组织型纤溶酶原激活物(tPA)和尿激酶型纤溶酶原激活物(uPA)在小鼠肝纤维化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化是多种慢性肝脏疾病的重要病理历程,近年来认为是损伤后的修复反应,主要是由于肝脏细胞外基质(extracellular matrix,ECM)代谢失衡,导致ECM在肝脏中过渡沉积所致。ECM包括胶原、非胶原糖蛋白、蛋白多糖及弹性硬蛋白,其中胶原蛋白是ECM最重要的组成部分。
     纤溶酶原激活剂包括组织型纤溶酶原激活剂(tissue plasminogenactivator,tPA)和尿激酶纤溶酶原激活剂(urokinase plasminogen activator,uPA),两者同属于丝氨酸蛋白酶家族,均可激活纤溶酶原(plasminogen,Plg)转变为纤溶酶(plasmin)。tPA的主要功能是激活Plg成为plasmin,后者能够降解血栓中的水不溶纤维蛋白,形成水溶性降解片断,使血栓溶解,血管再通,所以tPA用于治疗急性心肌梗塞等血栓疾病。uPA和它的受体uPAR(urokinaseplasminogen activator receptor)与肿瘤细胞的侵袭,转移有密切的关系。纤溶酶除了直接降解纤维蛋白以外,还能激活基质金属蛋白酶家族的成员(matrixmetalloproteinases,MMPs),后者是ECM中主要的蛋白质水解酶,因此,我们认为纤溶酶激活剂可能在肝纤维化中发挥一定的作用。
     为了研究tPA在肝纤维化发生发展中的作用,我们利用了转基因动物—tPA基因敲除小鼠。我们首先用野生型和tPA基因敲除小鼠通过一定剂量和浓度的四氯化碳腹腔注射,每周两次,连续注射4周,建立小鼠肝纤维化模型,腹腔注射等量橄榄油的野生型和tPA基因敲除小鼠作为相应的对照。4周后,小鼠被处死,用酶谱学的方法研究tPA在各组小鼠肝脏组织中的活性,结果显示,tPA活性在四氯化碳腹腔注射野生型小鼠肝脏组织中大量增高,而tPA基因敲除小鼠肝组织中没有检出tPA活性。tPA活性在四氯化碳诱导后的增高提示tPA与肝纤维化有密切的关系。
     苏木素—伊红染色(Hematoxylin and Eosin,HE)显示,tPA基因缺失小鼠在造模后的肝组织损伤以及疤痕形成程度比野生型小鼠明显加重,并且有大量的炎症细胞浸润。组织化学研究VG(Van Gieson)染色和羟脯氨酸含量的检测均显示了胶原蛋白在tPA基因敲除小鼠肝脏组织中有大量的沉积,以上结果说明tPA基因敲除小鼠肝纤维化比野生型小鼠明显加重。
     肝纤维化是ECM在肝脏中大量沉积导致的,为了进一步的研究tPA基因缺失加重肝纤维化的分子机制,我们研究了tPA基因敲除小鼠和野生型小鼠肝脏组织中ECM生成和降解两方面的差异。a-平滑肌肌动蛋白(a-smooth muscle actin,a-SMA)是肝星型细胞向肌成纤维细胞(myofibroblasts,MFs)转化的主要分子标志,后者是生成ECM的主要细胞。MMPs是ECM降解的主要酶类,基质金属蛋白酶抑制剂—1(tissue inhibitor of metalloproteinase-1,TIMP-I)是其重要的抑制剂。我们分别研究了a-SMA,基质金属蛋白酶—13(matrixmetalloproteinase—13,MMP—13),TIMP-1的蛋白表达水平和基质金属蛋白酶—2(matrix metalloproteinase—2,MMP-2),基质金属蛋白酶—9(matrixmetalloproteinase—9,MMP-9)的活性变化,结果显示tPA基因敲除小鼠肝脏组织a-SMA的表达增高,MMP-2和MMP-9的活性下降,同时MMP-13的表达下降,TIMP-1的表达增高,以上的结果说明tPA基因缺失加剧肝纤维化的程度是通过:1.增加肝星型细胞向肌成纤维细胞的转化使ECM大量产生以;2.MMPs和TIMP-1的比例失调使ECM的降解减少。
     以病毒为载体,外源转入uPA基因可以减轻大鼠肝硬化,显示肝纤维化过程中uPA有重要的作用。为了研究uPA基因在肝纤维化中的作用,我们使用uPA基因缺失的转基因小鼠和野生型小鼠建立肝纤维化模型。比较各组小鼠肝脏实体和病理组织学等变化,结果显示,四氯化碳处理后的uPA基因缺失小鼠相对于野生型小鼠肝脏实体发白,表面不光滑,质地明显变硬。HE染色显示四氯化碳处理后的肝组织损伤程度比野生型小鼠明显加重,肝细胞出现大量的空泡样改变。VG染色和羟脯氨酸含量的检测说明胶原蛋白在uPA基因缺失小鼠肝脏中的含量明显增高。作为肝纤维化ECM的主要成分,Ⅰ型胶原蛋白的实时定量PCR分析说明四氯化碳处理后,uPA基因缺失小鼠Ⅰ型胶原蛋白表达明显较野生型小鼠增高。uPA基因缺失小鼠肝脏组织中a-SMA mRNA和及其编码蛋白质表达均显著增高,TIMP-1 mRNA及其编码蛋白质表达水平在四氯化碳处理后uPA基因缺失小鼠中都明显增高,但MMP-13蛋白质表达水平在uPA缺失小鼠肝脏组织中降低,其mRNA水平却增高了,其原因尚待进一步研究。以上结果说明uPA加剧肝纤维化的程度是由于ECM的生成增加和ECM降解减少。
Hepatic fibrosis is a major histological finding of chronic liver disease caused by excess extracellular matrix (ECM) production and reduced ECM degradation. ECM includes collagen, noncollagenous glycoproteins and proteoglycan. Among which, collage is the most important components of ECM.
