山茶属瘤果茶组系统分类及其种质资源评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瘤果茶组(Tuberculata)隶属山茶科(Theaceae)、山茶属(Camellia),因其“子房与果实表面具瘤状突起”而得名,也因此而被认为是山茶属内保持原始形状的特化类群。该组仅在我国西南地区发现分布,是我国亚热带地区的特有类群。目前,对瘤果茶组的系统分类存在较大的分歧,给瘤果茶组植物种质资源的保护和开发利用带来极大的不便。
     本课题通过对瘤果茶组叶的微形态、叶解剖研究,并结合傅立叶红外转换光谱(FTIR)技术,对瘤果茶组现有的存在争议的18个种进行研究,为瘤果茶组植物分类研究提供新的证据,从而澄清瘤果茶组植物分类的一些问题。同时在明确原种的基础上,进一步利用叶绿素荧光技术研究瘤果茶组植物叶片叶绿素荧光特性的季节性生长变化,对瘤果茶组种质资源从光合特性的角度进行生长适应性评估;利用FTIR方法,对瘤果茶组种质资源从植物化学的角度进行功能性的评估,最终为瘤果茶组植物资源的开发和应用提供初步的理论基础和实验证据。我们的实验结果如下:
     (1)被研究的18种植物材料叶上表皮细胞形态有不规则形和多边形两种,垂周壁样式为浅波、深波和直曲型3种。下表皮细胞样式比较单一,所有种的下表皮细胞形态均为不规则形,垂周壁样式均为浅波形。所有植物的叶的气孔均分布在叶下表皮,上表皮没有气孔分布。所有气孔器类型均为环列型(anisocytic type),部分叶片具有表皮毛。所有研究的植物均为异面叶,一般由蜡质层、上下表皮、栅栏组织、海绵组织和维管组织组成。叶片栅栏组织细胞层数比较稳定。大多数种被发现有复表皮的存在。所有叶肉中均含有石细胞。除冬青叶光果茶C.ilicifolia外,其它被研究植物叶肉中均发现晶体的存在。这些结果表明叶微形态解剖特征在种的鉴定上具有一定的应用价值,可以支持闵天禄系统对部分瘤果茶植物的归并问题。同时,研究也表明叶微形态解剖特征在组间的区分上表现出更明显的分类学意义,支持张宏达系统中将冬青叶光果茶从瘤果茶组中分出的观点。此外,瘤果茶组在叶表皮微形态和叶解剖特征变化较小,也表明瘤果茶组是一个亲缘关系极为接近的、自然的组。
     (2)瘤果茶组植物叶FTIR数据的PCA和聚类分析表明,冬青叶光果茶和其它17种瘤果茶有明显的差异。这一结果并不支持闵天禄将冬青叶光果茶从张宏达系统的半宿萼茶组Pseudocamellia中分离出来合并至瘤果茶组中。FTIR结果也表明,不同类群和种间的聚集程度各不相同,体现了种间的差异性和相似度,部分的支持了闵天禄系统中对瘤果茶组植物进行归并的观点。
     (3)基于叶表皮微形态、叶解剖和FTIR分析的瘤果茶组种的修订结果表明:瘤果茶C.tuberculata Chien,皱果茶C.rhytidocarpa Chang et,皱叶瘤果茶C.rhytidophylla Chang Liang,安龙瘤果茶C.anlungensis Chang,厚壳红瘤果茶C.rubituberculata Chang,尖苞瘤果茶C.acutiperulata Chang et Ye.,狭叶瘤果茶C.neriiflolia Chang,倒卵叶瘤果茶C.obovatifolia Chang,荔波红瘤果茶C.rubimuricataChang et Z.R.XU,小瘤果茶C.parvimuricata Chang,三江瘤果茶C.pyxidiacea Z.R.Xu et al.等11种瘤果茶被确立。同时,研究结果也支持张宏达系统将冬青叶光果茶从瘤果茶组中移入半宿萼茶组的处理。
     (4)瘤果茶组植物叶片叶绿素荧光响应曲线、季节性Yield日进程及叶绿素相对含量测定的结果表明,皱叶瘤果茶、厚壳红瘤果茶、瘤果茶、皱果茶等具有较好的光能利用能力和叶绿素生长指标,因而对于本地区的环境有较强的适应性。而狭叶瘤果茶、倒卵叶瘤果茶、小瘤果茶、尖萼瘤果茶等则表现出在本地区自然条件下生长的不适应性。因此,我们认为狭叶瘤果茶、倒卵叶瘤果茶、小瘤果茶、尖苞瘤果茶等植物类群并不适合在本地区栽种,至少不适合在野外无遮荫处理栽种。同时,在本地区栽培种植瘤果茶植物过程中,适当的遮荫处理将会有助于植物更好生长。
     (5)瘤果茶组植物与茶的叶FTIR光谱显示,瘤果茶植物植物叶片红外光谱在表征碳水化合物和和多糖的3400 cm~(-1),1150-1030 cm~(-1)处的吸收强度较大,这表明瘤果茶植物叶片的维管组织比茶发达。瘤果茶植物和茶在1730 cm~(-1)附近,1650 cm~(-1),1550-1510 cm~(-1),1450和1320 cm~(-1)附近,1300-1200 cm~(-1)等光谱区域有对应的吸收峰,这些吸收峰分别表征的是茶多酚、氨基酸、茶醇、羧酸、咖啡碱等活性成分,这表明瘤果茶组植物叶也含有较为丰富的活性物质,可以考虑将其作为茶多酚、氨基酸、茶醇、咖啡碱等活性物质的来源植物。
The section Tuberculata Chang, belonging to family Theacea, genus Camellia, only distributed in China, represents a good example of a taxonomic group in the genus Camellia with controversial circumscription. This section was charactered by the tuberculate presented on the ovaries and seeds, and it was therefore considered to be orignal groups in Camellia. At present, the taxonomic treatment of the section Tuberculata is still ambiguous, which causes great inconvenience to protection of the germplasm resources and the development and utilization.
