of the microbial biomass and on the amount of C and N mineralized per unit of microbial biomass in Dutch grassland soils[J]. Soil Biol Biochem,1994, 26:1573-1581
    [12]Hauck R D. Nitrogen-isotope ratio analysis[M]. In:Page AL, Miller RH, Keeney DR (Eds), Methods of Soil Analysis. Part 2:Chemical and Microbiological Properties Agronomy Monograph 9. SSSA and ASA, Madison, Wisconsin, USA,1982:735-779
    [13]Ichir L L, Ismaili M, Van Cleemput O. Effect of organic and mineral fertilizers on N-use by wheat under different irrigation frequencies [J]. Plant Biol Pathol,2003,326:391-399
    [14]Jansson S L. Balance Sheet and residual effects of fertilizer nitrogen in a 6-year study with 15N[J]. Soil Sci,1963,95:31-37
    [15]Jenkinson D S, Fox R H, Rayner J H. Interactions between fertilizer nitrogen and soil nitrogen-the so-called 'priming' effect [J]. J Soil Sci,1983,36:425-444
    [16]Jensen B, S(?)rensen P, Thomsen I K, et al. Availability of nitrogen in 15N-labeled ruminant manure components to successively grown crops[J]. Soil Sci Soc Am J,1999,63:416-426
    [17]Jorgensen R G, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value[J]. Soil Biol Biochem,1996,28:33-37
    [18]Ju X.T, Liu X J, Pan J R, et al. Fate of 15N-Labelled urea under a winter wheat- summer maize rotation on the north China plain[J]. Pedosphere,2007,17:52-61
    [19]Kirchhof G, So H B, et al. Management of clay soils for rainfed lowland rice-based cropping systems[C]. In:Proceedingsof the ACIAR International Workshop. ACIAR,Canberra, Australia, 1996:259
    [20]Kramer A W, Doane T A, Horwath W R, et al. Short-term nitrogen-15 recovery vs long-term total soil N gains in conventional and alternative cropping systems[J]. Soil Biol Biochem,2002,34: 43-50
    [21]Ladha J K, Fischer K S, Hossain M, et al. Improving the productivity and sustainability of rice-wheat systems of the Indo-Gangetic Plains:a synthesis of NARS-IRRI partnership research [C]. Discussion paper no 40. International Rice Research Institute, Makati City, Philippines,2000: 1-31
    [22]Ladha J K, Hill J E, Duxbury J M, et al. Improving the Productivity and Sustainability of Rice-wheat System:Issues and Impacts[J]. ASA Spl Publ,2003,65:231-231
    [23]Page A L. Methods of Soil Analysis[M]. In Part 2:Chemical and Microbiological Properties,2nd edn. ASA, Inc. Madison, Wisconsin, USA.1982,643-724
    [24]Patra D D, Anwar M, Chand S. Integrated nutrient management and waste recycling for restoring soil fertility and productivity in Japanese mint and mustard sequence in Uttar Pradesh, India[J]. Agr Ecosyst Environ,2000,80:267-275
    [25]Poudel D D, Horwath W R, Lanini W T, et al. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern Califomia[J]. Agr Ecosyst Environ,2002,90:125-137
    [26]Powlson D S, Hart P B S, Pruden G, et al. Recovery of 15N-labelled fertilizer applied in autumn to winter wheat at four sites in eastern England[J]. J Agr Sci Cambodia,1986,107:611-620
    [27]Sikora L J, Enkiri N K. Uptake of 15N fertilizer in compost-amended soils [J]. Plant Soil,2001, 235:65-73
    [28]Sisworo W H, Mitrosuhardjo M M, Rasjid H, et al. The relative roles of N fixation, fertilizer, crop residues and soil in supplying N in multiple cropping systems in a humid, tropical upland cropping system[J]. Plant Soil,1990,86:3-13
    [29]Sorensen P, Amato M. Remineralisation and residual effects of N after applicationof pig slurry to soil[J]. Eur J Agron,2001,16:81-95