     Plasminogen activators include tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA). Both of them belong to serine protease family. They activate proenzyme plasminogen (Plg) to biologically active plasmin. tPA, as a FDA permitted drug is wildly used in clinical as a thrombolytic agent. The main biological function of tPA is to cleave Plg into plasmin, which degrades fibrin of thrombus. However, uPA, combines its receptor uPAR, is found to play an important role in tumor invasion and metastasis. Recently, it is understood that plasmin not only directly degrades fibrin, but also activate the family of metalloproteinases (MMPs), which are the main enzyme family to degrade ECM. So, we hypothesize that plasminogen activators might play important roles in liver fibrosis.
     In order to study the function of tPA in the process of liver fibrosis, we used tPA gene knock out C57/bl mice. Firstly, we took injection intraperitoneally 25% carbon tetrachloride (CCM) (dissolved in olive oil) to mice twice per week for 4 weeks and set up liver fibrosis animal model in both wild-type and tPA gene knock out mice. Mice treated with intraperitoneal injection the same dosage of olive oil as the comparable controls. After 4 weeks, the mice were sacrificed. By means of zymography, we found that tPA activity was unregulated markedly in CCM induced wild-type mice liver compared to olive oil administrated mice liver. As expected, there was no tPA activity found in tPA knock out mice. It seems that tPA might plays an important role in liver fibrosis.
     HE (Hematoxylin and Eosin) staining found that mice lacking tPA developed more severe morphological injury with lots of inflammatory cells existing. VG (Van Gieson) staining and hydroxyproline analysis showed that the deposition of collagen protein was increased in tPA knock out mice liver after after CCl4 administration compared with wild-type counterparts. It was showed that deficiency of tPA gene accelerated mice liver fibrosis.
     Liver fibrosis is usually to be caused by excess ECM deposition, we analysis both ECM generation and ECM degradation in wild-type mice and tPA knock out mice.α-smooth muscle actin (α-SMA) is the molecular marker for hepatocyte stellate cells (HSCs) transforming to myofibroblasts (MFs), which is the main cell sources of ECM production. On the other hand, MMPs is the main enzymes to degrade ECM. Tissue inhibitor of metalloproteinase-1 (TIMP-1) is the main inhibitor of MMPs. We examined the protein expression of a-SMA, matrix metalloproteinase-13 (MMP-13), TIMP-1 and the protein activity of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9).α-SMA expression in CC14 administrated tPA knock out mice livers compared with wild-type mice was increased and MMP-2, MMP-9 activities, MMP-13, TIMP-1 expression were found decreased in the liver of CCl4 administrated tPA knock out mice compared with wild-type counterparts. All the results illustrated that deficiency of tPA aggravated liver fibrosis through promoting HSCs activation and inhibiting ECM degradation by decreasing MMP-2, MMP-9 activities and disrupting the balance between MMP-13 and TIMP-1.