     In present study, the leaf epidermial micro-morphology and comparative anatomy of 18 disputed species of the section Tuberulata (Camellia, Theaceae) combined with their fourier transform infrared spectroscopy (FTIR) have been conducted in order to investigate interspecific variations which were useful in species taxonomic treatment. Based on the taxonomic treatments, chlorophyll fluorescence technology was used to study leaf chlorophyll fluorescence characteristics of seasonal changes of Tuberculata speices, and evaluate the their growth adaptation ability. FTIR was used to analyze the Phytochemical perspectives of the Tuberculata species and tea (C.sinensis) in order to evaluate their values of the application. Our results were as follows:
     (1) Results of the study showed that there was considerable anatomical variation between the 18 species studied and some anatomical characters had diagnostic value in the section. The epidermal cells of Tuberculata were usually polygonal or irregular in form, with anticlinal walls straight to curved, or sinuous. The pattern of anticlinial wall varied not only in different species but also between adaxial (Ad) and abaxial (Ab) epidermis of the same species. All species in section Tuberculata were hypostomatic, and the stomata were all of the anisocytic type. All the leaves in the sections were bifacial and were composed of wax, epidermis, palisade parenchyma, spongy parenchyma, and vascular tissue. A multiple epidermis was found in most species. Sclereids were found in all 18 species studied. These results also supported Ming's merging some species in Tuberculata. All species were marked by glands and crystals, except C. ilicifolia, which supported Chang's regarded C. ilicifolia as a sole specie. Furthermore, leaf epdermic and anatomical characters were found slight difference among Tuberculata species, which indicated that Tuberculata was a natural group with close genetic relationship.
     (2) Multivariate analysis (PCA and Cluster analysis) of leaf FTIR data in Tuberculata showed a visualization of the degree of affinity among the species in this section. PCA and Cluster analysis showed that C. ilicifolia became significantly distance from other 17 species. These results did not support Ming and Zhong's conclusion in transferring C. ilicifolia Y. K. Li ex H. T. Chang from the section Pseudocamellia in Chang's classification into the section Tuberculata. Multivariate analysis of leaf FTIR data in Tuberculata showed that it permitted a visualization of the degree of affinity among the species, which supported Ming's mergering of Tuberculata species.
     (3) Our study indicated that the combination of characters based on leaf comparative anatomy and FTIR analysis and biogeographical distribution were useful in species revision. The results determined 11 species including C. tuberculata Chien, C. rhytidocarpa Chang et, C. rhytidophylla Chang Liang, C. anlungensis Chang, C. rubituberculata Chang, C. acutiperulata Chang et Ye., C. neriiflolia Chang, C. obovatifolia Chang, C. rubimuricata Chang et Z. R. XU, C. parvimuricata Chang, C. pyxidiacea Z. R. Xu et al. in the section Tuberculata. Moreover, our study also supported that Chang transfer C. ilicifolia Y. K. Li ex H. T. Chang from Tuberculata into the section Pseudocamellia.
     (4) Leaf light-response curves of chlorophyll fluorescence, daily changes of seasonal Yield and determination of relative content of chlorophyll indicated C. rhytidophylla、C. rubituberculata、C. tuberculata、C. rhytidocarpa had a good ability to utilize light energy. Therefore, they could well adapt to grow in the region. Our studies also indicated that the ability of photosynthesis in C. neriiflolia、C. obovatifolia、C. parvimuricata were significantly inefficient, which suggested that these three species were not suitable for growth in the region. Thus, we thought that the appropriate treatment of the shade would help Tuberculata plants grown better.
     (5) FTIR spectra of tea and Tuberculata species showed that carbohydrates and polysaccharides ( 3400 cm~(-1) ,1150-1030 cm~(-1)) in Tuberculata species leaves were more abundance than that in tea, indicating that vascular tissues of leaves of Tuberculata species developed well than tea. Furthermore, Tuberculata species had rich absorption peaks in 1800-1200 cm~(-1), indicating they also had rich active ingredients of tea. Therefore, they could be considered as a plant material extracted the active ingredients.
引文
[1]张宏达.山茶属植物的系统研究[J].中山大学学报(自然科学),1981,论丛(1):1-12.