    [30]S(?)rensen P, Jensen E S. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies [J]. Plant Soil,1996,183: 213-220
    [31]S(?)rensen P, Jensen E S. The use of 15N labelling to study the turnover and utilization of ruminant manure N[J]. Biol Ferti Soils,1998,28:56-63
    [32]Thomsen I K. C and N transformations in 15N cross-labelled solid ruminant manure during anaerobic and aerobic storage[J]. Bioresource Technol,2000,72:267-274
    [33]Thomsen I K. Nitrogen Use Efficiency of 15N-labeled Poultry Manure[J]. Soil Sci Soc Am J,2004, 68:538-544
    [34]Timsina J, Singh S B, Timsina D. Integration of crop, animal,and tree in rice-based farming systems of hills and Terai of Nepal:some successful cases[C]. In:Proceedings of the third international workshop on crop-animal systems research. IRRI, Los Banos, Philippines,1991: 234-255
    [35]Van Veen J A, Ladd J N, Amato M. Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with 14C(U)glucose and 15N(NH4)2SO4under different moisture regimes[J]. Soil Biol Biochem,1985,17:747-756
    [36]Verma S, Sharma P. Long-term effects of organics, fertilizers and cropping systems on soil physical productivity evaluated usinga single value index (NLWR) [J]. Soil Tillage Res,2008,98: 1-10
    [37]鲍土旦主编.土壤农化分析[M].第3版.北京:中国农业出版社,2000
    [1]Ahmad I, Abbasi M K, Rasool G. Integrated plant nutrition system (IPNS) in wheat under rainfed conditions of Rawalakot Azad Jammu and Kashmir[J]. Pak J Soil Sci,2002,21:79-86
    [2]Alam M M, Ladha J K, Foyjunnessa, et al. Nutrient management for increased productivity of rice-wheat cropping system in Bangladesh[J]. Field Crops Res,2006,96:374-386
    [3]Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil[J]. Soil Biol Biochem,1985,17:837-842
    [4]Choi W J, Ro H M, Chang S X. Recovery of fertilizer-derived inorganic-N in a vegetable field soil as affected by application of an organic amendment[J]. Plant Soil,2004,263:191-201
    [5]Haggar J P, Tanner E V J, Beer J W, et al. Nitrogen dynamics of tropical agroforestry and annual cropping systems[J]. Soil Biol Biochem,1993,25:1363-1378
    [6]Jiang D, Hengsdijk E, Dai T B, et al. Long-Term Effects of Manure and Inorganic Fertilizers on Yield and Soil Fertility for a Winter Wheat-Maize System in Jiangsu, China[J]. Pedosphere, 2006,16(1):25-32
    [7]Jorgensen R G, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value[J]. Soil Biol Biochem,1996,28:33-37
    [8]Khaliq A, Abbasi M K, Hussain T. Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan[J]. Bioresource Techno,2006,97:967-972
    [9]Kramer A W, Doane T A, Horwath W R, et al. Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California[J]. Agr Ecosyst Environ,2002, 91:233-243
    [10]Rowe E C, Noordwijk M v, Suprayogo D, et al. Root distributions partially explain 15N uptake patterns in Gliricidia and Peltophorum hedgerow intercropping systems[J]. Plant Soil,2001,235: 167-179
    [11]Recous S, Smith J M, Mary B. The fate of labelled Nurea and ammonium nitrate applied to a winter wheat crop. II. Plant uptake and N efficiency[J]. Plant Soil,1988,112:215-224
    [12]Thomsen I K. C and N transformations in 15N cross-labelled solid ruminant manure during anaerobic and aerobic storage. Bioresource Technol,2000,72:267-274
    [13]Vanlauwe B, Swift M J, Merckx R. Soil litter dynamics and N use in a leucaena Leucaena leucocephala Lam. (de Witt) alley cropping system in Southwestern Nigeria[J]. Soil Biol Biochem,1996,28:739-749