     Recently, many studies showed that overexpression of uPA in the liver may initiate upstream of matrix proteolysis cascade to degrade the deposition of ECM and reverse hepatic fibrogenesis. We used uPA knock out mice model to study the effect of uPA in liver fibrosis. The method used in setting up liver fibrosis mice model is the same as mentioned above. Through observing the mice liver, we found that after CCl4 administration, the surface of uPA knock out mice liver was granulated; the color was much whiter and was harder compared with wild-type counterparts. HE staining showed that mice lacking uPA developed more severe morphological injury and lots of hepatocytes showed vacuole liking changes. VG staining and hydroxyproline analysis displayed an increased deposition of collagen in the uPA knock out mice liver, moreover, the mRNA analysis of collagen I, which is the main ECM gradient in liver fibrosis, showed that collagen mRNA expression increased in uPA knock out mice liver after CCl4 administration compared with wild-type counterparts. The results above illuminated that disruption of uPA accelerated liver fibrosis. Then, we analysisα-SMA mRNA and protein expression, the results showed that deficiency of uPA increasedα-smooth muscle actin both mRNA and protein expression in the mice livers. And deletion of uPA increased TIMP-1 mRNA and protein expression in the mice liver. However, although, uPA null mice showed decreased MMP-13 protein expression, the mRNA expression was higher compared with wild type mice. It needs to be studied further. These results illustrated that deficiency of uPA aggravated liver fibrosis through promoting HSCs activation and inhibiting ECM degradation by promoting TIMP-1 and decreasing MMP-13 expression.
引文
1.Friedman S.L.Liver fibrosis-from bench to bedside.J.Hepatol.2003;38(Suppl.1):S38-S53.
    2.Gines P.,Cardenas A.,Arroyo V.,and Rodes J.Management of cirrhosis and ascites.N.Engl.J.Med.2004;350:1646-1654.
    3.Smart R.G.,Mann R.E.,Suurvali H.J.Changes in liver cirrhosis death rates in different countries in relation to per capita alcohol consumption and Alcoholics Anonymous membership.J.Stud.Alcohol.1998;59:245-249.
    4.Popper H.,and Uenfriend S.Hepatic fibrosis.Correlation of biochemical and morphologic investigations.Am.J.Med.1970;49:707-721.
    5.Schaffner F.,and Klion F.M.Chronic hepatitis.Annu.Rev.Med.1968;19:25-38.
    6.Soyer M.T.,Ceballos R.,and Aldrete J.S.Reversibility of severe hepatic damage caused by jejunoileal bypass after re-establishment of normal intestinal continuity.Surgery.1976;79:601-604.
    7.Albanis E.and Friedman S.L.Hepatic fibrosis.Pathogenesis and principles of therapy.Clin.Liver Dis.2001;5:315-334,ⅴ-ⅵ.
    8.Friedman S.L.,Roll F.J.,Boyles J.,and Bissell D.M.Hepatic lipocytes:the principal collagen-producing cells of normal rat liver.Proc.Natl.Acad.Sci.U.S.A.1985;82:8681-8685.
    9.Geerts A.History,heterogeneity,developmental biology,and functions of quiescent hepatic stellate cells.Semin.Liver Dis.2001;21:311-335.
    10. Benyon R.C. et al. Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis. 2001; 21: 373-384
    11. Carmen M. Swaisgood et al. The development of bleomycin-induced pulmonary fibrosis in mice deficient for components of the fibrinolytic system. Am. J. Pathol. 2000; 157:177-187
    12. Jorge A. Bezerra et al. Plasminogen activators direct reorganization of the liver lobule after acute injury. Am J Pathol. 2001; 158: 921-929
    13. Yang J, Shultz RW, Mars WM, et al. Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J. Clin. Invest. 2002; 110: 1525-1538.
    14. Pietrangelo A. Metals, oxidative stress, and hepatic fibrogenesis. Semin. Liver Dis. 1996; 16: 13-30.
    15. Monto A, Patel K, Bostrom A, et al. Risks of a range of alcohol intake on hepatitis C-related fibrosis. Hepatology 2004; 39: 826-834.