    [2]张宏达,任善湘.中国植物志,第49卷,第3分册[M].北京:科学出版社,1998.
    [3]闵天禄.世界山茶属的研究[M].昆明:云南科技出版社,2000.
    [4]闵天禄,钟业聪.山茶属瘤果茶组植物的订正[J].云南植物学报,1993,15(2):123-130.
    [5]Chang H.T,Ren S.X.A classification on the section Tuberculata of Camellia[J].Act.Sei.Nat.Univ.Sunyats.,1991,30(4):86-91.
    [6]闵天禄.山茶属系统大纲[J].云南植物学报.1999,21(2):149-159.
    [7]Stuart C.Voorbereidende onderzoekingen ten dienste van de selecte der theeplant[J].Meded.Proefst.Thee.,1916,40(1-2):1-328.
    [8]Hu H.H.Natulae systematicae ad florem sinensium Ⅸ[J].Bull.Fan Mem.Inst.Biol Bot.,1938,8:129-107.
    [9]Hu H.H.Yunnanea,A new genus of Theacea from Yunnan,China[J].Rhod.Camel.Year Book,1956,11:105-107.
    [10]胡先驌.中国山茶属和连蕊茶属的新种和新变种[J].植物分类学报.1965,10(2):133-142.
    [11]Sealy J.R.A revision of the genus Camellia[M].London:the Royal Horticulture Society,1958.
    [12]Chien S.S.Four new ligneous plants of Szechuan[J].Contrib.Biol.Lab.Sci.Soc.China Bot.,1939,12(2):94-99.
    [13]Keng,H.Comparative morphological studies in Theaeeae[J].Univ.Calif.Publ.Bot.,1962,33:269-384.
    [14]Lin M.J.,Lu Q.M.New record of Camellia from Guizhou[J].Act.Sci.Nat.Univ.Sunyats.,1984,2:81-83.
    [15]Xu Z.R.A new plant from Limestone Hill in South Guizhou[J].Guihaia,1985,5(4):347-348.
    [16]Xu Z.R.,Chen F.P.,Peng C.Y.A new species of Camellia Sect.Tuberculata[J]. Guihaia,1987,7(1):19-21.
    [17]Li Y.K.,Yang M.Z.A new species of Camellia from Guozhou.Guihaia[J],1987,7(1):13-14.
    [18]罗春清,谭晓风,漆龙霖.山茶属植物分类综述[J].中南林学院学报,1999,19(3):78-81.
    [19]Ackerman W.L.A chromsomal translocation in a dipliod Camellia[J].J.Hered.,1971,62:121-122.
    [20]Ackerman W.L,kondo K.Pollen size and variability as related to chromosome number and speciation in the genus Camellia[J].Jap.J.Breed,1980,30(3):251-259.
    [21]Kondo,K.Cytological studies in cultivated species of Camellia[D].Thesis of the Doctor Degree,N.Carolina Univ.Chapel Hill,USA.1975.
    [22]Kondo K.Chromosome numbers in the genus Camellia[J].Biotropica,1977,9:86-94.
    [23]Kondo K.Cytological studies in cultivated species of Camellia I.Diploid species and their hybrids[J].Jap.J.Breed,1977,27:28-38.
    [24]Kondo K.Cytological studies in cultivated species of Camellia Ⅲ.Tetralloid species and hybrids between diploid species and hexaploid species[J].Jap.J.Breed,1978,28:197-204.
    [25]Kondo K.Cytological studies in cultivated species of Camellia.Interspecific variation of karyotype in two species of Sect.Thea[J].Jap.J.Breed,1979,29:205-210.
    [26]黄少甫,赵治芬,吴若箐.浙江红山茶染色体核型的分析[J].广西植物,1984,4(4):285-288.
    [27]顾志建,孙先风.山茶属十七个种的核形态学研究[J].云南植物研究,1997,19(2):159-170.
    [28]吕华飞,周丽华,顾志建,等.山茶属5种植物的核型研究[J].云南农业大学学报,1993,8(4):307-311.
    [29]张文驹,闵天禄.山茶属山茶组的细胞地理学研究[J].云南植物研究,1998,20(3):321-328.
    [30]张文驹,闵天禄.山茶属的细胞地理学研究[J].云南植物研究,1999,21(2): 184-196.
    [31]韦仲新,Zavada,闵天禄.山茶属的花粉形态及其分类学意义[J].云南植物研究,1992,14(3):275-282.
    [32]韦仲新.山茶科花粉超微结构及其系统学意义[J].云南植物研究,1997,19(2):143-153.
    [33]陈亮,童启庆,高其康,等.山茶属8种1变种花粉形态比较[J].茶叶科学,1997,17:183-188.
    [34]敖成齐,陈功锡,张国萍,等.山茶属花粉外壁表面微形态特征的研究[J].云南植物研究,2002,24(5):619-623.
    [35]汪小兰.几种金花茶花粉的扫描电镜观察[J].武汉植物学研究,1985,3(2):131-135.
    [36]王任翔,胡长华,李春瑶,等.金花茶组植物花粉扫描电镜研究(1I)[J].广西师范大学学报,1997,15(3):78-82.