    [14]Van Cleemput O, Hofman G, Baert L. Fertilizer nitrogen balance study on sandy loam with winter wheat[J]. Fertilizer Res,1981,2:119-126
    [15]鲍土旦主编.土壤农化分析[M].第3版.北京:中国农业出版社,2000
    [16]黄东迈,朱培立,高家骅.有机、无机肥料氮在水稻—土壤系统中的转化与分配[J].土壤学报,1981,18(2):108-120
    [17]黄东迈,朱培立,高家骅.有机、无机态肥料氮在水田和旱地的残留效应[J].中国科学B辑,1982,10:907-912
    [18]韩晓日,郑国砥,刘晓燕,等.有机肥与化肥配合施用土壤微生物量氮动态、来源和供氮特征[J].中国农业科学,2007,40(4):765-772
    [1]Bristow A W, Ryden J C, Whitehead D C. The fate at several time intervals of 15N-labelled ammonium nitrate applied to an established grass sward[J]. J Soil Sci,1987,38:245-254
    [2]Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil[J]. Soil Biol Biochem,1985,17:837-842
    [3]Choi W J, Ro H M, Chang S X. Recovery of fertilizer-derived inorganic-15N in a vegetable field soil as affected by application of an organic amendment[J]. Plant Soil,2004,263:191-201
    [4]Frost C J, Hunter M D. Recycling of nitrogen in herbivore feces:plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia,2007,151:42-53
    [5]Hart P B S, Powlson D S, Poulton P R, et al. The availability of the nitrogen in the crop residues of winter wheat to subsequent crops[J]. J Agr Sci Cambridge,1993,121:355-362
    [6]Ichir L L, Ismaili M, Hofman G. Recovery of N labeled wheat residue and residual effects of N fertilization in a wheat-wheat cropping system under Mediterranean conditions [J]. Nutr Cycl Agroecosyst,2003,66:201-207
    [7]Jenkinson D S, Fox R H, Rayner J H. Interactions between fertilizer nitrogen and soil nitrogen—the so-called 'priming' effect[J]. J Soil Sci,1985,36:425-444
    [8]Jorgensen R G, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value[J]. Soil Biol Biochem,1996,28:33-37
    [9]Ladd J N, Amato M. The fate of nitrogen from legume and fertilizer sources in soils successively cropped with wheat under field conditions [J]. Soil Biol Biochem,1986,18:417-425
    [10]Macdonald A J, Poulton P R, Stockdale E A, et al. The fate of residual 15N-labelled fertilizer in arable soils:its availability to subsequent crops and retention in soil[J]. Plant Soil,2002,246: 123-137
    [11]Ngoran K, Zapata F, Sanginga N. Availability of N from Casuarina residues and inorganic N to maize, using 15N reisotope technique[J]. Biol Fert Soils,1998,8:95-100
    [12]Recous S, Smith J M, Mary B. The fate of labelled Nurea and ammonium nitrate applied to a winter wheat crop. II. Plant uptake and N efficiency[J]. Plant Soil,1988,112:215-224
    [13]Rowe E C, Noordwijk M v, Suprayogo D, et al. Root distributions partially explain 15N uptake patterns in Gliricidia and Peltophorum hedgerow intercropping systems[J]. Plant Soil,2001,235: 167-179
    [14]Shepherd M A, Withers P J. Application of poultry litter and triple superphosphate fertiliser to a sandy soil:effects on soil phosphorus status and profile distribution[J]. Nutr Cycl Agroecosyst, 1999,54:233-242
    [15]Thomsen I K. C and N transformations in 15N cross-labelled solid ruminant manure during anaerobic and aerobic storage[J]. Bioresource Technol,2000,72:261-274
    [16]Thomsen I K, Christensen B T. Availability to subsequent crops and leaching of nitrogen 15N-labelled sugarbeet tops and oilseed rape residues[J]. J Agr Sci Cambridge,1986,126: 191-199
    [17]Vanlauwe B, Swift M J, Merckx R. Soil litter dynamics and N use in a leucaena Leucaena leucocephala Lam. (de Witt) alley cropping system in Southwestern Nigeria[J]. Soil Biol Biochem,1998,28:739-749