    16. Ikejima K, Honda H, Yoshikawa M, et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals, Hepatology 2001; 34: 288-297.
    17. Friedman SL. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N. Engl. J. Med. 1993; 328: 1828-1835.
    18. Essawy M, Soylemezoglu O, Muchaneta-Kubara EC, Shortland J, Brown CB, Nahas AM. Myofibroblasts and the progression of diabetic nephropathy. Nephrol. Dial. Transplant. 1997; 12: 43-50.
    19. Gressner AM. Liver fibrosis: perspectives in pathobiochemical research and clinical outlook. Eur. J. Clin. Chem. Clin. Biochem. 1991; 29: 293-311.
    20. Roberts IS, Burrows C, Shanks JH, Venning M, McWilliam LJ. Interstitial myofibroblasts: predictors of progression in membranous nephropathy. J. Clin. Pathol. 1997; 50: 123-127.
    21. Mark A. Zern. Hepatic stellate cells: a target for the treatment of liver fibrosis. 2000; J.Gastroenterol. 35: 665-672.
    22. Okazaki I, Watanabe T, Hozawa S, Arai M, Maruyama K. Molecular mechanism of the reversibility of hepatic fibrosis: with special reference to the role of matrix metalloproteinases, J. Gastroenterol. Hepatol. 2000; 15: D26-32.
    23. Watanabe T, Niioka M, Ishikawa A, et al. Dynamic change of cells expressing MMP-2 mRNA and MTl-MMP mRNA in the recovery from liver fibrosis in the rat. J. Hepatol. 2001; 35: 465-473.
    24. Knittel T, Mehde M, Grundmann A, Saile B, Scharf JG, Ramadori G. Expression of matrix metalloproteinases and their inhibitors during hepatic tissue repair in the rat. Histochem. Cell Biol. 2000; 113: 443-453.
    25. Vassalli JD, Sappino AP, Belin D. The plasminogen activator/plasmin system. J. Clin. Invest. 1991; 88: 1067-1072.
    26. Eddy AA. Molecular basis of renal fibrosis. Pediatr. Nephrol. 2000; 15: 290-301.
    27. Lenz O, Elliot SJ, Stetler-Stevenson WG. Matrix metalloproteinases in renal development and disease. J. Am. Soc. Nephrol. 2000; 11: 574-581.
    28. Eitzman DT, McCoy RD, Zheng X, Fay WP, Shen T, Ginsburg D, Simon RH. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest. 1996; 97: 232-237.
    29. Yang J. Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am. J. Pathol. 2001; 159: 1465-1475.
    30. Kim, TH, Mars WM, Stolz DB, Petersen BE, Michalopoulos GK. Extracellular matrix remodeling at the early stages of liver regeneration in the rat. Hepatology 1997; 26: 896-904.
    31. Oda T, Jung YO, Kim HS, et al. PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int. 2001; 60: 587-596.
    32. Bedossa P, Paradis V. Liver extracellular matrix in health and disease. J. Pathol. 2003;200:504-515
    33. Burt AD. Pathobiology of hepatic stellate cells. J. Gastroenterol. 1999; 34: 299-304
    34. Takahara T, Furui K, Yata Y, et al. Dual expression of matrix metalloproteinase-2 and membrane-type 1-matrix metalloproteinase in fibrotic human liver. Hepatology 1997; 26: 1521-1529.
    35. Rudolph KL, Chang S, Millard M, Schreiber-Agus N, Depinho RA. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 2000; 287: 1253-1258.
    36. Swaisgood, CM, French EL, Noga C, Simon RH, Ploplis VA. The development of bleomycin-induced pulmonary fibrosis in mice deficient for components of the fibrinolytic sysyem. Am. J. Pathol. 2000; 157:177-187.
    37. Nagase H, Woessner JF. Jr. Matrix metalloproteinases. J. Biol. Chem. 1999; 274: 21491-21494.
    38. Aimes RT, Quigley JR Matrix metalloproteinase-2 is an interstitial collagenase. J. Biol. Chem. 1995; 270: 5872-5876.
    39. Brenner DA, Waterboer T, Choi SK, et al. New aspects of hepatic fibrosis. J. Hepatol. 2000; 32: 32-38.
    40. Iredale J, Benyon R, Pickering J, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest. 1998; 102: 538-549.
    41. Alcolado R, Arthur MJP, Iredale JP. Pathogenesis of liver fibrosis. Clin. Sci. 1997; 92: 103-112.
    42. Watanabe T, Niioka M, Hozawa S, et al. Gene expression of interstitial collagenase in both progressive and recovery phase of rat liver fibrosis induced by carbon tetrachloride. J. Hepatol. 2000; 33: 224-235.