    [37]王任翔,胡长华,梁倩华,等.金花茶组植物花粉扫描电镜研究(一)[J].广西植物,1997,17(3):242-245
    [38]李广清,孙立,刘燕.山茶属连蕊茶组6种植物花粉形态特征研究[J].热带亚热带植物学报,2005,13(1):40-44.
    [39]束际林,陈亮.茶树花粉形态的演化趋势[J].茶叶科学,1996,16(2):115-118.
    [40]Park C.R.Cross-comparatibility studies in the genus Camellia[J].International Camellia Journal,2004,22:37-54.
    [41]Gu Z.,Xiao H.Physical mapping of the 18S-26S rDNA by fluorescent in situ hybridization(FISH) in Camellia reticulata polyploid complex(Theaceae)[J].Plant Science,2003,16:279-285.
    [42]Polashock J.J.,Griesbach R.J.,Sullivan R.F.,et al.Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase(DFR)and expression in transgenic tobacco[J].Plant Science,2002,163:241-251.
    [43]Xiao T.J,Parks C.R.Molecular analysis of the genus Camellia[J].International Camellia Journal,2003:57-65.
    [44]陈亮,王平盛,山口聪.应用RAPD分子标记鉴定野生茶树种质资源研究[J].中国农业科学,2002,10:26-31.
    [45]施苏华,唐绍清,陈月琴,等.11种金花茶植物的RAPD分析极其系统学意义[J].植物分类学报,1998,36(4):317-322.
    [46]Orel G,Marchant A,Richards G.Evolutionary relationships of yellow-flowered Camellia species from Southest Asia[J].International Camellia Journal,2003,88-96.
    [47]唐绍清,钟扬,施苏华,等.Camellia nitidssima与C.petelotii之间的关系研究-来自nrDNA ITS的证据[J].武汉植物学研究,2001,19(6):449-452.
    [48]唐绍清,施苏华,钟杨,等.基于ITS序列探讨山茶属金花茶组的系统发育关系[J].广西植物,2004,24(6):488-492.
    [49]宾晓芸,唐绍清,周俊亚,等.金花茶遗传多样性的ISSR分析[J].武汉植物学研究,2005,(1):21-27.
    [50]张宏达.山茶科系统发育诠析[J].中山大学学报(自然科学版),1996,35(5):87-89.
    [51]杜琪珍,李名君,刘维华,等.茶组植物的化学分类及数值分类[J],1990,10(2):1-12.
    [52]闵天禄,张文驹.山茶属植物的进化和分布[J].云南植物研究,1996,18(1):1-13.
    [53]Stace C.A.The use of epidermal characters in phylogenetic considerations[J].New Phytol.1966,65:304-318.
    [54]Brittan N.H.A preliminary survey of the stem and leaf anatomy of Thysanotus R.Br.(Liliaceae)[M].In Robson N.K.B.,Culter D.F.,and Gregory M.,eds.New Research in Plant Anatomy.Academic Press,London,1970:57-70.
    [55]Baranova M.Systematic anatomy of the leaf epidermis in the Magnoliaceae and some related families[J].Taxon,1972,21:447-469.
    [56]Baranova M.Historical development of the present classification of morphological type of stomates[J].Bot.Rev.1987,53:53-79.
    [57]Baranova M.Principles of comparative stomatographic studies of flowering plants[J].Bot.Rev.1992,58:1-99.
    [58]Upchurch G.R.Cuticle evolution in early cretaceous angiosperms from the potomac group of Virginia and Maryland[J].Ann.Mo.Bot.Gard.,1984,71:522-550.
    [59]Kong H.Z.Comparative morphology of leaf epidermis in the Chloranthaceae[J].Bot.J.Linn.Soc.,2001,136:279-294.
    [60]Kocsis M.,Dar(?)k J.,Borhidi A.Comparative leaf anatomy and morphology of some neotropical Rondeletia(Rubiaceae) species[J].Plant Syst.Evol.2004,248:205-218.
    [61]Yang Z.R.,Lin Q.Comparative morphology of the leaf epidermis in Schisandra (Schisandraceae)[J].Bot.J.Linn.Soc.,2005,148:39-56.
    [62]Prabhaka M.Structure,dlimitation,nomenclature and classification of stomata[J].Acta Bot.Sin.,2004,46(2):242-252.
    [63]Page C.N.Leaf micromorphology in Agathis and its taxonomic implications[J].Plant Syst.Evol.,1980,135:71-79.
    [64]Hill W.C.O.Primates:comparative anatomy and taxonomy[M].University Press,1980.
    [65]Gui R.,Hu Y.Epidermal feature of the leaves of Taxus in relation to taxonomy[J].Acta Phytotax.Sin.,1974,12(3):329-334.
    [66]Wu H.A scanning electon microscopic observations of the leaves in some conifers[J].Acta Bot.Sin.,1984,26(4):374-380.
    [67]陈之端,张志耘.桦木科植物叶表皮的研究[J].植物分类学报,1991,29(2):156-163.
    [68]陈晓亚,胡成华,喻富根,等.方竹属(竹亚科)叶片表皮微形态特征[J].植物分类学报,1993,31(3):227-235.