    [18]Williams P H, Rowarth J S, Tregurtha R K.. Recovery of 15N-labelled fertiliser by a perennial ryegrass seed crop and a subsequent wheat crop[J]. Nutr Cycl Agroecosyst,2000,56:117-123
    [19]鲍士旦主编.土壤农化分析[M].第3版.北京:中国农业出版社,2000
    [1]Alam M M, Ladha J K, Foyjunnessa, et al. Nutrient management for increased productivity of rice-wheat cropping system in Bangladeshp[J]. Field Crops Res,2006,96:374-386
    [2]Blagodatskaya E, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:critical review[J]. Biol Fertil Soils,2008,45:115-131
    [3]Bridgham S D, Updegraff K, Pastor J. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology,1998,79:1545-1561
    [4]Cabrera M L. Modeling the flush of nitrogen mineralization caused by drying and rewetting soils[J]. Soil Sci Soc Am J,1993,57:63-66
    [5]Christensen B T, Petersen J, Kjellerup V, et al. The Askov long-term experiments on animal manure and mineral fertilizers [C]. SP Report No 3, April 1994. Danish Institute of Plant and Soil Science, Skovbrynet, Lyngby, Denmark.,1994:1894-1994
    [6]Conde E, Cardenas M, Ponce-Mendoza A, et al. The impacts of inorganic nitrogen application on mineralization of C-14-labelled maizeand glucose, and on priming effect in saline alkaline soil[J]. Soil Biol Biochem,2005,37:681-691
    [7]De Datta S K, Patrick Jr W H. Nitrogen Economy of Flooded Rice Soils. Martinus Nijhoff, Dordrecht,1986:186
    [8]Gajri P R, Gill K S, Singh R, et al. Effect of pre-planting tillage on crop yields and weed biomass in a rice-wheat system on a sandy-loam soil in Punjab. Soil Till Res,1999,52:83-89
    [9]Hamer U, Marschner B. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions[J]. Soil Biol Biochem,2005,37:445-454
    [10]Jenkinson D S, Fox RH, Rayner J H. Interactions between fertilizer nitrogen and soil nitrogen-the so-called'priming'effect[J]. J Soil Sci,1985,36:425-444
    [11]Marschner H. Mineral Nutrition of Higher Plants[M].2nd ed. Academic Press,1985
    [12]Meelu O P, Beri V, Sharma K N, et al. Influence of paddy and corn in different rotations on wheat yield, nutrient removal and soil properties [J]. Plant soil,1979:51:51-57
    [13]Oussible M, Crookstan R K, Larson W E. Subsurface compaction reduces the root and shoot growth and grain yield of wheat. Agron J,1992,84:34-38
    [14]Ponnamperuma F N. The chemistry of submerged soils. Adv Agron,1972,24:29-96
    [15]Sanchez P A. Soil management in rice cultivation systems. Properties and management of soils in tropics[M].Wiley, NewYork,1976:414-477
    [16]Sanyal K, De Datta S K. Chemistry of P transformation in soil. Adv. Soil Sci,1991,16:2-120
    [17]Sharma PK, Ladha J K, Verma T S, et al. Rice-wheat productivity and nutrient status in a lantana-(Lantana spp.) amended soil[J]. Biol Fert Soils,2003,37:108-114
    [18]Timsina J, Singh S B, Timsina D. Integration of crop, animal, and tree in rice-based fanning systems of hills and Terai of Nepal:some successful cases[C]. In:Proceedings of the third international workshop on crop-animal systems research. IRRI, Los Banos, Philippines,1991: 234-255
    [19]Updegraff K, Pastor J, Bridgham S D, et al. Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands[J]. Ecol Appl,1995,5:151-163
    [20]范明生,樊红柱,吕世华,等.西南地区水旱轮作系统养分管理存在问题分析与管理策略建议.西南农业学报,2008,21,6:1564-1568
    [21]高超,张桃林,吴蔚东.氧化还原条件对土壤磷素固定与释放的影响[J].土壤学报,2002,39(4):542-549.
    [22]谢建昌,周健民.我国土壤钾素研究和钾肥使用的进展[J].土壤,1999,5:244-254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700