    43. Milani S, Herbst H, Schuppan D, et al. Differential expression of matrix-metalloproteinase-1 and -2 genes in normal and fibrotic human liver. Am. J. Pathol. 1994; 144: 528-537.
    44. Vyas Sk, Leyland H, Gentry J, Arthur MJ. Rat hepatic lipocytes synthesize and secrete transin (stromelysin) in early primary culture. Gastroenterology 1995; 109: 889-898.
    45. Herbst H, Wege T, Milani S, et al. Tissue inhibitor of metalloproteinase-1 and -2 RNA expression in rat and human liver fibrosis. Am. J. Pathol. 1997; 150: 1647-1659.
    46.Parsons CT,Bradford BU,Pan CQ,et al.Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody in established liver fibrosis in rats.Hepatology.2004;40:1106-1115.
    1.Pietrangelo A.Metals,oxidative stress,and hepatic fibrogenesis.Semin.Liver Dis.1996;16:13-30.
    2.Monto A,Patel K,Bostrom A,et al.Risks of a range of alcohol intake on hepatitis C-related fibrosis.Hepatology 2004;39:826-834.
    3.Ikejima K,Honda H,Yoshikawa M,et al.Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals,Hepatology 2001;34:288-297.
    4.Friedman SL.The cellular basis of hepatic fibrosis.Mechanisms and treatment strategies.N.Engl.J.Med.1993;328:1828-1835.
    5.Essawy M,Soylemezoglu O,Muchaneta-Kubara EC,Shortland J,Brown CB,Nahas AM.Myofibroblasts and the progression of diabetic nephropathy.Nephrol.Dial.Transplant.1997;12:43-50.
    6.Gressner AM.Liver fibrosis:perspectives in pathobiochemical research and clinical outlook. Eur. J. Clin. Chem. Clin. Biochem. 1991; 29: 293-311.
    7. Roberts IS, Burrows C, Shanks JH, Venning M, McWilliam LJ. Interstitial myofibroblasts: predictors of progression in membranous nephropathy. J. Clin. Pathol. 1997; 50: 123-127.
    8. Mark A. Zern Hepatic stellate cells: a target for the treatment of liver fibrosis. J. Gastroenterol. 2000; 35: 665-672.
    9. Okazaki I, Watanabe T, Hozawa S, Arai M, Maruyama K. Molecular mechanism of the reversibility of hepatic fibrosis: with special reference to the role of matrix metalloproteinases, J. Gastroenterol. Hepatol. 2000; 15: D26-32.
    10. Watanabe T, Niioka M, Ishikawa A, et al. Dynamic change of cells expressing MMP-2 mRNA and MTl-MMP mRNA in the recovery from liver fibrosis in the rat. J. Hepatol. 2001; 35: 465-473.
    11. Knittel T, Mehde M, Grundmann A, Saile B, Scharf JG, Ramadori G, Expression of matrix metalloproteinases and their inhibitors during hepatic tissue repair in the rat. Histochem. Cell Biol. 2000; 113: 443-453.
    12. Nagase H. Activation mechanisms of matrix metalloproteinases. Biol. Chem. 1997; 378:151-160.
    13. Steler-Stevenson WG. Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix. Am J Pathol 1996; 148: 1345-1350.
    14. Murphy G, Atkinson S, Ward R, et al. The role of plasminogen activators in the regulation of connective tissue metalloproteinases. Ann. N. Y. Acad. Sci. 1992; 667: 1-12.
    15. Salgado S, Garcia J, Vera J, et al. Liver cirrhosis is reverted by urokinase-type plasminogen activator gene therapy. Mol. Ther. 2000; 2: 545-51.
    16. Eitzman DT, McCoy RD, Zheng X, Fay WP, Shen T, Ginsburg D, Simon RH. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J. Clin. Invest. 1996; 97: 232-237.