    [69]张志耘,卢宝荣,温洁.稻属叶表皮结构及其系统学意义[J].植物分类学报,1998,36(1):8-18.
    [70]洪亚平,潘开玉,陈之端,等.防己科植物的叶表皮特征及其系统学意义[J].植物学报,2001,43(6):615-623.
    [71]Solereder H.Systematic anatomy of the dicotyledons[M].Oxford:Clarendon Press,1908.
    [72]邓六中,黄紫恒,漆龙霖.山茶属主要油用物种叶片解剖特征的研究[J],经济林研究,1992,10(1):8-15
    [73]敖成齐,陈功锡,张宏达.山茶属的叶表皮形态及其分类学意义[J].云南植物研究,2002,24(1):68-74.
    [74]任翔,胡长华,梁盛业,等.金花茶组植物叶表皮特征的扫描电镜观察[J],广西林业科学,2002,31(3):133-136.
    [75]李凤英,王玉国,唐绍清.山茶属金花茶组金花茶系的叶表皮特征及分类学意义 [J].广西师范大学学报,2001,19(4):75-79.
    [76]林秀艳,彭秋发,吕洪飞,等.山茶属油茶组和短柱茶组叶解剖特征及其分类学意义[J].植物分类学报,2008,46(2):183-193.
    [77]Lu H.F.,Shen J.B.,Lin X.Y.,Fu J.L.Relevance of Fourier Transform Infrared Spectroscopy and leaf anatomy for species classification in Camellia(Theaceae)[J].Taxon,2008,57(4):1274-1288.
    [78]Pi E.X.,Peng Q.F.,Lu H.F.,et al.Leaf morphology and anatomy of section Camellia(Theaceae)[J].Bot.J.Linn.Soc.,2009,159:456-476.
    [79]Naumann D.,Helm D.,Labischinski H.Microbiological characterization by FTIR spectroscopy[J].Nature,1991,351:81-82.
    [80]Freeman R.,Goodacre R.,Sisson P.R.,et al.Rapid identification of species within the Mycobacterium tuberculosis complex by artificial neural network analysis of NMR data[J].J.Med.Microbio.,1994,140:170-173.
    [81]Goodacre R.,Timmins M.,Burton R.,et al.Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks[J].Microbiology,1998,144:1157-1170
    [82]McCann M.C.,Hammouri M,Wilson R.,et al.Fourier Transform Infrared Microspectroscopy is a new way to look at plant cell walls[J].Plant Physiol.,1992,100:1940 - 1947.
    [83]Wolkers W.F.,Hoekstra F.A.Aging of dry desiccation-tolerant pollen does not affect protein secondary structure[J].Plant Physiol.,1995,109:907-915.
    [84]Minorsky P.V.The wall becomes surmountable[J].Plant Physiol.,2002,128:345.
    [85]Carpita N.C.,Marianne D.,Kim F.,et al.,Cell wall architecture of the elongating maize coleoptile[J].Plant Physiol.,2001,127:551-565.
    [86]Carpita,N.C.,Tiemey M.,Campbell M.Molecular biology of the plant cell wall:Searching for the genes that define structure,architecture and wall dynamics[J].Plant Mol.Biol.,2001.,47:1-5.
    [87]Carpita,N.C.,Defernez M.,Findlay K.,et al.,Cell wall architecture of the elongating maize coleoptile[J].Plant Physiol.,2001,127:551-565.
    [88]Penfield S.,Meissner R.C.,Shoue D.A.,et al.MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat[J].Plant Cell,2001,13:2777-2791.
    [89]Vanzin G.F.,Madson M.,Carpita N.C.,et al.The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1[J].Proc.Natl.Acad.Sci.,2002,99:3340-3345.
    [90]Jarvis M.Chemistry:Cellulose stacks up[J].Nature,2003,426:611-612.
    [91]Zenoni S.,Reale L.,Torniell G.B.,Lanfaloni L.,et al.Downregulation of the petunia hybrida α-Expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs[J].Plant Cell,2004,16:295.
    [92]Mouille G.,Hanna W.,Bruyant M.,et al.Quantitative trait loci analysis of primary cell wall composition in Arabidopsis[J].Plant Physiol.,2006,141:1035 - 1044.
    [93]McCann M.C.,Defernez M.,Urbanowicz B.R.,et al.Neural network analyses of Infrared Spectra for classifying cell wall architectures[J].Plant Physiol.2007,143:1314-1326.
    [94]Wang,Q.L.,Lu,L.D.,Wu,X.Q.,et al.Boron influences pollen germination and pollen tube growth in Picea meyeri[J].Tree Physiol.2003,23:345-351.
    [95]Wang Q.L.,Kong L.,Hao H.et al.Effects of brefeldin A on pollen germination and tube growth,antagonistic effects on endocytosis and secretion[J].Plant Physiol.,2005,139:1692 - 1703.
    [96]Lu,S.Y.,Li,Y.F.,Chen,Z.K.,et al.Pollen development in Picea asperata Mast[J].Flora,2003,198:112-117.
    [97]Hao,H.,Li,Y.,Hu,Y.,et al.Inhibition of RNA and protein synthesis in pollen tube development of Pinus bungeana by actinomycin D and cycloheximide[J].New Phytol.2005,165:721-730.
    [98]Sheng X.Y.,Hu Z.,L(u|¨) H.,et al.Roles of the Ubiquitin/Proteasome pathway in pollen tube growth with emphasis on MG132-induced alterations in ultrastructure,cytoskeleton,and cell wall components[J].Plant Physiol.,2006,141:1578 - 1590.
    [99]盛或欣,张金兰,孙素琴,等.不同栽培条件黄连的质量分析与评价[J].药学学报,2006,41(10):1010-1014.
    [100]潘艳丽,肖培根,张贵君,等.金莲花傅里叶红外光谱鉴别及药效组分表征分析[J].中国中药杂志,2006,31(12):1024-1026.
    [101]刘沭华,张学工,孙素琴.中药材产地的近红外光谱自动鉴别和特征谱段选择[J].科学通报,2005,50(4):393-398.
    [102]程存归,刘鹏,陈宗良.艾、野艾及细叶艾的FTIR直接鉴别[J].中药材.2002,25(2):315-317.
    [103]程存归,郭水良,陈建华.香茶菜属3种植物不同器官红外光谱排序的比较[J].光谱学与光谱分析,2002,22(6):954-958.
    [104]程存归,孙跃宗.延胡索及其伪品的FTIR直接鉴别[J],中草药,2002,33(12):1125-1127.
    [105]成则丰,李丹婷,李花琼,程存归.FTIR聚类分析结合差热分析法应用于中药材延胡索表征的研究[J].理化检验-化学分册,2006,42(8):601-603
    [106]洪庆红,成则丰,程存归.FTIR应用于原产地中药材白芍的测定方法研究[J],光谱学与光谱分析,2006,26(9):1610-1613.
    [107]洪庆红,程存归,成则丰,等.HATR-FTIR应用于原产地中药材白术的测定方法研究[J].光谱学与光谱分析,2007,27(2):283-286.
    [108]金文英,程存归,吴小华.基于白术FTIR的径向基函数神经网络鉴别研究[J],光谱学与光谱分析,2006,26(12):2210-2213.
    [109]Kim S.W.,Ban S.H.,Chung H.,et al.Taxonomic discrimination of flowering plants by multivariate analysis of Fourier transform infrared spectroscopy data[J].Plant Cell Rep.,2004,23:246-250.
    [110]Lu H.F.,Cheng C.G.,Tang X.,et al.FTIR spectrum of Hypericum and Triadenum with reference to their identification.Acta Bot.Sin.,2004,46(4):401-406.
    [111]郭水良,李沛玲,方芳,等.蛇足石杉及其近缘种表征关系的FTIR主成分分析[J].光谱学与光谱分析,2005,5:693-697.
    [112]郭水良,曹同,程存归.基于FTIR的苔藓植物表征关系除趋势对应分析[J].光谱学与光谱分析,2005,4:525-528.
    [113]郝朝运,程存归,刘鹏.FTIR直接测定法在解决忍冬科一些分类学问题中的应用研究[J],光谱学与光谱分析,2007,27(1):38-42.
    [114]Gorgulu S.T.,Dogan M.,Severcan F.The characterization and differentiation of higher plants by Fourier Transform Infrared Spectroscopy[J].Appl.Spectrosc.,2007,61(3):300-308.
    [115]Shen J.B.,Lu H.F.,Peng Q.F.,et al.FTIR spectra of Camellia sect.Oleifera,sect.Paracamellia,and sect.Camellia(Theaceae) with reference to their taxonomic significance[J].J.Syst.Evol.,2008,46(2):194-204.
    [116]Lu H.F.,Pi E.X.,Peng Q.F.,et al.A particle swarm optimization-aided fuzzy cloud classifier applied for plant numerical taxonomy based on attribute similarity[J].Expert Syst.Appl.,2009,36:9388-9397.
    [117]粱机,黄素梅 从茶多酚及氨基酸含量比较几种金花茶制茶适宜性[J].广西科学,1999,6(1):72-74
    [118]赵彦华,田呈瑞,徐长波,等.金花茶饮料工艺的研究[J].食品科学,2005,26(9):323-326
    [119]王元风.金花茶叶营养成分分析及饮料加工工艺的研究[D].硕士论文(湖南农业大学),2001.
    [120]高昊峰,国内外茶饮料发展概况[J].饮料工业,2002,3(2):6-10.
    [121]杨帆,刘金芳.我国茶叶食品的发展现状及其展望.蚕桑茶叶通讯[J],2002,(1):29-30.
    [122]傅立国.中国植物红皮书一稀有濒危植物(第一册)[M].北京:科学出版社,1992.
    [123]田晔林,刘克旺.湖南省山茶属红山茶组植物资源及园林观赏特性的研究[J].中国农学通报,2004,20(3):193-195.
    [124]李娅莉,张健,潘远智,等.四川省山茶属植物资源及其园林应用[J].西南园艺.2005,33(3):26-27.