    17. Bedossa P, Paradis V. Liver extracellular matrix in health and disease. J. Pathol. 2003; 200: 504-515
    18. Burt AD. Pathobiology of hepatic stellate cells. J. Gastroenterol. 1999; 34: 299-304
    19. Takahara T, Furui K, Yata Y, et al. Dual expression of matrix metalloproteinase-2 and membrane-type 1-matrix metalloproteinase in fibrotic human liver. Hepatology 1997; 26: 1521-1529.
    20. Huang ZG, Zhai WR, Zhang YE, Zhang XR. Study of heteroserum-induced rat liver fibrosis model and its mechanism. World J. Gastroenterol. 1998; 4: 206-209
    21. Jia JB, Han DW, Xu RL, Gao F, Zhao LF, Zhao YC, Yan JP, Ma XH. Effect of endotoxin on fibronectin synthesis of rat primary cultured hepatocytes. World J. Gastroenterol. 1998; 4: 329-331
    22. Du WD, Zhang YE, Zhai WR, Zhou XM. Dynamic changes of type I, III and IV collagen synthesis and distribution of collagenproducing cells in carbon tetrachloride-induced rat liver fibrosis. World J. Gastroenterol. 1999; 5: 397-403
    23. Cheng ML, Wu YY, Huang KF, Luo TY, Ding YS, Lu YY, Liu RC, Wu J. Clinical study on the treatment of liver fibrosis due to hepatitis B by IFN- 1 and traditional medicine preparation. World J. Gastroenterol. 1999; 5: 267-269
    24. Olaso E, Friedman SL. Molecular regulation of hepatic fibrogenesis. J. Hepatol. 1998; 29: 836-847
    25. Pinzari M, Marra F, Carloni V. Signal transduction in hepatic stellate cells. Liver 1998; 18: 2-13
    26. Bataller R and Brenner DA. Liver fibrosis. J. Clin. Invest. 2005; 115:209-218
    27. Galligani K, Lonati-Galligani M, Fuller GC. Collagen synthesis in explant cultures of normal and CC14-treated mouse liver. Toxicol Appl Pharmacol 1979; 48: 131-137.
    28. Brenner DA. Signal transduction during liver regeneration. J. Gastroenterol. Hepatol. 1998; 13 (Suppl): S93-95
    29. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 2000; 275: 2247-2250
    30. Clement B, Grimaud JA, Campion JP, Deugnier Y, Guillouzo A.Cell types involved collagen and fibronectin production in normal and fibrotic human liver. Hepatology 1986; 6: 225-234.
    31. Bachem MG, Meyer D, Melchior R, Sell KM, Gressner AM. Activation of rat liver perisinusoidal lipocytes by transforming growth factors derived from myofibroblastlike cells. A potential mechanism of self-perpetuation in liver fibrogenesis. J. Clin. Invest. 1992;89: 19-27
    32. Arthur MJ, Mann DA, Iredale JP. Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis. J. Gastroenterol. Hepatol. 1998; 13 (Suppl): S33-38
    33. Eddy AA. Molecular basis of renal fibrosis. Pediatr. Nephrol. 2000; 15: 290-301.
    34. Lenz O, Elliot SJ, Stetler-Stevenson WG. Matrix metalloproteinases in renal development and disease. J. Am. Soc. Nephrol. 2000; 11: 574-581.
    35. Bueno M et al. Urokinase-type plasminogen activator gene therapy in liver cirrhosis is mediated by collagens gene expression down-regulation and up-regulation of MMPs, HGF and VEGF. J. Gene. Med. 2006; 8(11): 1291-9
    36. Kim TH, Mars WM, Stole DB, Petersen BE, Michalopoulos GK. Extracellular matrix remodeling at the early stages of liver regeneration in the rat. Hepatology 1997;26:896-904.
    37. Brenner DA, Waterboer T, Choi SK, et al. New aspects of hepatic fibrosis. J. Hepatol. 2000; 32: 32-38.
    38. Nagase H, Woessner JF. Jr. Matrix metalloproteinases. J. Biol. Chem. 1999; 274: 21491-21494.
    39. Benyon RC, Arthur MJ. Extracellular matrix degradation and the role of hepatic stellate cells. Semin. Liver Dis. 2001; 21: 373-384.