    [125]雷治国,黄永芳,何会蓉.油茶及其种质资源研究进展[J].经济林研究,2003,21(4):123-125.
    [126]李时珍.本草纲目[M].北京:人民卫生出版社,1979。
    [127]江苏新医学院.中药大辞典[M].上海:上海科学技术出版社,2000.
    [128]国家药典委员会.中华人民共和国药典(一部)[M].北京:化学工业出版社,2005.
    [129]张国彬,冯玲玲,周吉源.山茶属植物的研究现状与展望[J].湖北林业科技,2004,128:45-49.
    [130]Sagesaka Y.M.,Uemura T.,Watansbe N.,et al.A new gluronide saponin from tea leaves Camellia sinensis var.sinensis[J].Biosci.Biotech.Biochem.,1994,58(11):2036.
    [131]朱恒英,刘克坤,陈永培,等.油茶饼中油茶皂甙体外抑菌试验[J].福建中医药,1989,20(2):44-46.
    [132]王知登,熊永革.油茶皂甙对血清胆固醇浓度的影响[J].贵州医药,1988,12(4):222-227.
    [133]Hong C.Y.,Wang C.P.,Lo Y.C.,et al.Effect of flavan-3-o-tannins purifed from Camellia sinensis on lipid peroxidation of rat heart mitochondria[J].Am.J.Chin.Med.,1994,22(3-4):285.
    [134]Yosida T.,Chou T.,Haba K.,et al.Camellin band nobotanini,macrocyclic ekkagitannin dimmers and relayed dimmers,and their rantitumor activity[J].Chem.Pharm.Bull.,37(11):3174-3277.
    [135]赵川,张君才,宋俊峰.流动注射双安培法直接测定茶中单宁[J].分析化学研究简报,2002,30(2):210-213.
    [136]Maity S.,Vedasiromoni J.R.,Ganguly D.K.Antiulcer effect of the hot water extract of black tea[Camellia sinensis][J].J.Ethnopharmacol.,1995,.46(3):167.
    [137]Gomes A.,Vedasiromoni J.R.,Das M.,et al.Antihyperglyce miceffect of black tea Camellia siensis in rat[J].J.Ethnopharmacol.,1995,45(3):223-228.
    [138]Schofield E.K.Petiole anatomy of the Guttiferae and related families[J].Mem.New York Bot.Gard.,1968,18:1-55.
    [139]杨世雄,刘爱忠,彭华,等.核果茶属的气孔器类型及其系统学意义[J],广西植物,2003,23(3):250-252.
    [140]Foster A.S.Structure and development of sclereids in the petiole of Camellia japonica L[J].Bull.Torrey Bot.Club.,1944,71(3):302-326.
    [141]Schofield E.K.Petiole anatomy of the Guttiferae and related families[J].Mem.New York Bot.Gard.,1968,18:1-55.
    [142]Luna I.,Ochoterena H.Phylogenetic relationships of the genera of Theaceae based on morphology[J].Cladistics,2004,20:223-270.
    [143]Foster A.S.Plant idioblasts:Remarkable examples of cell specialization[J].Protoplasma,1956,46:184-193.
    [144]Metcalfe C.R.,Chalk L.Anatomy of the dicotyledons(Second edition)[M].Oxford:Clarendon Press,1979.
    [145]Hussin K.H.,Sani Z.M.,Comparative leaf anatomical studies of some Sterculia L.species(Sterculiaceae)[J].Bot.J.Linn.Soc.1998,127(2):159-174.
    [146]Crow E.,Stirton C.H.,Cutler D.F.Leaf anatomy of the genus Psoralea sensu stricto (Psoraleeae,Papilionoideae,Leguminosae)[J].Bot.J.Linn.Soc.,1997,124:155 -182.
    [147]Kitao M.,Lei T.T.,Koike T.,et al.Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes[J].Plant Cell Environ.,2000,23(1):81-89.
    [148]Schreiber U.,Bilger W.,Neubauer C.Chlorophyll fluorescence as a non-destructive indicator for rapid assessment of in vivo photosynthesis[J].Ecol.Studies,1994,100:49-70.
    [149]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展[J].西北植物学报,2006,26(10):2186-2196.
    [150]Shirke P.A.,Pathre U.V.Diurnal and seasonal changes in photosynthesis and photosystem Ⅱ photochemical efficiency in Prosopis juliflora leaves subjected to natural environmental stress[J].Photosynthetica,2003,41(1):83-89.
    [151]Schreiber U.,Sehliwa U.,Bilger W.Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J].Photosynth.Res.,1986.10:51-62
    [152]Genty B.,Briantais J.M.,Baker N.R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].Bioch.Bioph.Acta,1989,990:87-92.
    [153]Van Kooten O.,Snel J.F.H.The use of chlorophyll fluorescencenomenclature in plant stress physiology[J].Photosynth Res.,1990,25:147-150.
    [154]Krause G..H.,Weis E.Chlorophyll fluorescence and photosynthesis:The basis[J].Annu.Rev.Plant Physiol.Plant Mol.Biol.,1991,42:313-349.
    [155]许大全,沈允钢,余叔文.光合作用的限制因素[M].北京:科学出版社,1998.