    40. Iredale J, Benyon R, Pickering J, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest. 1998; 102: 538-549.
    41. Alcolado R, Arthur MJP, Iredale JP. Pathogenesis of liver fibrosis. Clin. Sci. 1997; 92: 103-112.
    42. Watanabe T, Niioka M, Hozawa S, et al. Gene expression of interstitial collagenase in both progressive and recovery phase of rat liver fibrosis induced by carbon tetrachloride. J. Hepatol. 2000; 33: 224-235.
    43.Milani S,Herbst H,Schuppan D,et al.Differential expression of matrix-metalloproteinase-1 and -2 genes in normal and fibrotic human liver.Am.J.Pathol.1994;144:528-537.
    44.Vyas Sk,Leyland H,Gentry J,Arthur MJ.Rat hepatic lipocytes synthesize and secrete transin(stromelysin) in early primary culture.Gastroenterology 1995;109:889-898.
    45.Alcolado R,Arthur MJP,Iredale JP.Pathogenesis of liver fibrosis.Clin.Sci.1997;92:103-112.
    46.Herbst H,Wege T,Milani S,et al.Tissue inhibitor of metalloproteinase-1 and -2RNA expression in rat and human liver fibrosis.Am.J.Pathol.1997;150:1647-1659.
    47.Parsons CT,Bradford BU,Pan CQ,et al.Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody in established liver fibrosis in rats.Hepatology 2004;40:1106-1115.
    [1]Friedman SL.J.Biol.Chem.,2000,275:2247-2250
    [2]Nieto N.et al.J.Biol.Chem.,2000,275:20136-20145
    [3]Yu Q.et al.Genes.Dev.,2000,14:163-176
    [4]Svegliati- Baroni G.et al.Liver,2001,21:1-12
    [5]Maher J.J.Semin.Liver Dis.,2001,21:417-426
    [6]Rockey D.C.Semin.Liver Dis.,2001,21:337-350
    [7]Benyon R.C.et al.Semin.Liver Dis.,2001,21:373-384
    [8]King T.E.Jr.N.Engl.J.Med.,2000,342:974-975
    [9]Parsons C.J.et al.Hepatology,2004,40:1106-1115
    [10]Wright M.C.et al.Gastroenterology,2001;121:685-698
    [11]Salgado S.et al.Mol.Ther.,2000,2:545-551
    [1]Wells RG,Fibrogenesis V.TGF2β signaling pathways[J].Am J Physiol,2000,279:G 845-850
    [2]Britton RS,Bacon BR.Intracellular signaling pathways in stellate cell activation[J]1Alcohol Clin Exp Res,1999,23:922-9251
    [3]Scharf J G,Knittel T,Dombrowski F,et al.Characterization of the IGF axis components in isolated rat hepatic stellate cells [J].Hepatology,1998,27:1275-1284.
    [4]Ramadori G,Armbrust T.Cytokine in the liver[J]1Euro J Gastro Hepa.,2001,13(7):777-784.
    [5]Friedman SL.The cellular basis of hepatic fibrosis,mechanisms and treatment strategies[J].N Engl J Med,1993,328:1828-1835.
    [6]Pinzani M.Novel insights into the biology and physiology of the Ito cell[J].Pharmacol Ther,1995,66:387-412.
    [7]Vinicio C,Massimo P,Sabrina G,et al.Tyrosine phosphorylation of focal adhesion kinase by PDGF is dependent on Ras in human hepatic stellate cells[J].Hepatology J,2000,31(1):131-140.
    [8]林红,李异玲,傅宝玉1 化学性肝纤维化中血小板源性生长因子的动态变化[J]1 中国医科大学学报,2001,30(6):447-4491
    [9]彭小斌,张国安,刘小朋1 乙型肝炎患者TNF2α和PDGF水平及其与肝纤维化的关系[J]1 胃肠病学和肝病学杂志,2000,9(3):201-2021
    [10]彭小斌,张国安,刘小朋1 肝炎患者血清白细胞介素6和血小板源生长因子水平及其肝纤维化的关系[J]1 江西医学院学报,2000,40(2):69-711
    [11]袁农,王萍,王宪智1 血小板衍生生长因子及其受体在肝纤维化患者肝组织中的表达及意义[J]1 中华肝脏病杂志,2002,10(1):59-601
    [12]李惠珍,周晓萍,弥建平1 慢性乙型肝炎患者血清中HA、LN、PC Ⅲ、TGF2β1、TNF2α含量与肝纤维化程度的关系探讨[J]1 临床肝胆病杂志,2002,18(2):86-881
    [13]马宏伟,李顺吉,郭巧玲,等1 肝纤灵对肝纤维化大鼠血清细胞因子水平的影响[J]1 中国中医药科技,2002,9(2):81-821
    [14]Knittel L,Tmehde M,Kobold D,et al.Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parencymal cells of rat liver:regulation by TNF2alpha and TGF2beta 1[J].J Hepatol,1999,30:48-60.
    [15]Simeonova PP,Gallucci RM,Hulderman T,et al.The role of tumor necrosis factor2alpha in liver toxicity,inflammation,and fibrosis induced by carbon tetrachloride[J].Toxicol Appl Pharmacol,2001,177(2):112-120.
    [16]Gianluca SB,Francesco R,Antonio DS,et al.Insulin and insulin like growth factor21 stimulate proliferation and type Ⅰ collagen accumulation by human hepatic stellate cells:differential effects on signal transduction pathways[J].Hepatology,1999,29(6):1743-1751.
    [17]Seo J H,Park C.Expression of insulin21ike growth factor Ⅱ in chronic hepatitis B,liver cirrhosis,and hepatocellular carcinoma[J].Gan To Kagaku Rvoho,1995,22(suppl 3):292-307.
    [18]Seo J H,Kim KW,Murakmi S,et al.Lack of colocalization of HBxAg and insulin like growth factor Ⅱ in the livers of patients with chronic hepatitis B,cirrhosis and hepatocellular carcinoma[J].J Korean Med Sci,1997,12(6):523-531.
    [19]DePalo EF,Bassanello M,Federica L,et al.GH/IGF system, cirrhosis and liver transplantation[J].Clin Chim Acta,2001,310(1):31-37.
    [20]Tsushima H,Kawata S,Tamura S,et al.Reduced plasma transforming growth factor beta 1 levels in patients with chornic hepatitis C after interferon2alpha therapy:association with regression of hepatic fibrosis[J].J Hepatol,1999,30(1):1-7.
    [21]Dijke PT,Goumans MJ,Itoh F,et al.Regulation of cell proliferation by Smad proteins[J].J Cell Physiol,2002,191(1):1-16.
    [22]Varga J.Scleroderma and Smads[J].Arthritis and Rheumatism,2002,46(7):1703-1713.
    [23]Atsulawa K,Saito H,Tsukada N,et al.Th1 and Th2 cytokines differentially regulate the transformation of Kupffer cells into mult2inucleated giant cells but similarly enhance the Kupffer cell2induced hepatic stellate cell proliferation[J].Hepatology Research,2001,20:193-206.
    [24]朱华斌,曾金兰,罗瑞德1Th2细胞在日本血吸虫小鼠肝脏中的变化及其与肝纤维化的比较[J]1 同济医科大学学报,2000,29(6):518-5211
    [25]Nelson DR,Lauwers GY,Lau J Y,et al.Interleukin 10 treatment reduces fibrosis in patients with chronic hepatitis C:a pilot trial of interferon nonresponders[J].Gastroenterology,2000,118(4):655-660.
    [26]Suhayl DJ.Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis[J].Neurology,2002,58(8 suppl 4):S3-9.
    [27]黄以群,王崇国,李树清,等1干扰素α抗肝纤维化的实验研究[J]1 中华肝脏病杂志,2002,10(1):711[53]张其胜,王吉耀,胡美玉1 干扰素α和甘草酸对肝纤维化鼠星状细胞胶原代谢的影响[J]1 中华肝脏病杂志,2002,10(1):721
    [28]周俊英,赵彩彦,甄真1 病毒性肝炎患者血清γ2IFN与肝纤维化关系的研究[J]1 中国免疫学杂志,2000,16(1):333-334,3371
    [29]王要平,孙自勤,权启镇1 肝细胞在肝纤维化中的作用[J]1 中国煤炭工 业医学杂志,2000,3(6):556-5571
    [30]Kumashiro R,Ide T,Sasaki M,et al.Interferon2 γ bring additive anti-viral environment when combined with interferon-α in patients with chronic hepatitis C[J].Hepato Res,2002,22:20-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700