    [156]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [157]Quick W.P.,Stitt M.An examination of factors contributing tonon-photochemical quenching of chlorophyll fluorescence in barley leaves[J].Biochim.Biophys.Acta,1989,977:287-296.
    [158]Kause G.H.Photoinhibition of photosynthesis.An evoltion of damaging and protective mechanism[J].Physiol.Plantarum.,1988,74:566.
    [159]王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报,1997,13(2):273-278.
    [160]Rohacek K.Chlorophyll fluorescence parameters:the definitions,photosynthetic meaning and mutual relationships[J].Photosynthetica,2002,40(1):13-29.
    [161]Demmig-Adams B.,Adams Ⅲ W.W.Photoprotection and other responses of plants to high light stress[J].Ann.Rev.Plant Physiol.Plant Mol.Bio.,1992,43,599-626.
    [162]Scholes J.D.,Press M.C.,Zipperlen S.W.Differences in light energy utilization and dissipation between dipterocarp rain forest tree seedlings[J].Oecologia,1997,109,41-48.
    [163]Ishida A.,Toma T.Leaf gas exchange and chlorophyll fluorescence in relation to leaf angle,azimuth,and canopy position in the tropical pioneer tree,Macaranga conifera[J].Tree Physiol.1999,19,117-124.
    [164]Niu S.L.,Jiang G.M.,Li Y.G.,et al.Comparison of photosynthetic traits between two typical shrubs:legume and non-legume in Hunshandak Sandland[J].Photosynthetica,2003,41(1):111-116.
    [165]Manetas Y.,Grammatikopoulos G.,Kyparissis A.The use of the portable,non-destructive,SPAD-502(Minolta) chlorophyll meter with leaves of varYing trichorne density and anthocyanin content[J].Plant Physiol.1998,153:513-516.
    [166]Tobias D.J.,Yosihkawa K.,Ikemoto A.,et al.Seasonal changes of leaf chlorophyll content in the crowns of several broad-leaved tree species[J]Jap.Soc.Reveget.Technol.,1994,20(1):21-32.
    [167]艾天成,李方敏,周治安,等.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学院学报,2000,20(1):6-8.
    [168]姜丽芬,石福臣,王化田,等.叶绿素计SPAD-502在林业上应用[J].生态学杂志,2005,24(12):1543-1548.
    [169]沈阿林,姚健,刘春增,等.沿黄稻区主要水稻品种的需肥规律、叶色动态与施氮技术研究[J].华北农学报,2000,15(4):131-136.
    [170]吴良欢,陶勤南.水稻叶绿素计诊断追氮法研究[J].浙江农业大学学报,1999,25(2):135-138.
    [171]曹树青,陆巍,翟虎渠,等.用水稻苗期叶绿素含量相对稳定期估算水稻剑叶光合功能期的方法研究[J].中国水稻科学,2001,15(4):309-313.
    [172]艾天成,周治安,李方敏,等.小麦等作物叶绿素速测方法研究[J].甘肃农业科 技,2001(4):16-18.
    [173]高素华,郭建平,张国民,等.低温对玉米幼苗生理反应的影响[J].应用气象学报,1999,10(2):239-242.
    [174]雷泽湘,艾天成,李方敏,等.草莓叶片叶绿素含量、含氮量与SPAD值间的关系[J].湖北农学院学报,2001,21(2):138-140.
    [175]吴运荣,易可可,祝金明,等.利用表型相关分析筛选番茄耐盐指标[J].浙江大学学报(农业与生命科学版),1999,25(6):645-649.
    [176]李杰.茶树氮营养快速诊断方法的比较[J].安徽农学通报,2007,13(11):97-98.
    [177]杨亦扬,马立锋,石元值,等.叶绿素仪(SPAD)在茶树氮素营养诊断中的适用性研究[J].茶叶科学,2008,28(4):301-308.
    [178]Campbell R.J.,Mobley K.N.,Marini R.P.,et al.Growing conditions alter relationship between SPAD-501 values and apple leaf chlorophyll[J].HortSci.,1990,25:330-331.
    [179]Chang S.X.,Robsin D.J.Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter[J].Forest Ecol.Manag.,2003,181:331-338.
    [180]潘燕飞,傅立叶红外光谱法用于茶叶品质的鉴定[J].烟台大学学报(自然科学与工程版),2008,21(4):266-272.
    [181]周湘萍,刘刚,时有明,等.普洱茶的傅里叶变换红外光谱鉴别研究[J].光谱学与光谱分析,2008,28(3):594-596
    [182]王永明.傅立叶变换近红外光谱分析技术在茶叶中的应用[J]_饮料工业,2006,9(5):29-31.
    [183]Horie,H.,Kohata,K.Application of capillary electrophoresis to tea quality estimation[J].Journal of Chromatography A,1998,802:219-223.
    [184]Graham,H.N.Green tea composition,consumption,and polyphenol chemistry[J].Preservative Method,1992,21:334-350.
    [185]Harbowy M.E.,Balentine D.A.Tea chemistry[J].Critical Rev.Plant Sci.,1997,16,415-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700